A systematic study of hexavalent chromium adsorption and removal from aqueous environments using chemically functionalized amorphous and mesoporous silica nanoparticles

We report on the synthesis and characterization of highly monodisperse amorphous silica nanoparticles (ASNs) and mesoporous silica nanoparticles (MSNs) with particle sizes of 15–60 nm. We demonstrate adsorption of Cr(VI) ions on amino-functionalized ASNs (NH 2 –ASNs) and MSNs (NH 2 –MSNs) and their...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Scientific reports 2020-03, Vol.10 (1), p.5558-5558, Article 5558
Hauptverfasser: Jang, Eun-Hye, Pack, Seung Pil, Kim, Il, Chung, Sungwook
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 5558
container_issue 1
container_start_page 5558
container_title Scientific reports
container_volume 10
creator Jang, Eun-Hye
Pack, Seung Pil
Kim, Il
Chung, Sungwook
description We report on the synthesis and characterization of highly monodisperse amorphous silica nanoparticles (ASNs) and mesoporous silica nanoparticles (MSNs) with particle sizes of 15–60 nm. We demonstrate adsorption of Cr(VI) ions on amino-functionalized ASNs (NH 2 –ASNs) and MSNs (NH 2 –MSNs) and their removal from aqueous environments and show the specific surface area (SSA) of NH 2 –MSNs is four times as larger as that of NH 2 –ASNs and that more than 70% of the total SSA of NH 2 –MSNs is due to the presence of nanopores. Analyses of Cr(VI) adsorption kinetics on NH 2 –ASNs and NH 2 –MSNs exhibited relatively rapid adsorption behavior following pseudo-second order kinetics as determined by nonlinear fitting. NH 2 –ASNs and NH 2 –MSNs exhibited significantly higher Cr(VI) adsorption capacities of 34.0 and 42.2 mg·g −1 and removal efficiencies of 61.9 and 76.8% than those of unfunctionalized ASNs and MSNs, respectively. The Langmuir model resulted in best fits to the adsorption isotherms of NH 2 –ASNs and NH 2 –MSNs. The adsorption of Cr(VI) on NH 2 –ASNs and NH 2 –MSNs was an endothermic and spontaneous process according to the thermodynamic analyses of temperature-dependent adsorption isotherms. The removal efficiencies of NH 2 –ASNs and NH 2 –MSNs exhibited a moderate reduction of less than 25% of the maximum values after five regeneration cycles. Furthermore, NH 2 –MSNs were also found to reduce adsorbed Cr(VI) into less harmful Cr(III).
doi_str_mv 10.1038/s41598-020-61505-1
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7101345</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2384204695</sourcerecordid><originalsourceid>FETCH-LOGICAL-c549t-6e3d8bf8b322187fae95da5fcbe38a46c87cf79ac6f295952f28db8efb9c0f93</originalsourceid><addsrcrecordid>eNp9Uctu1DAUjRCIVqU_wAJ5ySZgO3HG3iBVFY9Kldh0b9049owrPwbfZMTwRXwmDtNWZYM3fpyH772nad4y-oHRTn7EngklW8ppOzBBRcteNOec9qLlHecvn53PmkvEe1qX4Kpn6nVzVl856xg7b35fETzibCPM3hCcl-lIsiM7-xMOEGyaidmVHP0SCUyYy372ORFIEyk25kohrsIEfiw2L0hsOviSU6xCJAv6tK16G72BEI7ELcmsegj-l50IxOq3W2WrX7SY97msV_ShKkiClPdQamHB4pvmlYOA9vJhv2juvny-u_7W3n7_enN9ddsa0au5HWw3ydHJsbbI5MaBVWIC4cxoOwn9YOTGuI0CMziuhBLccTmN0rpRGepUd9F8OtnulzHaydRGCgS9Lz5COeoMXv-LJL_T23zQG0ZZ14tq8P7BoOQ6FJx19GhsCJDWCWneyb5GM6iVyk9UUzJise7pG0b1GrI-haxryPpvyJpV0bvnBT5JHiOthO5EwAqlrS36Pi-lzhz_Z_sHRxC6xw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2384204695</pqid></control><display><type>article</type><title>A systematic study of hexavalent chromium adsorption and removal from aqueous environments using chemically functionalized amorphous and mesoporous silica nanoparticles</title><source>Nature Free</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><source>Springer Nature OA Free Journals</source><creator>Jang, Eun-Hye ; Pack, Seung Pil ; Kim, Il ; Chung, Sungwook</creator><creatorcontrib>Jang, Eun-Hye ; Pack, Seung Pil ; Kim, Il ; Chung, Sungwook</creatorcontrib><description>We report on the synthesis and characterization of highly monodisperse amorphous silica nanoparticles (ASNs) and mesoporous silica nanoparticles (MSNs) with particle sizes of 15–60 nm. We demonstrate adsorption of Cr(VI) ions on amino-functionalized ASNs (NH 2 –ASNs) and MSNs (NH 2 –MSNs) and their removal from aqueous environments and show the specific surface area (SSA) of NH 2 –MSNs is four times as larger as that of NH 2 –ASNs and that more than 70% of the total SSA of NH 2 –MSNs is due to the presence of nanopores. Analyses of Cr(VI) adsorption kinetics on NH 2 –ASNs and NH 2 –MSNs exhibited relatively rapid adsorption behavior following pseudo-second order kinetics as determined by nonlinear fitting. NH 2 –ASNs and NH 2 –MSNs exhibited significantly higher Cr(VI) adsorption capacities of 34.0 and 42.2 mg·g −1 and removal efficiencies of 61.9 and 76.8% than those of unfunctionalized ASNs and MSNs, respectively. The Langmuir model resulted in best fits to the adsorption isotherms of NH 2 –ASNs and NH 2 –MSNs. The adsorption of Cr(VI) on NH 2 –ASNs and NH 2 –MSNs was an endothermic and spontaneous process according to the thermodynamic analyses of temperature-dependent adsorption isotherms. The removal efficiencies of NH 2 –ASNs and NH 2 –MSNs exhibited a moderate reduction of less than 25% of the maximum values after five regeneration cycles. Furthermore, NH 2 –MSNs were also found to reduce adsorbed Cr(VI) into less harmful Cr(III).</description><identifier>ISSN: 2045-2322</identifier><identifier>EISSN: 2045-2322</identifier><identifier>DOI: 10.1038/s41598-020-61505-1</identifier><identifier>PMID: 32221311</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>639/301/357/354 ; 639/301/357/551 ; 639/301/930/12 ; 639/638/549/2263 ; 639/925/357/354 ; 704/172/169/896 ; Humanities and Social Sciences ; multidisciplinary ; Science ; Science (multidisciplinary)</subject><ispartof>Scientific reports, 2020-03, Vol.10 (1), p.5558-5558, Article 5558</ispartof><rights>The Author(s) 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c549t-6e3d8bf8b322187fae95da5fcbe38a46c87cf79ac6f295952f28db8efb9c0f93</citedby><cites>FETCH-LOGICAL-c549t-6e3d8bf8b322187fae95da5fcbe38a46c87cf79ac6f295952f28db8efb9c0f93</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7101345/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7101345/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,27901,27902,41096,42165,51551,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32221311$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Jang, Eun-Hye</creatorcontrib><creatorcontrib>Pack, Seung Pil</creatorcontrib><creatorcontrib>Kim, Il</creatorcontrib><creatorcontrib>Chung, Sungwook</creatorcontrib><title>A systematic study of hexavalent chromium adsorption and removal from aqueous environments using chemically functionalized amorphous and mesoporous silica nanoparticles</title><title>Scientific reports</title><addtitle>Sci Rep</addtitle><addtitle>Sci Rep</addtitle><description>We report on the synthesis and characterization of highly monodisperse amorphous silica nanoparticles (ASNs) and mesoporous silica nanoparticles (MSNs) with particle sizes of 15–60 nm. We demonstrate adsorption of Cr(VI) ions on amino-functionalized ASNs (NH 2 –ASNs) and MSNs (NH 2 –MSNs) and their removal from aqueous environments and show the specific surface area (SSA) of NH 2 –MSNs is four times as larger as that of NH 2 –ASNs and that more than 70% of the total SSA of NH 2 –MSNs is due to the presence of nanopores. Analyses of Cr(VI) adsorption kinetics on NH 2 –ASNs and NH 2 –MSNs exhibited relatively rapid adsorption behavior following pseudo-second order kinetics as determined by nonlinear fitting. NH 2 –ASNs and NH 2 –MSNs exhibited significantly higher Cr(VI) adsorption capacities of 34.0 and 42.2 mg·g −1 and removal efficiencies of 61.9 and 76.8% than those of unfunctionalized ASNs and MSNs, respectively. The Langmuir model resulted in best fits to the adsorption isotherms of NH 2 –ASNs and NH 2 –MSNs. The adsorption of Cr(VI) on NH 2 –ASNs and NH 2 –MSNs was an endothermic and spontaneous process according to the thermodynamic analyses of temperature-dependent adsorption isotherms. The removal efficiencies of NH 2 –ASNs and NH 2 –MSNs exhibited a moderate reduction of less than 25% of the maximum values after five regeneration cycles. Furthermore, NH 2 –MSNs were also found to reduce adsorbed Cr(VI) into less harmful Cr(III).</description><subject>639/301/357/354</subject><subject>639/301/357/551</subject><subject>639/301/930/12</subject><subject>639/638/549/2263</subject><subject>639/925/357/354</subject><subject>704/172/169/896</subject><subject>Humanities and Social Sciences</subject><subject>multidisciplinary</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><issn>2045-2322</issn><issn>2045-2322</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><recordid>eNp9Uctu1DAUjRCIVqU_wAJ5ySZgO3HG3iBVFY9Kldh0b9049owrPwbfZMTwRXwmDtNWZYM3fpyH772nad4y-oHRTn7EngklW8ppOzBBRcteNOec9qLlHecvn53PmkvEe1qX4Kpn6nVzVl856xg7b35fETzibCPM3hCcl-lIsiM7-xMOEGyaidmVHP0SCUyYy372ORFIEyk25kohrsIEfiw2L0hsOviSU6xCJAv6tK16G72BEI7ELcmsegj-l50IxOq3W2WrX7SY97msV_ShKkiClPdQamHB4pvmlYOA9vJhv2juvny-u_7W3n7_enN9ddsa0au5HWw3ydHJsbbI5MaBVWIC4cxoOwn9YOTGuI0CMziuhBLccTmN0rpRGepUd9F8OtnulzHaydRGCgS9Lz5COeoMXv-LJL_T23zQG0ZZ14tq8P7BoOQ6FJx19GhsCJDWCWneyb5GM6iVyk9UUzJise7pG0b1GrI-haxryPpvyJpV0bvnBT5JHiOthO5EwAqlrS36Pi-lzhz_Z_sHRxC6xw</recordid><startdate>20200327</startdate><enddate>20200327</enddate><creator>Jang, Eun-Hye</creator><creator>Pack, Seung Pil</creator><creator>Kim, Il</creator><creator>Chung, Sungwook</creator><general>Nature Publishing Group UK</general><scope>C6C</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20200327</creationdate><title>A systematic study of hexavalent chromium adsorption and removal from aqueous environments using chemically functionalized amorphous and mesoporous silica nanoparticles</title><author>Jang, Eun-Hye ; Pack, Seung Pil ; Kim, Il ; Chung, Sungwook</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c549t-6e3d8bf8b322187fae95da5fcbe38a46c87cf79ac6f295952f28db8efb9c0f93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>639/301/357/354</topic><topic>639/301/357/551</topic><topic>639/301/930/12</topic><topic>639/638/549/2263</topic><topic>639/925/357/354</topic><topic>704/172/169/896</topic><topic>Humanities and Social Sciences</topic><topic>multidisciplinary</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jang, Eun-Hye</creatorcontrib><creatorcontrib>Pack, Seung Pil</creatorcontrib><creatorcontrib>Kim, Il</creatorcontrib><creatorcontrib>Chung, Sungwook</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Scientific reports</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jang, Eun-Hye</au><au>Pack, Seung Pil</au><au>Kim, Il</au><au>Chung, Sungwook</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A systematic study of hexavalent chromium adsorption and removal from aqueous environments using chemically functionalized amorphous and mesoporous silica nanoparticles</atitle><jtitle>Scientific reports</jtitle><stitle>Sci Rep</stitle><addtitle>Sci Rep</addtitle><date>2020-03-27</date><risdate>2020</risdate><volume>10</volume><issue>1</issue><spage>5558</spage><epage>5558</epage><pages>5558-5558</pages><artnum>5558</artnum><issn>2045-2322</issn><eissn>2045-2322</eissn><abstract>We report on the synthesis and characterization of highly monodisperse amorphous silica nanoparticles (ASNs) and mesoporous silica nanoparticles (MSNs) with particle sizes of 15–60 nm. We demonstrate adsorption of Cr(VI) ions on amino-functionalized ASNs (NH 2 –ASNs) and MSNs (NH 2 –MSNs) and their removal from aqueous environments and show the specific surface area (SSA) of NH 2 –MSNs is four times as larger as that of NH 2 –ASNs and that more than 70% of the total SSA of NH 2 –MSNs is due to the presence of nanopores. Analyses of Cr(VI) adsorption kinetics on NH 2 –ASNs and NH 2 –MSNs exhibited relatively rapid adsorption behavior following pseudo-second order kinetics as determined by nonlinear fitting. NH 2 –ASNs and NH 2 –MSNs exhibited significantly higher Cr(VI) adsorption capacities of 34.0 and 42.2 mg·g −1 and removal efficiencies of 61.9 and 76.8% than those of unfunctionalized ASNs and MSNs, respectively. The Langmuir model resulted in best fits to the adsorption isotherms of NH 2 –ASNs and NH 2 –MSNs. The adsorption of Cr(VI) on NH 2 –ASNs and NH 2 –MSNs was an endothermic and spontaneous process according to the thermodynamic analyses of temperature-dependent adsorption isotherms. The removal efficiencies of NH 2 –ASNs and NH 2 –MSNs exhibited a moderate reduction of less than 25% of the maximum values after five regeneration cycles. Furthermore, NH 2 –MSNs were also found to reduce adsorbed Cr(VI) into less harmful Cr(III).</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>32221311</pmid><doi>10.1038/s41598-020-61505-1</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2045-2322
ispartof Scientific reports, 2020-03, Vol.10 (1), p.5558-5558, Article 5558
issn 2045-2322
2045-2322
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7101345
source Nature Free; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry; Springer Nature OA Free Journals
subjects 639/301/357/354
639/301/357/551
639/301/930/12
639/638/549/2263
639/925/357/354
704/172/169/896
Humanities and Social Sciences
multidisciplinary
Science
Science (multidisciplinary)
title A systematic study of hexavalent chromium adsorption and removal from aqueous environments using chemically functionalized amorphous and mesoporous silica nanoparticles
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T16%3A17%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20systematic%20study%20of%20hexavalent%20chromium%20adsorption%20and%20removal%20from%20aqueous%20environments%20using%20chemically%20functionalized%20amorphous%20and%20mesoporous%20silica%20nanoparticles&rft.jtitle=Scientific%20reports&rft.au=Jang,%20Eun-Hye&rft.date=2020-03-27&rft.volume=10&rft.issue=1&rft.spage=5558&rft.epage=5558&rft.pages=5558-5558&rft.artnum=5558&rft.issn=2045-2322&rft.eissn=2045-2322&rft_id=info:doi/10.1038/s41598-020-61505-1&rft_dat=%3Cproquest_pubme%3E2384204695%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2384204695&rft_id=info:pmid/32221311&rfr_iscdi=true