Combination of host immune metabolic biomarkers for the PD-1 blockade cancer immunotherapy
BACKGROUNDCurrent clinical biomarkers for the programmed cell death 1 (PD-1) blockade therapy are insufficient because they rely only on the tumor properties, such as programmed cell death ligand 1 expression frequency and tumor mutation burden. Identifying reliable, responsive biomarkers based on t...
Gespeichert in:
Veröffentlicht in: | JCI insight 2020-01, Vol.5 (2) |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | BACKGROUNDCurrent clinical biomarkers for the programmed cell death 1 (PD-1) blockade therapy are insufficient because they rely only on the tumor properties, such as programmed cell death ligand 1 expression frequency and tumor mutation burden. Identifying reliable, responsive biomarkers based on the host immunity is necessary to improve the predictive values.METHODSWe investigated levels of plasma metabolites and T cell properties, including energy metabolism markers, in the blood of patients with non-small cell lung cancer before and after treatment with nivolumab (n = 55). Predictive values of combination markers statistically selected were evaluated by cross-validation and linear discriminant analysis on discovery and validation cohorts, respectively. Correlation between plasma metabolites and T cell markers was investigated.RESULTSThe 4 metabolites derived from the microbiome (hippuric acid), fatty acid oxidation (butyrylcarnitine), and redox (cystine and glutathione disulfide) provided high response probability (AUC = 0.91). Similarly, a combination of 4 T cell markers, those related to mitochondrial activation (PPARγ coactivator 1 expression and ROS), and the frequencies of CD8+PD-1hi and CD4+ T cells demonstrated even higher prediction value (AUC = 0.96). Among the pool of selected markers, the 4 T cell markers were exclusively selected as the highest predictive combination, probably because of their linkage to the abovementioned metabolite markers. In a prospective validation set (n = 24), these 4 cellular markers showed a high accuracy rate for clinical responses of patients (AUC = 0.92).CONCLUSIONCombination of biomarkers reflecting host immune activity is quite valuable for responder prediction.FUNDINGAMED under grant numbers 18cm0106302h0003, 18gm0710012h0105, and 18lk1403006h0002; the Tang Prize Foundation; and JSPS KAKENHI grant numbers JP16H06149, 17K19593, and 19K17673. |
---|---|
ISSN: | 2379-3708 2379-3708 |
DOI: | 10.1172/jci.insight.133501 |