Adaptive Ankle Resistance from a Wearable Robotic Device to Improve Muscle Recruitment in Cerebral Palsy
Individuals with cerebral palsy can have weak and poorly coordinated ankle plantar flexor muscles that contribute to inefficient walking patterns. Previous studies attempting to improve plantar flexor function have had inconsistent effects on mobility, likely due to a lack of task-specificity. The g...
Gespeichert in:
Veröffentlicht in: | Annals of biomedical engineering 2020-04, Vol.48 (4), p.1309-1321 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1321 |
---|---|
container_issue | 4 |
container_start_page | 1309 |
container_title | Annals of biomedical engineering |
container_volume | 48 |
creator | Conner, Benjamin C. Luque, Jason Lerner, Zachary F. |
description | Individuals with cerebral palsy can have weak and poorly coordinated ankle plantar flexor muscles that contribute to inefficient walking patterns. Previous studies attempting to improve plantar flexor function have had inconsistent effects on mobility, likely due to a lack of task-specificity. The goal of this study was to develop, validate, and test the feasibility and neuromuscular response of a novel wearable adaptive resistance platform to increase activity of the plantar flexors during the propulsive phase of gait. We recruited eight individuals with spastic cerebral palsy to walk with adaptive plantar flexor resistance provided from an untethered exoskeleton. The resistance system and protocol was safe and feasible for all of our participants. Controller validation demonstrated our ability to provide resistance that proportionally- and instantaneously-adapted to the biological ankle moment (
R
= 0.92 ± 0.04). Following acclimation to resistance (0.16 ± 0.02 Nm/kg), more-affected limbs exhibited a 45 ± 35% increase in plantar flexor activity (
p
= 0.02), a 26 ± 24% decrease in dorsiflexor activity (
p
|
doi_str_mv | 10.1007/s10439-020-02454-8 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7096247</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2381956817</sourcerecordid><originalsourceid>FETCH-LOGICAL-c522t-cbc08ec4fc6b95c24cbbc7100225e16d40099a9475a0b722cd8c972ad23a9333</originalsourceid><addsrcrecordid>eNp9UctO3DAUtaqiMtD-QBeVpW66CfideFNpNJSHBKKqkLq0bOcOmCbx1E5G4u_xMLzaBQvrLs7D99yD0GdKDigh9WGmRHBdEUbKE1JUzTs0o7LmlVaNeo9mhGhSKa3ELtrL-ZYQShsuP6BdTrUknOgZupm3djWGNeD58KcD_AtyyKMdPOBlij22-DfYZN0Gii6OweMjWIcCjxGf9asUi_Riyv5B69MUxh6GEYcBLyCBS7bDP22X7z6inWWZ8Olx7qOr4x9Xi9Pq_PLkbDE_r7xkbKy886QBL5ZeOS09E945X5e4jEmgqhUlk7Za1NISVzPm28brmtmWcas55_vo-9Z2NbkeWl92KSuYVQq9TXcm2mD-RYZwY67j2tREKybqYvDt0SDFvxPk0fQhe-g6O0CcsmFcUMWpZBvq1_-ot3FKQ0lXWE05sWrohsW2LJ9izgmWz8tQYjY9mm2PpvRoHno0TRF9eR3jWfJUXCHwLSEXaLiG9PL3G7b3ipKpTw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2381956817</pqid></control><display><type>article</type><title>Adaptive Ankle Resistance from a Wearable Robotic Device to Improve Muscle Recruitment in Cerebral Palsy</title><source>MEDLINE</source><source>SpringerLink Journals - AutoHoldings</source><creator>Conner, Benjamin C. ; Luque, Jason ; Lerner, Zachary F.</creator><creatorcontrib>Conner, Benjamin C. ; Luque, Jason ; Lerner, Zachary F.</creatorcontrib><description>Individuals with cerebral palsy can have weak and poorly coordinated ankle plantar flexor muscles that contribute to inefficient walking patterns. Previous studies attempting to improve plantar flexor function have had inconsistent effects on mobility, likely due to a lack of task-specificity. The goal of this study was to develop, validate, and test the feasibility and neuromuscular response of a novel wearable adaptive resistance platform to increase activity of the plantar flexors during the propulsive phase of gait. We recruited eight individuals with spastic cerebral palsy to walk with adaptive plantar flexor resistance provided from an untethered exoskeleton. The resistance system and protocol was safe and feasible for all of our participants. Controller validation demonstrated our ability to provide resistance that proportionally- and instantaneously-adapted to the biological ankle moment (
R
= 0.92 ± 0.04). Following acclimation to resistance (0.16 ± 0.02 Nm/kg), more-affected limbs exhibited a 45 ± 35% increase in plantar flexor activity (
p
= 0.02), a 26 ± 24% decrease in dorsiflexor activity (
p
< 0.05), and a 46 ± 25% decrease in co-contraction (tibialis anterior and soleus) (
p
= 0.02) during the stance phase. This adaptive resistance system warrants further investigation for use in a longitudinal intervention study.</description><identifier>ISSN: 0090-6964</identifier><identifier>EISSN: 1573-9686</identifier><identifier>DOI: 10.1007/s10439-020-02454-8</identifier><identifier>PMID: 31950309</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Acclimation ; Acclimatization ; Adolescent ; Ankle ; Ankle - physiology ; Ankle Joint - physiology ; Biochemistry ; Biological and Medical Physics ; Biomechanical Phenomena ; Biomedical and Life Sciences ; Biomedical Engineering and Bioengineering ; Biomedicine ; Biophysics ; Cerebral palsy ; Cerebral Palsy - physiopathology ; Child ; Classical Mechanics ; Contraction ; Exoskeleton ; Exoskeletons ; Feasibility ; Female ; Flexors ; Gait ; Humans ; Male ; Muscle, Skeletal - physiopathology ; Muscles ; Original Article ; Paralysis ; Robotics ; Walking ; Walking - physiology ; Wear resistance ; Wearable Electronic Devices ; Wearable technology</subject><ispartof>Annals of biomedical engineering, 2020-04, Vol.48 (4), p.1309-1321</ispartof><rights>Biomedical Engineering Society 2020</rights><rights>Annals of Biomedical Engineering is a copyright of Springer, (2020). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c522t-cbc08ec4fc6b95c24cbbc7100225e16d40099a9475a0b722cd8c972ad23a9333</citedby><cites>FETCH-LOGICAL-c522t-cbc08ec4fc6b95c24cbbc7100225e16d40099a9475a0b722cd8c972ad23a9333</cites><orcidid>0000-0002-7359-436X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10439-020-02454-8$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10439-020-02454-8$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,314,780,784,885,27924,27925,41488,42557,51319</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31950309$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Conner, Benjamin C.</creatorcontrib><creatorcontrib>Luque, Jason</creatorcontrib><creatorcontrib>Lerner, Zachary F.</creatorcontrib><title>Adaptive Ankle Resistance from a Wearable Robotic Device to Improve Muscle Recruitment in Cerebral Palsy</title><title>Annals of biomedical engineering</title><addtitle>Ann Biomed Eng</addtitle><addtitle>Ann Biomed Eng</addtitle><description>Individuals with cerebral palsy can have weak and poorly coordinated ankle plantar flexor muscles that contribute to inefficient walking patterns. Previous studies attempting to improve plantar flexor function have had inconsistent effects on mobility, likely due to a lack of task-specificity. The goal of this study was to develop, validate, and test the feasibility and neuromuscular response of a novel wearable adaptive resistance platform to increase activity of the plantar flexors during the propulsive phase of gait. We recruited eight individuals with spastic cerebral palsy to walk with adaptive plantar flexor resistance provided from an untethered exoskeleton. The resistance system and protocol was safe and feasible for all of our participants. Controller validation demonstrated our ability to provide resistance that proportionally- and instantaneously-adapted to the biological ankle moment (
R
= 0.92 ± 0.04). Following acclimation to resistance (0.16 ± 0.02 Nm/kg), more-affected limbs exhibited a 45 ± 35% increase in plantar flexor activity (
p
= 0.02), a 26 ± 24% decrease in dorsiflexor activity (
p
< 0.05), and a 46 ± 25% decrease in co-contraction (tibialis anterior and soleus) (
p
= 0.02) during the stance phase. This adaptive resistance system warrants further investigation for use in a longitudinal intervention study.</description><subject>Acclimation</subject><subject>Acclimatization</subject><subject>Adolescent</subject><subject>Ankle</subject><subject>Ankle - physiology</subject><subject>Ankle Joint - physiology</subject><subject>Biochemistry</subject><subject>Biological and Medical Physics</subject><subject>Biomechanical Phenomena</subject><subject>Biomedical and Life Sciences</subject><subject>Biomedical Engineering and Bioengineering</subject><subject>Biomedicine</subject><subject>Biophysics</subject><subject>Cerebral palsy</subject><subject>Cerebral Palsy - physiopathology</subject><subject>Child</subject><subject>Classical Mechanics</subject><subject>Contraction</subject><subject>Exoskeleton</subject><subject>Exoskeletons</subject><subject>Feasibility</subject><subject>Female</subject><subject>Flexors</subject><subject>Gait</subject><subject>Humans</subject><subject>Male</subject><subject>Muscle, Skeletal - physiopathology</subject><subject>Muscles</subject><subject>Original Article</subject><subject>Paralysis</subject><subject>Robotics</subject><subject>Walking</subject><subject>Walking - physiology</subject><subject>Wear resistance</subject><subject>Wearable Electronic Devices</subject><subject>Wearable technology</subject><issn>0090-6964</issn><issn>1573-9686</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9UctO3DAUtaqiMtD-QBeVpW66CfideFNpNJSHBKKqkLq0bOcOmCbx1E5G4u_xMLzaBQvrLs7D99yD0GdKDigh9WGmRHBdEUbKE1JUzTs0o7LmlVaNeo9mhGhSKa3ELtrL-ZYQShsuP6BdTrUknOgZupm3djWGNeD58KcD_AtyyKMdPOBlij22-DfYZN0Gii6OweMjWIcCjxGf9asUi_Riyv5B69MUxh6GEYcBLyCBS7bDP22X7z6inWWZ8Olx7qOr4x9Xi9Pq_PLkbDE_r7xkbKy886QBL5ZeOS09E945X5e4jEmgqhUlk7Za1NISVzPm28brmtmWcas55_vo-9Z2NbkeWl92KSuYVQq9TXcm2mD-RYZwY67j2tREKybqYvDt0SDFvxPk0fQhe-g6O0CcsmFcUMWpZBvq1_-ot3FKQ0lXWE05sWrohsW2LJ9izgmWz8tQYjY9mm2PpvRoHno0TRF9eR3jWfJUXCHwLSEXaLiG9PL3G7b3ipKpTw</recordid><startdate>20200401</startdate><enddate>20200401</enddate><creator>Conner, Benjamin C.</creator><creator>Luque, Jason</creator><creator>Lerner, Zachary F.</creator><general>Springer International Publishing</general><general>Springer Nature B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F28</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H8D</scope><scope>H8G</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>JQ2</scope><scope>K9.</scope><scope>KR7</scope><scope>L6V</scope><scope>L7M</scope><scope>LK8</scope><scope>L~C</scope><scope>L~D</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-7359-436X</orcidid></search><sort><creationdate>20200401</creationdate><title>Adaptive Ankle Resistance from a Wearable Robotic Device to Improve Muscle Recruitment in Cerebral Palsy</title><author>Conner, Benjamin C. ; Luque, Jason ; Lerner, Zachary F.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c522t-cbc08ec4fc6b95c24cbbc7100225e16d40099a9475a0b722cd8c972ad23a9333</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Acclimation</topic><topic>Acclimatization</topic><topic>Adolescent</topic><topic>Ankle</topic><topic>Ankle - physiology</topic><topic>Ankle Joint - physiology</topic><topic>Biochemistry</topic><topic>Biological and Medical Physics</topic><topic>Biomechanical Phenomena</topic><topic>Biomedical and Life Sciences</topic><topic>Biomedical Engineering and Bioengineering</topic><topic>Biomedicine</topic><topic>Biophysics</topic><topic>Cerebral palsy</topic><topic>Cerebral Palsy - physiopathology</topic><topic>Child</topic><topic>Classical Mechanics</topic><topic>Contraction</topic><topic>Exoskeleton</topic><topic>Exoskeletons</topic><topic>Feasibility</topic><topic>Female</topic><topic>Flexors</topic><topic>Gait</topic><topic>Humans</topic><topic>Male</topic><topic>Muscle, Skeletal - physiopathology</topic><topic>Muscles</topic><topic>Original Article</topic><topic>Paralysis</topic><topic>Robotics</topic><topic>Walking</topic><topic>Walking - physiology</topic><topic>Wear resistance</topic><topic>Wearable Electronic Devices</topic><topic>Wearable technology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Conner, Benjamin C.</creatorcontrib><creatorcontrib>Luque, Jason</creatorcontrib><creatorcontrib>Lerner, Zachary F.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest Biological Science Collection</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Annals of biomedical engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Conner, Benjamin C.</au><au>Luque, Jason</au><au>Lerner, Zachary F.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Adaptive Ankle Resistance from a Wearable Robotic Device to Improve Muscle Recruitment in Cerebral Palsy</atitle><jtitle>Annals of biomedical engineering</jtitle><stitle>Ann Biomed Eng</stitle><addtitle>Ann Biomed Eng</addtitle><date>2020-04-01</date><risdate>2020</risdate><volume>48</volume><issue>4</issue><spage>1309</spage><epage>1321</epage><pages>1309-1321</pages><issn>0090-6964</issn><eissn>1573-9686</eissn><abstract>Individuals with cerebral palsy can have weak and poorly coordinated ankle plantar flexor muscles that contribute to inefficient walking patterns. Previous studies attempting to improve plantar flexor function have had inconsistent effects on mobility, likely due to a lack of task-specificity. The goal of this study was to develop, validate, and test the feasibility and neuromuscular response of a novel wearable adaptive resistance platform to increase activity of the plantar flexors during the propulsive phase of gait. We recruited eight individuals with spastic cerebral palsy to walk with adaptive plantar flexor resistance provided from an untethered exoskeleton. The resistance system and protocol was safe and feasible for all of our participants. Controller validation demonstrated our ability to provide resistance that proportionally- and instantaneously-adapted to the biological ankle moment (
R
= 0.92 ± 0.04). Following acclimation to resistance (0.16 ± 0.02 Nm/kg), more-affected limbs exhibited a 45 ± 35% increase in plantar flexor activity (
p
= 0.02), a 26 ± 24% decrease in dorsiflexor activity (
p
< 0.05), and a 46 ± 25% decrease in co-contraction (tibialis anterior and soleus) (
p
= 0.02) during the stance phase. This adaptive resistance system warrants further investigation for use in a longitudinal intervention study.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><pmid>31950309</pmid><doi>10.1007/s10439-020-02454-8</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-7359-436X</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0090-6964 |
ispartof | Annals of biomedical engineering, 2020-04, Vol.48 (4), p.1309-1321 |
issn | 0090-6964 1573-9686 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7096247 |
source | MEDLINE; SpringerLink Journals - AutoHoldings |
subjects | Acclimation Acclimatization Adolescent Ankle Ankle - physiology Ankle Joint - physiology Biochemistry Biological and Medical Physics Biomechanical Phenomena Biomedical and Life Sciences Biomedical Engineering and Bioengineering Biomedicine Biophysics Cerebral palsy Cerebral Palsy - physiopathology Child Classical Mechanics Contraction Exoskeleton Exoskeletons Feasibility Female Flexors Gait Humans Male Muscle, Skeletal - physiopathology Muscles Original Article Paralysis Robotics Walking Walking - physiology Wear resistance Wearable Electronic Devices Wearable technology |
title | Adaptive Ankle Resistance from a Wearable Robotic Device to Improve Muscle Recruitment in Cerebral Palsy |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T06%3A27%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Adaptive%20Ankle%20Resistance%20from%20a%20Wearable%20Robotic%20Device%20to%20Improve%20Muscle%20Recruitment%20in%20Cerebral%20Palsy&rft.jtitle=Annals%20of%20biomedical%20engineering&rft.au=Conner,%20Benjamin%20C.&rft.date=2020-04-01&rft.volume=48&rft.issue=4&rft.spage=1309&rft.epage=1321&rft.pages=1309-1321&rft.issn=0090-6964&rft.eissn=1573-9686&rft_id=info:doi/10.1007/s10439-020-02454-8&rft_dat=%3Cproquest_pubme%3E2381956817%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2381956817&rft_id=info:pmid/31950309&rfr_iscdi=true |