Breath figure-derived porous semiconducting films for organic electronics
Porous semiconductor film morphologies facilitate fluid diffusion and mass transport into the charge-carrying layers of diverse electronic devices. Here, we report the nature-inspired fabrication of several porous organic semiconductor-insulator blend films [semiconductor: P3HT (p-type polymer), C8B...
Gespeichert in:
Veröffentlicht in: | Science advances 2020-03, Vol.6 (13), p.eaaz1042-eaaz1042 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | eaaz1042 |
---|---|
container_issue | 13 |
container_start_page | eaaz1042 |
container_title | Science advances |
container_volume | 6 |
creator | Zhang, Xinan Wang, Binghao Huang, Lizhen Huang, Wei Wang, Zhi Zhu, Weigang Chen, Yao Mao, YanLi Facchetti, Antonio Marks, Tobin J |
description | Porous semiconductor film morphologies facilitate fluid diffusion and mass transport into the charge-carrying layers of diverse electronic devices. Here, we report the nature-inspired fabrication of several porous organic semiconductor-insulator blend films [semiconductor: P3HT (p-type polymer), C8BTBT (p-type small-molecule), and N2200 (n-type polymer); insulator: PS] by a breath figure patterning method and their broad and general applicability in organic thin-film transistors (OTFTs), gas sensors, organic electrochemical transistors (OECTs), and chemically doped conducting films. Detailed morphological analysis of these films demonstrates formation of textured layers with uniform nanopores reaching the bottom substrate with an unchanged solid-state packing structure. Device data gathered with both porous and dense control semiconductor films demonstrate that the former films are efficient TFT semiconductors but with added advantage of enhanced sensitivity to gases (e.g., 48.2%/ppm for NO
using P3HT/PS), faster switching speeds (4.7 s for P3HT/PS OECTs), and more efficient molecular doping (conductivity, 0.13 S/m for N2200/PS). |
doi_str_mv | 10.1126/sciadv.aaz1042 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7096165</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2385277046</sourcerecordid><originalsourceid>FETCH-LOGICAL-c483t-7d4b173bd99895d95403b76fcde3738dd85b43de87ceb49125078c31ca0189ca3</originalsourceid><addsrcrecordid>eNpVkc1LxDAQxYMoKurVoxRPXrrms0kvgi5-geBFzyFNpruRtlmTdkH_eiO7ip4ykN-8mTcPoVOCZ4TQ6jJZb9x6ZswnwZzuoEPKpCip4Gr3T32ATlJ6wxgTXlWC1PvogFHKKBHyED3eRDDjsmj9YopQOoh-Da5YhRimVCTovQ2Dm-zoh0WGuj4VbYhFiAszeFtAB3aMIZfpGO21pktwsn2P0Ovd7cv8oXx6vn-cXz-Vlis2ltLxhkjWuLpWtXC14Jg1smqtAyaZck6JhjMHSlpoeE2owFJZRqzBRNXWsCN0tdFdTU0PzsIwRtPpVfS9iR86GK___wx-qRdhrSWuK1KJLHC-EQhp9DrfcAS7zC6HbEUTKankJEMX2ykxvE-QRt37ZKHrzAD5MpoyJaiUmFcZnW1QG0NKEdrfXQjW3znpTU56m1NuOPvr4Bf_SYV9AX12kaY</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2385277046</pqid></control><display><type>article</type><title>Breath figure-derived porous semiconducting films for organic electronics</title><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><creator>Zhang, Xinan ; Wang, Binghao ; Huang, Lizhen ; Huang, Wei ; Wang, Zhi ; Zhu, Weigang ; Chen, Yao ; Mao, YanLi ; Facchetti, Antonio ; Marks, Tobin J</creator><creatorcontrib>Zhang, Xinan ; Wang, Binghao ; Huang, Lizhen ; Huang, Wei ; Wang, Zhi ; Zhu, Weigang ; Chen, Yao ; Mao, YanLi ; Facchetti, Antonio ; Marks, Tobin J ; Argonne National Lab. (ANL), Argonne, IL (United States). Advanced Photon Source (APS)</creatorcontrib><description>Porous semiconductor film morphologies facilitate fluid diffusion and mass transport into the charge-carrying layers of diverse electronic devices. Here, we report the nature-inspired fabrication of several porous organic semiconductor-insulator blend films [semiconductor: P3HT (p-type polymer), C8BTBT (p-type small-molecule), and N2200 (n-type polymer); insulator: PS] by a breath figure patterning method and their broad and general applicability in organic thin-film transistors (OTFTs), gas sensors, organic electrochemical transistors (OECTs), and chemically doped conducting films. Detailed morphological analysis of these films demonstrates formation of textured layers with uniform nanopores reaching the bottom substrate with an unchanged solid-state packing structure. Device data gathered with both porous and dense control semiconductor films demonstrate that the former films are efficient TFT semiconductors but with added advantage of enhanced sensitivity to gases (e.g., 48.2%/ppm for NO
using P3HT/PS), faster switching speeds (4.7 s for P3HT/PS OECTs), and more efficient molecular doping (conductivity, 0.13 S/m for N2200/PS).</description><identifier>ISSN: 2375-2548</identifier><identifier>EISSN: 2375-2548</identifier><identifier>DOI: 10.1126/sciadv.aaz1042</identifier><identifier>PMID: 32232157</identifier><language>eng</language><publisher>United States: AAAS</publisher><subject>Applied Sciences and Engineering ; Materials Science ; Organic Chemistry ; SciAdv r-articles</subject><ispartof>Science advances, 2020-03, Vol.6 (13), p.eaaz1042-eaaz1042</ispartof><rights>Copyright © 2020 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works. Distributed under a Creative Commons Attribution NonCommercial License 4.0 (CC BY-NC).</rights><rights>Copyright © 2020 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works. Distributed under a Creative Commons Attribution NonCommercial License 4.0 (CC BY-NC). 2020 The Authors</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c483t-7d4b173bd99895d95403b76fcde3738dd85b43de87ceb49125078c31ca0189ca3</citedby><cites>FETCH-LOGICAL-c483t-7d4b173bd99895d95403b76fcde3738dd85b43de87ceb49125078c31ca0189ca3</cites><orcidid>0000-0002-8175-7958 ; 0000-0002-9631-6901 ; 0000-0002-5211-921X ; 0000-0001-8771-0141 ; 0000-0002-0973-8015 ; 0000-0003-2670-018X ; 0000-0002-1982-6449 ; 0000-0002-5888-4481</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7096165/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7096165/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32232157$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/1772741$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhang, Xinan</creatorcontrib><creatorcontrib>Wang, Binghao</creatorcontrib><creatorcontrib>Huang, Lizhen</creatorcontrib><creatorcontrib>Huang, Wei</creatorcontrib><creatorcontrib>Wang, Zhi</creatorcontrib><creatorcontrib>Zhu, Weigang</creatorcontrib><creatorcontrib>Chen, Yao</creatorcontrib><creatorcontrib>Mao, YanLi</creatorcontrib><creatorcontrib>Facchetti, Antonio</creatorcontrib><creatorcontrib>Marks, Tobin J</creatorcontrib><creatorcontrib>Argonne National Lab. (ANL), Argonne, IL (United States). Advanced Photon Source (APS)</creatorcontrib><title>Breath figure-derived porous semiconducting films for organic electronics</title><title>Science advances</title><addtitle>Sci Adv</addtitle><description>Porous semiconductor film morphologies facilitate fluid diffusion and mass transport into the charge-carrying layers of diverse electronic devices. Here, we report the nature-inspired fabrication of several porous organic semiconductor-insulator blend films [semiconductor: P3HT (p-type polymer), C8BTBT (p-type small-molecule), and N2200 (n-type polymer); insulator: PS] by a breath figure patterning method and their broad and general applicability in organic thin-film transistors (OTFTs), gas sensors, organic electrochemical transistors (OECTs), and chemically doped conducting films. Detailed morphological analysis of these films demonstrates formation of textured layers with uniform nanopores reaching the bottom substrate with an unchanged solid-state packing structure. Device data gathered with both porous and dense control semiconductor films demonstrate that the former films are efficient TFT semiconductors but with added advantage of enhanced sensitivity to gases (e.g., 48.2%/ppm for NO
using P3HT/PS), faster switching speeds (4.7 s for P3HT/PS OECTs), and more efficient molecular doping (conductivity, 0.13 S/m for N2200/PS).</description><subject>Applied Sciences and Engineering</subject><subject>Materials Science</subject><subject>Organic Chemistry</subject><subject>SciAdv r-articles</subject><issn>2375-2548</issn><issn>2375-2548</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNpVkc1LxDAQxYMoKurVoxRPXrrms0kvgi5-geBFzyFNpruRtlmTdkH_eiO7ip4ykN-8mTcPoVOCZ4TQ6jJZb9x6ZswnwZzuoEPKpCip4Gr3T32ATlJ6wxgTXlWC1PvogFHKKBHyED3eRDDjsmj9YopQOoh-Da5YhRimVCTovQ2Dm-zoh0WGuj4VbYhFiAszeFtAB3aMIZfpGO21pktwsn2P0Ovd7cv8oXx6vn-cXz-Vlis2ltLxhkjWuLpWtXC14Jg1smqtAyaZck6JhjMHSlpoeE2owFJZRqzBRNXWsCN0tdFdTU0PzsIwRtPpVfS9iR86GK___wx-qRdhrSWuK1KJLHC-EQhp9DrfcAS7zC6HbEUTKankJEMX2ykxvE-QRt37ZKHrzAD5MpoyJaiUmFcZnW1QG0NKEdrfXQjW3znpTU56m1NuOPvr4Bf_SYV9AX12kaY</recordid><startdate>20200301</startdate><enddate>20200301</enddate><creator>Zhang, Xinan</creator><creator>Wang, Binghao</creator><creator>Huang, Lizhen</creator><creator>Huang, Wei</creator><creator>Wang, Zhi</creator><creator>Zhu, Weigang</creator><creator>Chen, Yao</creator><creator>Mao, YanLi</creator><creator>Facchetti, Antonio</creator><creator>Marks, Tobin J</creator><general>AAAS</general><general>American Association for the Advancement of Science</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>OTOTI</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-8175-7958</orcidid><orcidid>https://orcid.org/0000-0002-9631-6901</orcidid><orcidid>https://orcid.org/0000-0002-5211-921X</orcidid><orcidid>https://orcid.org/0000-0001-8771-0141</orcidid><orcidid>https://orcid.org/0000-0002-0973-8015</orcidid><orcidid>https://orcid.org/0000-0003-2670-018X</orcidid><orcidid>https://orcid.org/0000-0002-1982-6449</orcidid><orcidid>https://orcid.org/0000-0002-5888-4481</orcidid></search><sort><creationdate>20200301</creationdate><title>Breath figure-derived porous semiconducting films for organic electronics</title><author>Zhang, Xinan ; Wang, Binghao ; Huang, Lizhen ; Huang, Wei ; Wang, Zhi ; Zhu, Weigang ; Chen, Yao ; Mao, YanLi ; Facchetti, Antonio ; Marks, Tobin J</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c483t-7d4b173bd99895d95403b76fcde3738dd85b43de87ceb49125078c31ca0189ca3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Applied Sciences and Engineering</topic><topic>Materials Science</topic><topic>Organic Chemistry</topic><topic>SciAdv r-articles</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Xinan</creatorcontrib><creatorcontrib>Wang, Binghao</creatorcontrib><creatorcontrib>Huang, Lizhen</creatorcontrib><creatorcontrib>Huang, Wei</creatorcontrib><creatorcontrib>Wang, Zhi</creatorcontrib><creatorcontrib>Zhu, Weigang</creatorcontrib><creatorcontrib>Chen, Yao</creatorcontrib><creatorcontrib>Mao, YanLi</creatorcontrib><creatorcontrib>Facchetti, Antonio</creatorcontrib><creatorcontrib>Marks, Tobin J</creatorcontrib><creatorcontrib>Argonne National Lab. (ANL), Argonne, IL (United States). Advanced Photon Source (APS)</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Science advances</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Xinan</au><au>Wang, Binghao</au><au>Huang, Lizhen</au><au>Huang, Wei</au><au>Wang, Zhi</au><au>Zhu, Weigang</au><au>Chen, Yao</au><au>Mao, YanLi</au><au>Facchetti, Antonio</au><au>Marks, Tobin J</au><aucorp>Argonne National Lab. (ANL), Argonne, IL (United States). Advanced Photon Source (APS)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Breath figure-derived porous semiconducting films for organic electronics</atitle><jtitle>Science advances</jtitle><addtitle>Sci Adv</addtitle><date>2020-03-01</date><risdate>2020</risdate><volume>6</volume><issue>13</issue><spage>eaaz1042</spage><epage>eaaz1042</epage><pages>eaaz1042-eaaz1042</pages><issn>2375-2548</issn><eissn>2375-2548</eissn><abstract>Porous semiconductor film morphologies facilitate fluid diffusion and mass transport into the charge-carrying layers of diverse electronic devices. Here, we report the nature-inspired fabrication of several porous organic semiconductor-insulator blend films [semiconductor: P3HT (p-type polymer), C8BTBT (p-type small-molecule), and N2200 (n-type polymer); insulator: PS] by a breath figure patterning method and their broad and general applicability in organic thin-film transistors (OTFTs), gas sensors, organic electrochemical transistors (OECTs), and chemically doped conducting films. Detailed morphological analysis of these films demonstrates formation of textured layers with uniform nanopores reaching the bottom substrate with an unchanged solid-state packing structure. Device data gathered with both porous and dense control semiconductor films demonstrate that the former films are efficient TFT semiconductors but with added advantage of enhanced sensitivity to gases (e.g., 48.2%/ppm for NO
using P3HT/PS), faster switching speeds (4.7 s for P3HT/PS OECTs), and more efficient molecular doping (conductivity, 0.13 S/m for N2200/PS).</abstract><cop>United States</cop><pub>AAAS</pub><pmid>32232157</pmid><doi>10.1126/sciadv.aaz1042</doi><orcidid>https://orcid.org/0000-0002-8175-7958</orcidid><orcidid>https://orcid.org/0000-0002-9631-6901</orcidid><orcidid>https://orcid.org/0000-0002-5211-921X</orcidid><orcidid>https://orcid.org/0000-0001-8771-0141</orcidid><orcidid>https://orcid.org/0000-0002-0973-8015</orcidid><orcidid>https://orcid.org/0000-0003-2670-018X</orcidid><orcidid>https://orcid.org/0000-0002-1982-6449</orcidid><orcidid>https://orcid.org/0000-0002-5888-4481</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2375-2548 |
ispartof | Science advances, 2020-03, Vol.6 (13), p.eaaz1042-eaaz1042 |
issn | 2375-2548 2375-2548 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7096165 |
source | DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals; PubMed Central |
subjects | Applied Sciences and Engineering Materials Science Organic Chemistry SciAdv r-articles |
title | Breath figure-derived porous semiconducting films for organic electronics |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T13%3A54%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Breath%20figure-derived%20porous%20semiconducting%20films%20for%20organic%20electronics&rft.jtitle=Science%20advances&rft.au=Zhang,%20Xinan&rft.aucorp=Argonne%20National%20Lab.%20(ANL),%20Argonne,%20IL%20(United%20States).%20Advanced%20Photon%20Source%20(APS)&rft.date=2020-03-01&rft.volume=6&rft.issue=13&rft.spage=eaaz1042&rft.epage=eaaz1042&rft.pages=eaaz1042-eaaz1042&rft.issn=2375-2548&rft.eissn=2375-2548&rft_id=info:doi/10.1126/sciadv.aaz1042&rft_dat=%3Cproquest_pubme%3E2385277046%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2385277046&rft_id=info:pmid/32232157&rfr_iscdi=true |