Breath figure-derived porous semiconducting films for organic electronics

Porous semiconductor film morphologies facilitate fluid diffusion and mass transport into the charge-carrying layers of diverse electronic devices. Here, we report the nature-inspired fabrication of several porous organic semiconductor-insulator blend films [semiconductor: P3HT (p-type polymer), C8B...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Science advances 2020-03, Vol.6 (13), p.eaaz1042-eaaz1042
Hauptverfasser: Zhang, Xinan, Wang, Binghao, Huang, Lizhen, Huang, Wei, Wang, Zhi, Zhu, Weigang, Chen, Yao, Mao, YanLi, Facchetti, Antonio, Marks, Tobin J
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page eaaz1042
container_issue 13
container_start_page eaaz1042
container_title Science advances
container_volume 6
creator Zhang, Xinan
Wang, Binghao
Huang, Lizhen
Huang, Wei
Wang, Zhi
Zhu, Weigang
Chen, Yao
Mao, YanLi
Facchetti, Antonio
Marks, Tobin J
description Porous semiconductor film morphologies facilitate fluid diffusion and mass transport into the charge-carrying layers of diverse electronic devices. Here, we report the nature-inspired fabrication of several porous organic semiconductor-insulator blend films [semiconductor: P3HT (p-type polymer), C8BTBT (p-type small-molecule), and N2200 (n-type polymer); insulator: PS] by a breath figure patterning method and their broad and general applicability in organic thin-film transistors (OTFTs), gas sensors, organic electrochemical transistors (OECTs), and chemically doped conducting films. Detailed morphological analysis of these films demonstrates formation of textured layers with uniform nanopores reaching the bottom substrate with an unchanged solid-state packing structure. Device data gathered with both porous and dense control semiconductor films demonstrate that the former films are efficient TFT semiconductors but with added advantage of enhanced sensitivity to gases (e.g., 48.2%/ppm for NO using P3HT/PS), faster switching speeds (4.7 s for P3HT/PS OECTs), and more efficient molecular doping (conductivity, 0.13 S/m for N2200/PS).
doi_str_mv 10.1126/sciadv.aaz1042
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7096165</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2385277046</sourcerecordid><originalsourceid>FETCH-LOGICAL-c483t-7d4b173bd99895d95403b76fcde3738dd85b43de87ceb49125078c31ca0189ca3</originalsourceid><addsrcrecordid>eNpVkc1LxDAQxYMoKurVoxRPXrrms0kvgi5-geBFzyFNpruRtlmTdkH_eiO7ip4ykN-8mTcPoVOCZ4TQ6jJZb9x6ZswnwZzuoEPKpCip4Gr3T32ATlJ6wxgTXlWC1PvogFHKKBHyED3eRDDjsmj9YopQOoh-Da5YhRimVCTovQ2Dm-zoh0WGuj4VbYhFiAszeFtAB3aMIZfpGO21pktwsn2P0Ovd7cv8oXx6vn-cXz-Vlis2ltLxhkjWuLpWtXC14Jg1smqtAyaZck6JhjMHSlpoeE2owFJZRqzBRNXWsCN0tdFdTU0PzsIwRtPpVfS9iR86GK___wx-qRdhrSWuK1KJLHC-EQhp9DrfcAS7zC6HbEUTKankJEMX2ykxvE-QRt37ZKHrzAD5MpoyJaiUmFcZnW1QG0NKEdrfXQjW3znpTU56m1NuOPvr4Bf_SYV9AX12kaY</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2385277046</pqid></control><display><type>article</type><title>Breath figure-derived porous semiconducting films for organic electronics</title><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><creator>Zhang, Xinan ; Wang, Binghao ; Huang, Lizhen ; Huang, Wei ; Wang, Zhi ; Zhu, Weigang ; Chen, Yao ; Mao, YanLi ; Facchetti, Antonio ; Marks, Tobin J</creator><creatorcontrib>Zhang, Xinan ; Wang, Binghao ; Huang, Lizhen ; Huang, Wei ; Wang, Zhi ; Zhu, Weigang ; Chen, Yao ; Mao, YanLi ; Facchetti, Antonio ; Marks, Tobin J ; Argonne National Lab. (ANL), Argonne, IL (United States). Advanced Photon Source (APS)</creatorcontrib><description>Porous semiconductor film morphologies facilitate fluid diffusion and mass transport into the charge-carrying layers of diverse electronic devices. Here, we report the nature-inspired fabrication of several porous organic semiconductor-insulator blend films [semiconductor: P3HT (p-type polymer), C8BTBT (p-type small-molecule), and N2200 (n-type polymer); insulator: PS] by a breath figure patterning method and their broad and general applicability in organic thin-film transistors (OTFTs), gas sensors, organic electrochemical transistors (OECTs), and chemically doped conducting films. Detailed morphological analysis of these films demonstrates formation of textured layers with uniform nanopores reaching the bottom substrate with an unchanged solid-state packing structure. Device data gathered with both porous and dense control semiconductor films demonstrate that the former films are efficient TFT semiconductors but with added advantage of enhanced sensitivity to gases (e.g., 48.2%/ppm for NO using P3HT/PS), faster switching speeds (4.7 s for P3HT/PS OECTs), and more efficient molecular doping (conductivity, 0.13 S/m for N2200/PS).</description><identifier>ISSN: 2375-2548</identifier><identifier>EISSN: 2375-2548</identifier><identifier>DOI: 10.1126/sciadv.aaz1042</identifier><identifier>PMID: 32232157</identifier><language>eng</language><publisher>United States: AAAS</publisher><subject>Applied Sciences and Engineering ; Materials Science ; Organic Chemistry ; SciAdv r-articles</subject><ispartof>Science advances, 2020-03, Vol.6 (13), p.eaaz1042-eaaz1042</ispartof><rights>Copyright © 2020 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works. Distributed under a Creative Commons Attribution NonCommercial License 4.0 (CC BY-NC).</rights><rights>Copyright © 2020 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works. Distributed under a Creative Commons Attribution NonCommercial License 4.0 (CC BY-NC). 2020 The Authors</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c483t-7d4b173bd99895d95403b76fcde3738dd85b43de87ceb49125078c31ca0189ca3</citedby><cites>FETCH-LOGICAL-c483t-7d4b173bd99895d95403b76fcde3738dd85b43de87ceb49125078c31ca0189ca3</cites><orcidid>0000-0002-8175-7958 ; 0000-0002-9631-6901 ; 0000-0002-5211-921X ; 0000-0001-8771-0141 ; 0000-0002-0973-8015 ; 0000-0003-2670-018X ; 0000-0002-1982-6449 ; 0000-0002-5888-4481</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7096165/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7096165/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32232157$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/1772741$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhang, Xinan</creatorcontrib><creatorcontrib>Wang, Binghao</creatorcontrib><creatorcontrib>Huang, Lizhen</creatorcontrib><creatorcontrib>Huang, Wei</creatorcontrib><creatorcontrib>Wang, Zhi</creatorcontrib><creatorcontrib>Zhu, Weigang</creatorcontrib><creatorcontrib>Chen, Yao</creatorcontrib><creatorcontrib>Mao, YanLi</creatorcontrib><creatorcontrib>Facchetti, Antonio</creatorcontrib><creatorcontrib>Marks, Tobin J</creatorcontrib><creatorcontrib>Argonne National Lab. (ANL), Argonne, IL (United States). Advanced Photon Source (APS)</creatorcontrib><title>Breath figure-derived porous semiconducting films for organic electronics</title><title>Science advances</title><addtitle>Sci Adv</addtitle><description>Porous semiconductor film morphologies facilitate fluid diffusion and mass transport into the charge-carrying layers of diverse electronic devices. Here, we report the nature-inspired fabrication of several porous organic semiconductor-insulator blend films [semiconductor: P3HT (p-type polymer), C8BTBT (p-type small-molecule), and N2200 (n-type polymer); insulator: PS] by a breath figure patterning method and their broad and general applicability in organic thin-film transistors (OTFTs), gas sensors, organic electrochemical transistors (OECTs), and chemically doped conducting films. Detailed morphological analysis of these films demonstrates formation of textured layers with uniform nanopores reaching the bottom substrate with an unchanged solid-state packing structure. Device data gathered with both porous and dense control semiconductor films demonstrate that the former films are efficient TFT semiconductors but with added advantage of enhanced sensitivity to gases (e.g., 48.2%/ppm for NO using P3HT/PS), faster switching speeds (4.7 s for P3HT/PS OECTs), and more efficient molecular doping (conductivity, 0.13 S/m for N2200/PS).</description><subject>Applied Sciences and Engineering</subject><subject>Materials Science</subject><subject>Organic Chemistry</subject><subject>SciAdv r-articles</subject><issn>2375-2548</issn><issn>2375-2548</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNpVkc1LxDAQxYMoKurVoxRPXrrms0kvgi5-geBFzyFNpruRtlmTdkH_eiO7ip4ykN-8mTcPoVOCZ4TQ6jJZb9x6ZswnwZzuoEPKpCip4Gr3T32ATlJ6wxgTXlWC1PvogFHKKBHyED3eRDDjsmj9YopQOoh-Da5YhRimVCTovQ2Dm-zoh0WGuj4VbYhFiAszeFtAB3aMIZfpGO21pktwsn2P0Ovd7cv8oXx6vn-cXz-Vlis2ltLxhkjWuLpWtXC14Jg1smqtAyaZck6JhjMHSlpoeE2owFJZRqzBRNXWsCN0tdFdTU0PzsIwRtPpVfS9iR86GK___wx-qRdhrSWuK1KJLHC-EQhp9DrfcAS7zC6HbEUTKankJEMX2ykxvE-QRt37ZKHrzAD5MpoyJaiUmFcZnW1QG0NKEdrfXQjW3znpTU56m1NuOPvr4Bf_SYV9AX12kaY</recordid><startdate>20200301</startdate><enddate>20200301</enddate><creator>Zhang, Xinan</creator><creator>Wang, Binghao</creator><creator>Huang, Lizhen</creator><creator>Huang, Wei</creator><creator>Wang, Zhi</creator><creator>Zhu, Weigang</creator><creator>Chen, Yao</creator><creator>Mao, YanLi</creator><creator>Facchetti, Antonio</creator><creator>Marks, Tobin J</creator><general>AAAS</general><general>American Association for the Advancement of Science</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>OTOTI</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-8175-7958</orcidid><orcidid>https://orcid.org/0000-0002-9631-6901</orcidid><orcidid>https://orcid.org/0000-0002-5211-921X</orcidid><orcidid>https://orcid.org/0000-0001-8771-0141</orcidid><orcidid>https://orcid.org/0000-0002-0973-8015</orcidid><orcidid>https://orcid.org/0000-0003-2670-018X</orcidid><orcidid>https://orcid.org/0000-0002-1982-6449</orcidid><orcidid>https://orcid.org/0000-0002-5888-4481</orcidid></search><sort><creationdate>20200301</creationdate><title>Breath figure-derived porous semiconducting films for organic electronics</title><author>Zhang, Xinan ; Wang, Binghao ; Huang, Lizhen ; Huang, Wei ; Wang, Zhi ; Zhu, Weigang ; Chen, Yao ; Mao, YanLi ; Facchetti, Antonio ; Marks, Tobin J</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c483t-7d4b173bd99895d95403b76fcde3738dd85b43de87ceb49125078c31ca0189ca3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Applied Sciences and Engineering</topic><topic>Materials Science</topic><topic>Organic Chemistry</topic><topic>SciAdv r-articles</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Xinan</creatorcontrib><creatorcontrib>Wang, Binghao</creatorcontrib><creatorcontrib>Huang, Lizhen</creatorcontrib><creatorcontrib>Huang, Wei</creatorcontrib><creatorcontrib>Wang, Zhi</creatorcontrib><creatorcontrib>Zhu, Weigang</creatorcontrib><creatorcontrib>Chen, Yao</creatorcontrib><creatorcontrib>Mao, YanLi</creatorcontrib><creatorcontrib>Facchetti, Antonio</creatorcontrib><creatorcontrib>Marks, Tobin J</creatorcontrib><creatorcontrib>Argonne National Lab. (ANL), Argonne, IL (United States). Advanced Photon Source (APS)</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Science advances</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Xinan</au><au>Wang, Binghao</au><au>Huang, Lizhen</au><au>Huang, Wei</au><au>Wang, Zhi</au><au>Zhu, Weigang</au><au>Chen, Yao</au><au>Mao, YanLi</au><au>Facchetti, Antonio</au><au>Marks, Tobin J</au><aucorp>Argonne National Lab. (ANL), Argonne, IL (United States). Advanced Photon Source (APS)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Breath figure-derived porous semiconducting films for organic electronics</atitle><jtitle>Science advances</jtitle><addtitle>Sci Adv</addtitle><date>2020-03-01</date><risdate>2020</risdate><volume>6</volume><issue>13</issue><spage>eaaz1042</spage><epage>eaaz1042</epage><pages>eaaz1042-eaaz1042</pages><issn>2375-2548</issn><eissn>2375-2548</eissn><abstract>Porous semiconductor film morphologies facilitate fluid diffusion and mass transport into the charge-carrying layers of diverse electronic devices. Here, we report the nature-inspired fabrication of several porous organic semiconductor-insulator blend films [semiconductor: P3HT (p-type polymer), C8BTBT (p-type small-molecule), and N2200 (n-type polymer); insulator: PS] by a breath figure patterning method and their broad and general applicability in organic thin-film transistors (OTFTs), gas sensors, organic electrochemical transistors (OECTs), and chemically doped conducting films. Detailed morphological analysis of these films demonstrates formation of textured layers with uniform nanopores reaching the bottom substrate with an unchanged solid-state packing structure. Device data gathered with both porous and dense control semiconductor films demonstrate that the former films are efficient TFT semiconductors but with added advantage of enhanced sensitivity to gases (e.g., 48.2%/ppm for NO using P3HT/PS), faster switching speeds (4.7 s for P3HT/PS OECTs), and more efficient molecular doping (conductivity, 0.13 S/m for N2200/PS).</abstract><cop>United States</cop><pub>AAAS</pub><pmid>32232157</pmid><doi>10.1126/sciadv.aaz1042</doi><orcidid>https://orcid.org/0000-0002-8175-7958</orcidid><orcidid>https://orcid.org/0000-0002-9631-6901</orcidid><orcidid>https://orcid.org/0000-0002-5211-921X</orcidid><orcidid>https://orcid.org/0000-0001-8771-0141</orcidid><orcidid>https://orcid.org/0000-0002-0973-8015</orcidid><orcidid>https://orcid.org/0000-0003-2670-018X</orcidid><orcidid>https://orcid.org/0000-0002-1982-6449</orcidid><orcidid>https://orcid.org/0000-0002-5888-4481</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2375-2548
ispartof Science advances, 2020-03, Vol.6 (13), p.eaaz1042-eaaz1042
issn 2375-2548
2375-2548
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7096165
source DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals; PubMed Central
subjects Applied Sciences and Engineering
Materials Science
Organic Chemistry
SciAdv r-articles
title Breath figure-derived porous semiconducting films for organic electronics
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T13%3A54%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Breath%20figure-derived%20porous%20semiconducting%20films%20for%20organic%20electronics&rft.jtitle=Science%20advances&rft.au=Zhang,%20Xinan&rft.aucorp=Argonne%20National%20Lab.%20(ANL),%20Argonne,%20IL%20(United%20States).%20Advanced%20Photon%20Source%20(APS)&rft.date=2020-03-01&rft.volume=6&rft.issue=13&rft.spage=eaaz1042&rft.epage=eaaz1042&rft.pages=eaaz1042-eaaz1042&rft.issn=2375-2548&rft.eissn=2375-2548&rft_id=info:doi/10.1126/sciadv.aaz1042&rft_dat=%3Cproquest_pubme%3E2385277046%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2385277046&rft_id=info:pmid/32232157&rfr_iscdi=true