A mechanical explanation of RNA pseudoknot function in programmed ribosomal frameshifting

Tying the pseudoknot Ribosomal frameshifting is a translational mechanism involved in protein synthesis during the replication of many viral pathogens and in cellular genes more generally. A new set of images of an 80S ribosome stalled at an mRNA pseudoknot shows how the pseudoknot manipulates the r...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature 2006-05, Vol.441 (7090), p.244-247
Hauptverfasser: Namy, Olivier, Moran, Stephen J., Stuart, David I., Gilbert, Robert J. C., Brierley, Ian
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 247
container_issue 7090
container_start_page 244
container_title Nature
container_volume 441
creator Namy, Olivier
Moran, Stephen J.
Stuart, David I.
Gilbert, Robert J. C.
Brierley, Ian
description Tying the pseudoknot Ribosomal frameshifting is a translational mechanism involved in protein synthesis during the replication of many viral pathogens and in cellular genes more generally. A new set of images of an 80S ribosome stalled at an mRNA pseudoknot shows how the pseudoknot manipulates the ribosome into a different reading frame. Cryoelectron microscopic imaging is used to visualize a translating ribosome stalled during frameshifting. The triplet-based genetic code requires that translating ribosomes maintain the reading frame of a messenger RNA faithfully to ensure correct protein synthesis 1 . However, in programmed -1 ribosomal frameshifting 2 , a specific subversion of frame maintenance takes place, wherein the ribosome is forced to shift one nucleotide backwards into an overlapping reading frame and to translate an entirely new sequence of amino acids. This process is indispensable in the replication of numerous viral pathogens, including HIV and the coronavirus associated with severe acute respiratory syndrome 3 , and is also exploited in the expression of several cellular genes 4 . Frameshifting is promoted by an mRNA signal composed of two essential elements: a heptanucleotide ‘slippery’ sequence 5 and an adjacent mRNA secondary structure, most often an mRNA pseudoknot 6 . How these components operate together to manipulate the ribosome is unknown. Here we describe the observation of a ribosome–mRNA pseudoknot complex that is stalled in the process of -1 frameshifting. Cryoelectron microscopic imaging of purified mammalian 80S ribosomes from rabbit reticulocytes paused at a coronavirus pseudoknot reveals an intermediate of the frameshifting process. From this it can be seen how the pseudoknot interacts with the ribosome to block the mRNA entrance channel, compromising the translocation process and leading to a spring-like deformation of the P-site transfer RNA. In addition, we identify movements of the likely eukaryotic ribosomal helicase and confirm a direct interaction between the translocase eEF2 and the P-site tRNA. Together, the structural changes provide a mechanical explanation of how the pseudoknot manipulates the ribosome into a different reading frame.
doi_str_mv 10.1038/nature04735
format Article
fullrecord <record><control><sourceid>gale_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7094908</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A185450337</galeid><sourcerecordid>A185450337</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1014t-a165b326560c4ffef02fc7e824bdc9ad7c2085cef8efeb9a982b91af5977fba93</originalsourceid><addsrcrecordid>eNqNlN9r2zAQx83YWLNsT3sfZtBB2dJJtn6-DEzY1kLooCsbexKyIjnqYsm17NL991OWsDglJcUPhrvPfb_HSbokeQ3BKQQ5--hk17caIJrjJ8kIIkomiDD6NBkBkLEJYDk5Sl6EcA0AwJCi58kRJIQxSNko-VWktVYL6aySy1TfNUsZ9ax3qTfp5UWRNkH3c__b-S41vVP_UtalTeurVta1nqetLX3wdSw3MaLDwprOuupl8szIZdCvNv9x8uPL56vp2WT27ev5tJhNFAQQdRMJCS7zjGACFDJGG5AZRTXLUDlXXM6pygDDShumjS655CwrOZQGc0pNKXk-Tj6thZu-jP0o7bpWLkXT2lq2f4SXVuxmnF2Iyt8KCjjicTzj5GQtsLhXdlbMxCoWB0c55uwWRvbdxqz1N70OnahtUHoZx6Z9HwShnEAIwEEwxxlCnOKDYAYhJiQ_bA05y1mW0wi-vQde-7518RBEBhBGBPKV7WQNVXKphXXGx9moSjsdR-SdNjaGC0JARnNI0CN5yDDCIB82scOrxt6IoeiD0FDpdA8Uv7murdrb6qMKhg4nOwWR6fRdV8k-BHH-_XJX_BA71H3_MFtc_Zxe7Cofpvdoq9aH0Grz_-ZCIFZ7QQz2QqTfDN_Ilt0sgggcbwAZ4iaIL9kpG7YcpQgithL6sOZCTLlKt9u7tc_3LzaEc6E</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>204546195</pqid></control><display><type>article</type><title>A mechanical explanation of RNA pseudoknot function in programmed ribosomal frameshifting</title><source>MEDLINE</source><source>Nature Journals Online</source><source>SpringerLink Journals - AutoHoldings</source><creator>Namy, Olivier ; Moran, Stephen J. ; Stuart, David I. ; Gilbert, Robert J. C. ; Brierley, Ian</creator><creatorcontrib>Namy, Olivier ; Moran, Stephen J. ; Stuart, David I. ; Gilbert, Robert J. C. ; Brierley, Ian</creatorcontrib><description>Tying the pseudoknot Ribosomal frameshifting is a translational mechanism involved in protein synthesis during the replication of many viral pathogens and in cellular genes more generally. A new set of images of an 80S ribosome stalled at an mRNA pseudoknot shows how the pseudoknot manipulates the ribosome into a different reading frame. Cryoelectron microscopic imaging is used to visualize a translating ribosome stalled during frameshifting. The triplet-based genetic code requires that translating ribosomes maintain the reading frame of a messenger RNA faithfully to ensure correct protein synthesis 1 . However, in programmed -1 ribosomal frameshifting 2 , a specific subversion of frame maintenance takes place, wherein the ribosome is forced to shift one nucleotide backwards into an overlapping reading frame and to translate an entirely new sequence of amino acids. This process is indispensable in the replication of numerous viral pathogens, including HIV and the coronavirus associated with severe acute respiratory syndrome 3 , and is also exploited in the expression of several cellular genes 4 . Frameshifting is promoted by an mRNA signal composed of two essential elements: a heptanucleotide ‘slippery’ sequence 5 and an adjacent mRNA secondary structure, most often an mRNA pseudoknot 6 . How these components operate together to manipulate the ribosome is unknown. Here we describe the observation of a ribosome–mRNA pseudoknot complex that is stalled in the process of -1 frameshifting. Cryoelectron microscopic imaging of purified mammalian 80S ribosomes from rabbit reticulocytes paused at a coronavirus pseudoknot reveals an intermediate of the frameshifting process. From this it can be seen how the pseudoknot interacts with the ribosome to block the mRNA entrance channel, compromising the translocation process and leading to a spring-like deformation of the P-site transfer RNA. In addition, we identify movements of the likely eukaryotic ribosomal helicase and confirm a direct interaction between the translocase eEF2 and the P-site tRNA. Together, the structural changes provide a mechanical explanation of how the pseudoknot manipulates the ribosome into a different reading frame.</description><identifier>ISSN: 0028-0836</identifier><identifier>EISSN: 1476-4687</identifier><identifier>EISSN: 1476-4679</identifier><identifier>DOI: 10.1038/nature04735</identifier><identifier>PMID: 16688178</identifier><identifier>CODEN: NATUAS</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>Amino acids ; Animals ; Biochemistry, Molecular Biology ; Biological and medical sciences ; Coronavirus - genetics ; COVID-19 ; Deformation ; Frameshift Mutation - genetics ; Frameshifting, Ribosomal - physiology ; Fundamental and applied biological sciences. Psychology ; Gene expression ; Genetics ; Genomics ; HIV ; Human immunodeficiency virus ; Humanities and Social Sciences ; letter ; Life Sciences ; Mammals ; Methods ; Models, Biological ; Models, Molecular ; Molecular and cellular biology ; Molecular genetics ; Movement ; multidisciplinary ; Nucleic Acid Conformation ; Pathogens ; Protein biosynthesis ; Protein synthesis ; Rabbits ; Ribonucleic acid ; Ribosomes - chemistry ; Ribosomes - genetics ; Ribosomes - metabolism ; RNA ; RNA, Messenger - chemistry ; RNA, Messenger - genetics ; RNA, Messenger - metabolism ; RNA, Transfer - chemistry ; RNA, Transfer - genetics ; RNA, Transfer - metabolism ; SARS coronavirus ; Science ; Science (multidisciplinary) ; Severe acute respiratory syndrome ; Signal transduction ; Translation. Translation factors. Protein processing ; Translocation</subject><ispartof>Nature, 2006-05, Vol.441 (7090), p.244-247</ispartof><rights>Springer Nature Limited 2006</rights><rights>2006 INIST-CNRS</rights><rights>COPYRIGHT 2006 Nature Publishing Group</rights><rights>Copyright Nature Publishing Group May 11, 2006</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><rights>Nature Publishing Group 2006</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c1014t-a165b326560c4ffef02fc7e824bdc9ad7c2085cef8efeb9a982b91af5977fba93</citedby><cites>FETCH-LOGICAL-c1014t-a165b326560c4ffef02fc7e824bdc9ad7c2085cef8efeb9a982b91af5977fba93</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/nature04735$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/nature04735$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,314,776,780,881,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=17741485$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/16688178$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-00079598$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Namy, Olivier</creatorcontrib><creatorcontrib>Moran, Stephen J.</creatorcontrib><creatorcontrib>Stuart, David I.</creatorcontrib><creatorcontrib>Gilbert, Robert J. C.</creatorcontrib><creatorcontrib>Brierley, Ian</creatorcontrib><title>A mechanical explanation of RNA pseudoknot function in programmed ribosomal frameshifting</title><title>Nature</title><addtitle>Nature</addtitle><addtitle>Nature</addtitle><description>Tying the pseudoknot Ribosomal frameshifting is a translational mechanism involved in protein synthesis during the replication of many viral pathogens and in cellular genes more generally. A new set of images of an 80S ribosome stalled at an mRNA pseudoknot shows how the pseudoknot manipulates the ribosome into a different reading frame. Cryoelectron microscopic imaging is used to visualize a translating ribosome stalled during frameshifting. The triplet-based genetic code requires that translating ribosomes maintain the reading frame of a messenger RNA faithfully to ensure correct protein synthesis 1 . However, in programmed -1 ribosomal frameshifting 2 , a specific subversion of frame maintenance takes place, wherein the ribosome is forced to shift one nucleotide backwards into an overlapping reading frame and to translate an entirely new sequence of amino acids. This process is indispensable in the replication of numerous viral pathogens, including HIV and the coronavirus associated with severe acute respiratory syndrome 3 , and is also exploited in the expression of several cellular genes 4 . Frameshifting is promoted by an mRNA signal composed of two essential elements: a heptanucleotide ‘slippery’ sequence 5 and an adjacent mRNA secondary structure, most often an mRNA pseudoknot 6 . How these components operate together to manipulate the ribosome is unknown. Here we describe the observation of a ribosome–mRNA pseudoknot complex that is stalled in the process of -1 frameshifting. Cryoelectron microscopic imaging of purified mammalian 80S ribosomes from rabbit reticulocytes paused at a coronavirus pseudoknot reveals an intermediate of the frameshifting process. From this it can be seen how the pseudoknot interacts with the ribosome to block the mRNA entrance channel, compromising the translocation process and leading to a spring-like deformation of the P-site transfer RNA. In addition, we identify movements of the likely eukaryotic ribosomal helicase and confirm a direct interaction between the translocase eEF2 and the P-site tRNA. Together, the structural changes provide a mechanical explanation of how the pseudoknot manipulates the ribosome into a different reading frame.</description><subject>Amino acids</subject><subject>Animals</subject><subject>Biochemistry, Molecular Biology</subject><subject>Biological and medical sciences</subject><subject>Coronavirus - genetics</subject><subject>COVID-19</subject><subject>Deformation</subject><subject>Frameshift Mutation - genetics</subject><subject>Frameshifting, Ribosomal - physiology</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Gene expression</subject><subject>Genetics</subject><subject>Genomics</subject><subject>HIV</subject><subject>Human immunodeficiency virus</subject><subject>Humanities and Social Sciences</subject><subject>letter</subject><subject>Life Sciences</subject><subject>Mammals</subject><subject>Methods</subject><subject>Models, Biological</subject><subject>Models, Molecular</subject><subject>Molecular and cellular biology</subject><subject>Molecular genetics</subject><subject>Movement</subject><subject>multidisciplinary</subject><subject>Nucleic Acid Conformation</subject><subject>Pathogens</subject><subject>Protein biosynthesis</subject><subject>Protein synthesis</subject><subject>Rabbits</subject><subject>Ribonucleic acid</subject><subject>Ribosomes - chemistry</subject><subject>Ribosomes - genetics</subject><subject>Ribosomes - metabolism</subject><subject>RNA</subject><subject>RNA, Messenger - chemistry</subject><subject>RNA, Messenger - genetics</subject><subject>RNA, Messenger - metabolism</subject><subject>RNA, Transfer - chemistry</subject><subject>RNA, Transfer - genetics</subject><subject>RNA, Transfer - metabolism</subject><subject>SARS coronavirus</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>Severe acute respiratory syndrome</subject><subject>Signal transduction</subject><subject>Translation. Translation factors. Protein processing</subject><subject>Translocation</subject><issn>0028-0836</issn><issn>1476-4687</issn><issn>1476-4679</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>8G5</sourceid><sourceid>BEC</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNqNlN9r2zAQx83YWLNsT3sfZtBB2dJJtn6-DEzY1kLooCsbexKyIjnqYsm17NL991OWsDglJcUPhrvPfb_HSbokeQ3BKQQ5--hk17caIJrjJ8kIIkomiDD6NBkBkLEJYDk5Sl6EcA0AwJCi58kRJIQxSNko-VWktVYL6aySy1TfNUsZ9ax3qTfp5UWRNkH3c__b-S41vVP_UtalTeurVta1nqetLX3wdSw3MaLDwprOuupl8szIZdCvNv9x8uPL56vp2WT27ev5tJhNFAQQdRMJCS7zjGACFDJGG5AZRTXLUDlXXM6pygDDShumjS655CwrOZQGc0pNKXk-Tj6thZu-jP0o7bpWLkXT2lq2f4SXVuxmnF2Iyt8KCjjicTzj5GQtsLhXdlbMxCoWB0c55uwWRvbdxqz1N70OnahtUHoZx6Z9HwShnEAIwEEwxxlCnOKDYAYhJiQ_bA05y1mW0wi-vQde-7518RBEBhBGBPKV7WQNVXKphXXGx9moSjsdR-SdNjaGC0JARnNI0CN5yDDCIB82scOrxt6IoeiD0FDpdA8Uv7murdrb6qMKhg4nOwWR6fRdV8k-BHH-_XJX_BA71H3_MFtc_Zxe7Cofpvdoq9aH0Grz_-ZCIFZ7QQz2QqTfDN_Ilt0sgggcbwAZ4iaIL9kpG7YcpQgithL6sOZCTLlKt9u7tc_3LzaEc6E</recordid><startdate>20060511</startdate><enddate>20060511</enddate><creator>Namy, Olivier</creator><creator>Moran, Stephen J.</creator><creator>Stuart, David I.</creator><creator>Gilbert, Robert J. C.</creator><creator>Brierley, Ian</creator><general>Nature Publishing Group UK</general><general>Nature Publishing</general><general>Nature Publishing Group</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ATWCN</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7ST</scope><scope>7T5</scope><scope>7TG</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88G</scope><scope>88I</scope><scope>8AF</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M2M</scope><scope>M2O</scope><scope>M2P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PSYQQ</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>R05</scope><scope>RC3</scope><scope>S0X</scope><scope>SOI</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>F28</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7X8</scope><scope>1XC</scope><scope>5PM</scope></search><sort><creationdate>20060511</creationdate><title>A mechanical explanation of RNA pseudoknot function in programmed ribosomal frameshifting</title><author>Namy, Olivier ; Moran, Stephen J. ; Stuart, David I. ; Gilbert, Robert J. C. ; Brierley, Ian</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1014t-a165b326560c4ffef02fc7e824bdc9ad7c2085cef8efeb9a982b91af5977fba93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Amino acids</topic><topic>Animals</topic><topic>Biochemistry, Molecular Biology</topic><topic>Biological and medical sciences</topic><topic>Coronavirus - genetics</topic><topic>COVID-19</topic><topic>Deformation</topic><topic>Frameshift Mutation - genetics</topic><topic>Frameshifting, Ribosomal - physiology</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Gene expression</topic><topic>Genetics</topic><topic>Genomics</topic><topic>HIV</topic><topic>Human immunodeficiency virus</topic><topic>Humanities and Social Sciences</topic><topic>letter</topic><topic>Life Sciences</topic><topic>Mammals</topic><topic>Methods</topic><topic>Models, Biological</topic><topic>Models, Molecular</topic><topic>Molecular and cellular biology</topic><topic>Molecular genetics</topic><topic>Movement</topic><topic>multidisciplinary</topic><topic>Nucleic Acid Conformation</topic><topic>Pathogens</topic><topic>Protein biosynthesis</topic><topic>Protein synthesis</topic><topic>Rabbits</topic><topic>Ribonucleic acid</topic><topic>Ribosomes - chemistry</topic><topic>Ribosomes - genetics</topic><topic>Ribosomes - metabolism</topic><topic>RNA</topic><topic>RNA, Messenger - chemistry</topic><topic>RNA, Messenger - genetics</topic><topic>RNA, Messenger - metabolism</topic><topic>RNA, Transfer - chemistry</topic><topic>RNA, Transfer - genetics</topic><topic>RNA, Transfer - metabolism</topic><topic>SARS coronavirus</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>Severe acute respiratory syndrome</topic><topic>Signal transduction</topic><topic>Translation. Translation factors. Protein processing</topic><topic>Translocation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Namy, Olivier</creatorcontrib><creatorcontrib>Moran, Stephen J.</creatorcontrib><creatorcontrib>Stuart, David I.</creatorcontrib><creatorcontrib>Gilbert, Robert J. C.</creatorcontrib><creatorcontrib>Brierley, Ian</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Middle School</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Nursing &amp; Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Environment Abstracts</collection><collection>Immunology Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Psychology Database (Alumni)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>eLibrary</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>ProQuest Psychology</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest One Psychology</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>University of Michigan</collection><collection>Genetics Abstracts</collection><collection>SIRS Editorial</collection><collection>Environment Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Nature</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Namy, Olivier</au><au>Moran, Stephen J.</au><au>Stuart, David I.</au><au>Gilbert, Robert J. C.</au><au>Brierley, Ian</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A mechanical explanation of RNA pseudoknot function in programmed ribosomal frameshifting</atitle><jtitle>Nature</jtitle><stitle>Nature</stitle><addtitle>Nature</addtitle><date>2006-05-11</date><risdate>2006</risdate><volume>441</volume><issue>7090</issue><spage>244</spage><epage>247</epage><pages>244-247</pages><issn>0028-0836</issn><eissn>1476-4687</eissn><eissn>1476-4679</eissn><coden>NATUAS</coden><abstract>Tying the pseudoknot Ribosomal frameshifting is a translational mechanism involved in protein synthesis during the replication of many viral pathogens and in cellular genes more generally. A new set of images of an 80S ribosome stalled at an mRNA pseudoknot shows how the pseudoknot manipulates the ribosome into a different reading frame. Cryoelectron microscopic imaging is used to visualize a translating ribosome stalled during frameshifting. The triplet-based genetic code requires that translating ribosomes maintain the reading frame of a messenger RNA faithfully to ensure correct protein synthesis 1 . However, in programmed -1 ribosomal frameshifting 2 , a specific subversion of frame maintenance takes place, wherein the ribosome is forced to shift one nucleotide backwards into an overlapping reading frame and to translate an entirely new sequence of amino acids. This process is indispensable in the replication of numerous viral pathogens, including HIV and the coronavirus associated with severe acute respiratory syndrome 3 , and is also exploited in the expression of several cellular genes 4 . Frameshifting is promoted by an mRNA signal composed of two essential elements: a heptanucleotide ‘slippery’ sequence 5 and an adjacent mRNA secondary structure, most often an mRNA pseudoknot 6 . How these components operate together to manipulate the ribosome is unknown. Here we describe the observation of a ribosome–mRNA pseudoknot complex that is stalled in the process of -1 frameshifting. Cryoelectron microscopic imaging of purified mammalian 80S ribosomes from rabbit reticulocytes paused at a coronavirus pseudoknot reveals an intermediate of the frameshifting process. From this it can be seen how the pseudoknot interacts with the ribosome to block the mRNA entrance channel, compromising the translocation process and leading to a spring-like deformation of the P-site transfer RNA. In addition, we identify movements of the likely eukaryotic ribosomal helicase and confirm a direct interaction between the translocase eEF2 and the P-site tRNA. Together, the structural changes provide a mechanical explanation of how the pseudoknot manipulates the ribosome into a different reading frame.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>16688178</pmid><doi>10.1038/nature04735</doi><tpages>4</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0028-0836
ispartof Nature, 2006-05, Vol.441 (7090), p.244-247
issn 0028-0836
1476-4687
1476-4679
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7094908
source MEDLINE; Nature Journals Online; SpringerLink Journals - AutoHoldings
subjects Amino acids
Animals
Biochemistry, Molecular Biology
Biological and medical sciences
Coronavirus - genetics
COVID-19
Deformation
Frameshift Mutation - genetics
Frameshifting, Ribosomal - physiology
Fundamental and applied biological sciences. Psychology
Gene expression
Genetics
Genomics
HIV
Human immunodeficiency virus
Humanities and Social Sciences
letter
Life Sciences
Mammals
Methods
Models, Biological
Models, Molecular
Molecular and cellular biology
Molecular genetics
Movement
multidisciplinary
Nucleic Acid Conformation
Pathogens
Protein biosynthesis
Protein synthesis
Rabbits
Ribonucleic acid
Ribosomes - chemistry
Ribosomes - genetics
Ribosomes - metabolism
RNA
RNA, Messenger - chemistry
RNA, Messenger - genetics
RNA, Messenger - metabolism
RNA, Transfer - chemistry
RNA, Transfer - genetics
RNA, Transfer - metabolism
SARS coronavirus
Science
Science (multidisciplinary)
Severe acute respiratory syndrome
Signal transduction
Translation. Translation factors. Protein processing
Translocation
title A mechanical explanation of RNA pseudoknot function in programmed ribosomal frameshifting
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T20%3A51%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20mechanical%20explanation%20of%20RNA%20pseudoknot%20function%20in%20programmed%20ribosomal%20frameshifting&rft.jtitle=Nature&rft.au=Namy,%20Olivier&rft.date=2006-05-11&rft.volume=441&rft.issue=7090&rft.spage=244&rft.epage=247&rft.pages=244-247&rft.issn=0028-0836&rft.eissn=1476-4687&rft.coden=NATUAS&rft_id=info:doi/10.1038/nature04735&rft_dat=%3Cgale_pubme%3EA185450337%3C/gale_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=204546195&rft_id=info:pmid/16688178&rft_galeid=A185450337&rfr_iscdi=true