Lentiviral Vector Induced Modeling of High-Grade Spinal Cord Glioma in Minipigs

Background: Prior studies have applied driver mutations targeting the RTK/RAS/PI3K and p53 pathways to induce the formation of high-grade gliomas in rodent models. In the present study, we report the production of a high-grade spinal cord glioma model in pigs using lentiviral gene transfer. Methods:...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Scientific reports 2020-03, Vol.10 (1), p.5291-5291, Article 5291
Hauptverfasser: Tora, Muhibullah S., Texakalidis, Pavlos, Neill, Stewart, Wetzel, Jeremy, Rindler, Rima S., Hardcastle, Nathan, Nagarajan, Purva P., Krasnopeyev, Andrey, Roach, Cristin, James, Raphael, Bruce, Jeffrey N., Canoll, Peter, Federici, Thais, Oshinski, John N., Boulis, Nicholas M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 5291
container_issue 1
container_start_page 5291
container_title Scientific reports
container_volume 10
creator Tora, Muhibullah S.
Texakalidis, Pavlos
Neill, Stewart
Wetzel, Jeremy
Rindler, Rima S.
Hardcastle, Nathan
Nagarajan, Purva P.
Krasnopeyev, Andrey
Roach, Cristin
James, Raphael
Bruce, Jeffrey N.
Canoll, Peter
Federici, Thais
Oshinski, John N.
Boulis, Nicholas M.
description Background: Prior studies have applied driver mutations targeting the RTK/RAS/PI3K and p53 pathways to induce the formation of high-grade gliomas in rodent models. In the present study, we report the production of a high-grade spinal cord glioma model in pigs using lentiviral gene transfer. Methods: Six Gottingen Minipigs received thoracolumbar (T14-L1) lateral white matter injections of a combination of lentiviral vectors, expressing platelet-derived growth factor beta (PDGF-B), constitutive HRAS, and shRNA-p53 respectively. All animals received injection of control vectors into the contralateral cord. Animals underwent baseline and endpoint magnetic resonance imaging (MRI) and were evaluated daily for clinical deficits. Hematoxylin and eosin (H&E) and immunohistochemical analysis was conducted. Data are presented using descriptive statistics including relative frequencies, mean, standard deviation, and range. Results: 100% of animals (n = 6/6) developed clinical motor deficits ipsilateral to the oncogenic lentiviral injections by a three-week endpoint. MRI scans at endpoint demonstrated contrast enhancing mass lesions at the site of oncogenic lentiviral injection and not at the site of control injections. Immunohistochemistry demonstrated positive staining for GFAP, Olig2, and a high Ki-67 proliferative index. Histopathologic features demonstrate consistent and reproducible growth of a high-grade glioma in all animals. Conclusions: Lentiviral gene transfer represents a feasible pathway to glioma modeling in higher order species. The present model is the first lentiviral vector induced pig model of high-grade spinal cord glioma and may potentially be used in preclinical therapeutic development programs.
doi_str_mv 10.1038/s41598-020-62167-9
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7093438</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2383516488</sourcerecordid><originalsourceid>FETCH-LOGICAL-c474t-f125e5ceb5629ad5d4b3a8a17c72fc74f373687427ff272e930a231e62c85c9d3</originalsourceid><addsrcrecordid>eNp9kU9PXCEUxUljU431C3TRkHTj5rVwgcdj08RM7GgyxoV_toQB3hPzBkaYZ-K3Fx1rrQvZQLi_ey6Hg9A3Sn5SwrpfhVOhuoYAaVqgrWzUJ7QHhIsGGMDOm_MuOijlltQlQHGqvqDdeltFqNhD5wsfN-E-ZDPia283KePT6CbrHT5Lzo8hDjj1-CQMN808G-fxxTrECs9Sdng-hrQyOER8FmJYh6F8RZ97MxZ_8LLvo6s_x5ezk2ZxPj-dHS0ayyXfND0F4YX1S9GCMk44vmSmM1RaCb2VvGeStZ3kIPseJHjFiAFGfQu2E1Y5to9-b3XX03Llna0uqgW9zmFl8oNOJuj_KzHc6CHda0kU46yrAocvAjndTb5s9CoU68fRRJ-moqEygra8e0J_vENv05TrJzxT0BIiO1Yp2FI2p1Ky718fQ4l-ikxvI9M1Mv0cmVa16ftbG68tfwOqANsCpZbi4PO_2R_IPgLNkqB-</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2382600783</pqid></control><display><type>article</type><title>Lentiviral Vector Induced Modeling of High-Grade Spinal Cord Glioma in Minipigs</title><source>Nature Open Access</source><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Springer Nature OA Free Journals</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Tora, Muhibullah S. ; Texakalidis, Pavlos ; Neill, Stewart ; Wetzel, Jeremy ; Rindler, Rima S. ; Hardcastle, Nathan ; Nagarajan, Purva P. ; Krasnopeyev, Andrey ; Roach, Cristin ; James, Raphael ; Bruce, Jeffrey N. ; Canoll, Peter ; Federici, Thais ; Oshinski, John N. ; Boulis, Nicholas M.</creator><creatorcontrib>Tora, Muhibullah S. ; Texakalidis, Pavlos ; Neill, Stewart ; Wetzel, Jeremy ; Rindler, Rima S. ; Hardcastle, Nathan ; Nagarajan, Purva P. ; Krasnopeyev, Andrey ; Roach, Cristin ; James, Raphael ; Bruce, Jeffrey N. ; Canoll, Peter ; Federici, Thais ; Oshinski, John N. ; Boulis, Nicholas M.</creatorcontrib><description>Background: Prior studies have applied driver mutations targeting the RTK/RAS/PI3K and p53 pathways to induce the formation of high-grade gliomas in rodent models. In the present study, we report the production of a high-grade spinal cord glioma model in pigs using lentiviral gene transfer. Methods: Six Gottingen Minipigs received thoracolumbar (T14-L1) lateral white matter injections of a combination of lentiviral vectors, expressing platelet-derived growth factor beta (PDGF-B), constitutive HRAS, and shRNA-p53 respectively. All animals received injection of control vectors into the contralateral cord. Animals underwent baseline and endpoint magnetic resonance imaging (MRI) and were evaluated daily for clinical deficits. Hematoxylin and eosin (H&amp;E) and immunohistochemical analysis was conducted. Data are presented using descriptive statistics including relative frequencies, mean, standard deviation, and range. Results: 100% of animals (n = 6/6) developed clinical motor deficits ipsilateral to the oncogenic lentiviral injections by a three-week endpoint. MRI scans at endpoint demonstrated contrast enhancing mass lesions at the site of oncogenic lentiviral injection and not at the site of control injections. Immunohistochemistry demonstrated positive staining for GFAP, Olig2, and a high Ki-67 proliferative index. Histopathologic features demonstrate consistent and reproducible growth of a high-grade glioma in all animals. Conclusions: Lentiviral gene transfer represents a feasible pathway to glioma modeling in higher order species. The present model is the first lentiviral vector induced pig model of high-grade spinal cord glioma and may potentially be used in preclinical therapeutic development programs.</description><identifier>ISSN: 2045-2322</identifier><identifier>EISSN: 2045-2322</identifier><identifier>DOI: 10.1038/s41598-020-62167-9</identifier><identifier>PMID: 32210315</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>1-Phosphatidylinositol 3-kinase ; 631/67/1922 ; 631/67/70 ; Animal models ; Animals ; Disease Models, Animal ; Female ; Gene transfer ; Genetic Vectors - administration &amp; dosage ; Genetic Vectors - genetics ; Glial fibrillary acidic protein ; Glioma ; Glioma - genetics ; Glioma - pathology ; Humanities and Social Sciences ; Humans ; Immunohistochemistry ; Injection ; Lentivirus - genetics ; Magnetic resonance imaging ; Male ; Motor Disorders - genetics ; Motor Disorders - pathology ; multidisciplinary ; Neoplasm Grading ; Olig2 protein ; p53 Protein ; Platelet-derived growth factor ; Science ; Science (multidisciplinary) ; Spinal cord ; Spinal Cord Neoplasms - genetics ; Spinal Cord Neoplasms - pathology ; Statistical analysis ; Substantia alba ; Swine ; Swine, Miniature</subject><ispartof>Scientific reports, 2020-03, Vol.10 (1), p.5291-5291, Article 5291</ispartof><rights>The Author(s) 2020</rights><rights>This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c474t-f125e5ceb5629ad5d4b3a8a17c72fc74f373687427ff272e930a231e62c85c9d3</citedby><cites>FETCH-LOGICAL-c474t-f125e5ceb5629ad5d4b3a8a17c72fc74f373687427ff272e930a231e62c85c9d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7093438/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7093438/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,725,778,782,862,883,27907,27908,41103,42172,51559,53774,53776</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32210315$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Tora, Muhibullah S.</creatorcontrib><creatorcontrib>Texakalidis, Pavlos</creatorcontrib><creatorcontrib>Neill, Stewart</creatorcontrib><creatorcontrib>Wetzel, Jeremy</creatorcontrib><creatorcontrib>Rindler, Rima S.</creatorcontrib><creatorcontrib>Hardcastle, Nathan</creatorcontrib><creatorcontrib>Nagarajan, Purva P.</creatorcontrib><creatorcontrib>Krasnopeyev, Andrey</creatorcontrib><creatorcontrib>Roach, Cristin</creatorcontrib><creatorcontrib>James, Raphael</creatorcontrib><creatorcontrib>Bruce, Jeffrey N.</creatorcontrib><creatorcontrib>Canoll, Peter</creatorcontrib><creatorcontrib>Federici, Thais</creatorcontrib><creatorcontrib>Oshinski, John N.</creatorcontrib><creatorcontrib>Boulis, Nicholas M.</creatorcontrib><title>Lentiviral Vector Induced Modeling of High-Grade Spinal Cord Glioma in Minipigs</title><title>Scientific reports</title><addtitle>Sci Rep</addtitle><addtitle>Sci Rep</addtitle><description>Background: Prior studies have applied driver mutations targeting the RTK/RAS/PI3K and p53 pathways to induce the formation of high-grade gliomas in rodent models. In the present study, we report the production of a high-grade spinal cord glioma model in pigs using lentiviral gene transfer. Methods: Six Gottingen Minipigs received thoracolumbar (T14-L1) lateral white matter injections of a combination of lentiviral vectors, expressing platelet-derived growth factor beta (PDGF-B), constitutive HRAS, and shRNA-p53 respectively. All animals received injection of control vectors into the contralateral cord. Animals underwent baseline and endpoint magnetic resonance imaging (MRI) and were evaluated daily for clinical deficits. Hematoxylin and eosin (H&amp;E) and immunohistochemical analysis was conducted. Data are presented using descriptive statistics including relative frequencies, mean, standard deviation, and range. Results: 100% of animals (n = 6/6) developed clinical motor deficits ipsilateral to the oncogenic lentiviral injections by a three-week endpoint. MRI scans at endpoint demonstrated contrast enhancing mass lesions at the site of oncogenic lentiviral injection and not at the site of control injections. Immunohistochemistry demonstrated positive staining for GFAP, Olig2, and a high Ki-67 proliferative index. Histopathologic features demonstrate consistent and reproducible growth of a high-grade glioma in all animals. Conclusions: Lentiviral gene transfer represents a feasible pathway to glioma modeling in higher order species. The present model is the first lentiviral vector induced pig model of high-grade spinal cord glioma and may potentially be used in preclinical therapeutic development programs.</description><subject>1-Phosphatidylinositol 3-kinase</subject><subject>631/67/1922</subject><subject>631/67/70</subject><subject>Animal models</subject><subject>Animals</subject><subject>Disease Models, Animal</subject><subject>Female</subject><subject>Gene transfer</subject><subject>Genetic Vectors - administration &amp; dosage</subject><subject>Genetic Vectors - genetics</subject><subject>Glial fibrillary acidic protein</subject><subject>Glioma</subject><subject>Glioma - genetics</subject><subject>Glioma - pathology</subject><subject>Humanities and Social Sciences</subject><subject>Humans</subject><subject>Immunohistochemistry</subject><subject>Injection</subject><subject>Lentivirus - genetics</subject><subject>Magnetic resonance imaging</subject><subject>Male</subject><subject>Motor Disorders - genetics</subject><subject>Motor Disorders - pathology</subject><subject>multidisciplinary</subject><subject>Neoplasm Grading</subject><subject>Olig2 protein</subject><subject>p53 Protein</subject><subject>Platelet-derived growth factor</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>Spinal cord</subject><subject>Spinal Cord Neoplasms - genetics</subject><subject>Spinal Cord Neoplasms - pathology</subject><subject>Statistical analysis</subject><subject>Substantia alba</subject><subject>Swine</subject><subject>Swine, Miniature</subject><issn>2045-2322</issn><issn>2045-2322</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kU9PXCEUxUljU431C3TRkHTj5rVwgcdj08RM7GgyxoV_toQB3hPzBkaYZ-K3Fx1rrQvZQLi_ey6Hg9A3Sn5SwrpfhVOhuoYAaVqgrWzUJ7QHhIsGGMDOm_MuOijlltQlQHGqvqDdeltFqNhD5wsfN-E-ZDPia283KePT6CbrHT5Lzo8hDjj1-CQMN808G-fxxTrECs9Sdng-hrQyOER8FmJYh6F8RZ97MxZ_8LLvo6s_x5ezk2ZxPj-dHS0ayyXfND0F4YX1S9GCMk44vmSmM1RaCb2VvGeStZ3kIPseJHjFiAFGfQu2E1Y5to9-b3XX03Llna0uqgW9zmFl8oNOJuj_KzHc6CHda0kU46yrAocvAjndTb5s9CoU68fRRJ-moqEygra8e0J_vENv05TrJzxT0BIiO1Yp2FI2p1Ky718fQ4l-ikxvI9M1Mv0cmVa16ftbG68tfwOqANsCpZbi4PO_2R_IPgLNkqB-</recordid><startdate>20200324</startdate><enddate>20200324</enddate><creator>Tora, Muhibullah S.</creator><creator>Texakalidis, Pavlos</creator><creator>Neill, Stewart</creator><creator>Wetzel, Jeremy</creator><creator>Rindler, Rima S.</creator><creator>Hardcastle, Nathan</creator><creator>Nagarajan, Purva P.</creator><creator>Krasnopeyev, Andrey</creator><creator>Roach, Cristin</creator><creator>James, Raphael</creator><creator>Bruce, Jeffrey N.</creator><creator>Canoll, Peter</creator><creator>Federici, Thais</creator><creator>Oshinski, John N.</creator><creator>Boulis, Nicholas M.</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20200324</creationdate><title>Lentiviral Vector Induced Modeling of High-Grade Spinal Cord Glioma in Minipigs</title><author>Tora, Muhibullah S. ; Texakalidis, Pavlos ; Neill, Stewart ; Wetzel, Jeremy ; Rindler, Rima S. ; Hardcastle, Nathan ; Nagarajan, Purva P. ; Krasnopeyev, Andrey ; Roach, Cristin ; James, Raphael ; Bruce, Jeffrey N. ; Canoll, Peter ; Federici, Thais ; Oshinski, John N. ; Boulis, Nicholas M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c474t-f125e5ceb5629ad5d4b3a8a17c72fc74f373687427ff272e930a231e62c85c9d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>1-Phosphatidylinositol 3-kinase</topic><topic>631/67/1922</topic><topic>631/67/70</topic><topic>Animal models</topic><topic>Animals</topic><topic>Disease Models, Animal</topic><topic>Female</topic><topic>Gene transfer</topic><topic>Genetic Vectors - administration &amp; dosage</topic><topic>Genetic Vectors - genetics</topic><topic>Glial fibrillary acidic protein</topic><topic>Glioma</topic><topic>Glioma - genetics</topic><topic>Glioma - pathology</topic><topic>Humanities and Social Sciences</topic><topic>Humans</topic><topic>Immunohistochemistry</topic><topic>Injection</topic><topic>Lentivirus - genetics</topic><topic>Magnetic resonance imaging</topic><topic>Male</topic><topic>Motor Disorders - genetics</topic><topic>Motor Disorders - pathology</topic><topic>multidisciplinary</topic><topic>Neoplasm Grading</topic><topic>Olig2 protein</topic><topic>p53 Protein</topic><topic>Platelet-derived growth factor</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>Spinal cord</topic><topic>Spinal Cord Neoplasms - genetics</topic><topic>Spinal Cord Neoplasms - pathology</topic><topic>Statistical analysis</topic><topic>Substantia alba</topic><topic>Swine</topic><topic>Swine, Miniature</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tora, Muhibullah S.</creatorcontrib><creatorcontrib>Texakalidis, Pavlos</creatorcontrib><creatorcontrib>Neill, Stewart</creatorcontrib><creatorcontrib>Wetzel, Jeremy</creatorcontrib><creatorcontrib>Rindler, Rima S.</creatorcontrib><creatorcontrib>Hardcastle, Nathan</creatorcontrib><creatorcontrib>Nagarajan, Purva P.</creatorcontrib><creatorcontrib>Krasnopeyev, Andrey</creatorcontrib><creatorcontrib>Roach, Cristin</creatorcontrib><creatorcontrib>James, Raphael</creatorcontrib><creatorcontrib>Bruce, Jeffrey N.</creatorcontrib><creatorcontrib>Canoll, Peter</creatorcontrib><creatorcontrib>Federici, Thais</creatorcontrib><creatorcontrib>Oshinski, John N.</creatorcontrib><creatorcontrib>Boulis, Nicholas M.</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Scientific reports</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tora, Muhibullah S.</au><au>Texakalidis, Pavlos</au><au>Neill, Stewart</au><au>Wetzel, Jeremy</au><au>Rindler, Rima S.</au><au>Hardcastle, Nathan</au><au>Nagarajan, Purva P.</au><au>Krasnopeyev, Andrey</au><au>Roach, Cristin</au><au>James, Raphael</au><au>Bruce, Jeffrey N.</au><au>Canoll, Peter</au><au>Federici, Thais</au><au>Oshinski, John N.</au><au>Boulis, Nicholas M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Lentiviral Vector Induced Modeling of High-Grade Spinal Cord Glioma in Minipigs</atitle><jtitle>Scientific reports</jtitle><stitle>Sci Rep</stitle><addtitle>Sci Rep</addtitle><date>2020-03-24</date><risdate>2020</risdate><volume>10</volume><issue>1</issue><spage>5291</spage><epage>5291</epage><pages>5291-5291</pages><artnum>5291</artnum><issn>2045-2322</issn><eissn>2045-2322</eissn><abstract>Background: Prior studies have applied driver mutations targeting the RTK/RAS/PI3K and p53 pathways to induce the formation of high-grade gliomas in rodent models. In the present study, we report the production of a high-grade spinal cord glioma model in pigs using lentiviral gene transfer. Methods: Six Gottingen Minipigs received thoracolumbar (T14-L1) lateral white matter injections of a combination of lentiviral vectors, expressing platelet-derived growth factor beta (PDGF-B), constitutive HRAS, and shRNA-p53 respectively. All animals received injection of control vectors into the contralateral cord. Animals underwent baseline and endpoint magnetic resonance imaging (MRI) and were evaluated daily for clinical deficits. Hematoxylin and eosin (H&amp;E) and immunohistochemical analysis was conducted. Data are presented using descriptive statistics including relative frequencies, mean, standard deviation, and range. Results: 100% of animals (n = 6/6) developed clinical motor deficits ipsilateral to the oncogenic lentiviral injections by a three-week endpoint. MRI scans at endpoint demonstrated contrast enhancing mass lesions at the site of oncogenic lentiviral injection and not at the site of control injections. Immunohistochemistry demonstrated positive staining for GFAP, Olig2, and a high Ki-67 proliferative index. Histopathologic features demonstrate consistent and reproducible growth of a high-grade glioma in all animals. Conclusions: Lentiviral gene transfer represents a feasible pathway to glioma modeling in higher order species. The present model is the first lentiviral vector induced pig model of high-grade spinal cord glioma and may potentially be used in preclinical therapeutic development programs.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>32210315</pmid><doi>10.1038/s41598-020-62167-9</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2045-2322
ispartof Scientific reports, 2020-03, Vol.10 (1), p.5291-5291, Article 5291
issn 2045-2322
2045-2322
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7093438
source Nature Open Access; MEDLINE; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Springer Nature OA Free Journals; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry
subjects 1-Phosphatidylinositol 3-kinase
631/67/1922
631/67/70
Animal models
Animals
Disease Models, Animal
Female
Gene transfer
Genetic Vectors - administration & dosage
Genetic Vectors - genetics
Glial fibrillary acidic protein
Glioma
Glioma - genetics
Glioma - pathology
Humanities and Social Sciences
Humans
Immunohistochemistry
Injection
Lentivirus - genetics
Magnetic resonance imaging
Male
Motor Disorders - genetics
Motor Disorders - pathology
multidisciplinary
Neoplasm Grading
Olig2 protein
p53 Protein
Platelet-derived growth factor
Science
Science (multidisciplinary)
Spinal cord
Spinal Cord Neoplasms - genetics
Spinal Cord Neoplasms - pathology
Statistical analysis
Substantia alba
Swine
Swine, Miniature
title Lentiviral Vector Induced Modeling of High-Grade Spinal Cord Glioma in Minipigs
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T20%3A04%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Lentiviral%20Vector%20Induced%20Modeling%20of%20High-Grade%20Spinal%20Cord%20Glioma%20in%20Minipigs&rft.jtitle=Scientific%20reports&rft.au=Tora,%20Muhibullah%20S.&rft.date=2020-03-24&rft.volume=10&rft.issue=1&rft.spage=5291&rft.epage=5291&rft.pages=5291-5291&rft.artnum=5291&rft.issn=2045-2322&rft.eissn=2045-2322&rft_id=info:doi/10.1038/s41598-020-62167-9&rft_dat=%3Cproquest_pubme%3E2383516488%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2382600783&rft_id=info:pmid/32210315&rfr_iscdi=true