Assessing activity of Hepatitis A virus 3C protease using a cyclized luciferase-based biosensor

Hepatitis A is an acute infection caused by Hepatitis A virus (HAV), which is widely distributed throughout the world. The HAV 3C cysteine protease (3Cpro), an important nonstructural protein, is responsible for most cleavage within the viral polyprotein and is critical for the processes of viral re...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biochemical and biophysical research communications 2017-07, Vol.488 (4), p.621-627
Hauptverfasser: Zhou, Junwei, Wang, Dang, Xi, Yongqiang, Zhu, Xinyu, Yang, Yuting, Lv, Mengting, Luo, Chuanzhen, Chen, Jiyao, Ye, Xu, Fang, Liurong, Xiao, Shaobo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Hepatitis A is an acute infection caused by Hepatitis A virus (HAV), which is widely distributed throughout the world. The HAV 3C cysteine protease (3Cpro), an important nonstructural protein, is responsible for most cleavage within the viral polyprotein and is critical for the processes of viral replication. Our group has previously demonstrated that HAV 3Cpro cleaves human NF-κB essential modulator (NEMO), a kinase required in interferon signaling. Based on this finding, we generated four luciferase-based biosensors containing the NEMO sequence (PVLKAQ↓ADIYKA) that is cleaved by HAV 3Cpro and/or the Nostoc punctiforme DnaE intein, to monitor the activity of HAV 3Cpro in human embryonic kidney cells (HEK-293T). Western blotting showed that HAV 3Cpro recognized and cleaved the NEMO cleavage sequence incorporated in the four biosensors, whereas only one cyclized luciferase-based biosensor (233-DnaE-HAV, 233DH) showed a measurable and reliable increase in firefly luciferase activity, with very low background, in the presence of HAV 3Cpro. With this biosensor (233DH), we monitored HAV 3Cpro activity in HEK-293T cells, and tested it against a catalytically deficient mutant HAV 3Cpro and other virus-encoded proteases. The results showed that the activity of this luciferase biosensor is specifically dependent on HAV 3Cpro. Collectively, our data demonstrate that the luciferase biosensor developed here might provide a rapid, sensitive, and efficient evaluation of HAV 3Cpro activity, and should extend our better understanding of the biological relevance of HAV 3Cpro. •Four luciferase-based biosensors were generated to monitor the activity of HAV 3Cpro.•The cyclized luciferase-based biosensor 233DH showed measurable and reliable data.•Luciferase activity of 233DH was specifically dependent on HAV 3Cpro activity.•233DH was only recognized and cleaved by HAV 3Cpro but by no other viral 3CLpro.
ISSN:0006-291X
1090-2104
DOI:10.1016/j.bbrc.2017.05.063