In vitro Anti-viral Activity of the Total Alkaloids from Tripterygium hypoglaucum against Herpes Simplex Virus Type 1

Herpes simplex virus type 1 (HSV-1) is a commonly occurring human pathogen worldwide. There is an urgent need to discover and develop new alternative agents for the management of HSV-1 infection. Tripterygium hypoglaucum (level) Hutch (Celastraceae) is a traditional Chinese medicine plant with many...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Virologica Sinica 2010-04, Vol.25 (2), p.107-114
Hauptverfasser: Ren, Zhe, Zhang, Chuan-hai, Wang, Lian-jun, Cui, Yun-xia, Qi, Ren-bin, Yang, Chong-ren, Zhang, Ying-jun, Wei, Xiao-yi, Lu, Da-xiang, Wang, Yi-fei
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Herpes simplex virus type 1 (HSV-1) is a commonly occurring human pathogen worldwide. There is an urgent need to discover and develop new alternative agents for the management of HSV-1 infection. Tripterygium hypoglaucum (level) Hutch (Celastraceae) is a traditional Chinese medicine plant with many pharmacological activities such as anti-inflammation, anti-tumor and antifertility. The usual medicinal part is the roots which contain about a 1% yield of alkaloids. A crude total alkaloids extract was prepared from the roots of T. hypoglaucum amd its antiviral activity against HSV-1 in Vero cells was evaluated by cytopathic effect (CPE) assay, plaque reduction assay and by RT-PCR analysis. The alkaloids extract presented low cytotoxicity (CC50 = 46.6μg/mL) and potent CPE inhibition activity, the 50% inhibitory concentration (ICs0) was 6.5 μg/mL, noticeably lower than that of Acyclovir (15.4μg /mL). Plaque formation was significantly reduced by the alkaloids extract at concentrations of 6.25 μg/mL to 12.5 μg/mL, the plaque reduction ratio reached 55% to 75% which was 35% higher than that of Acyclovir at the same concentration. RT-PCR analysis showed that, the transcription of two important delayed early genes UL30 and UL39, and a late gene US6 of HSV-1 genome all were suppressed by the alkaloids extract, the expression inhibiting efficacy compared to the control was 74.6% (UL30), 70.9% (UL39) and 62.6% (US6) respectively at the working concentration of 12.5μg/mL. The above results suggest a potent anti-HSV-1 activity of the alkaloids extract in vitro.
ISSN:1674-0769
1995-820X
DOI:10.1007/s12250-010-3092-6