Relativistic-intensity near-single-cycle light waveforms at kHz repetition rate
The development of ultra-intense and ultra-short light sources is currently a subject of intense research driven by the discovery of novel phenomena in the realm of relativistic optics, such as the production of ultrafast energetic particle and radiation beams for applications. It has been a long-st...
Gespeichert in:
Veröffentlicht in: | Light, science & applications science & applications, 2020-03, Vol.9 (1), p.47-47, Article 47 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 47 |
---|---|
container_issue | 1 |
container_start_page | 47 |
container_title | Light, science & applications |
container_volume | 9 |
creator | Ouillé, Marie Vernier, Aline Böhle, Frederik Bocoum, Maïmouna Jullien, Aurélie Lozano, Magali Rousseau, Jean-Philippe Cheng, Zhao Gustas, Dominykas Blumenstein, Andreas Simon, Peter Haessler, Stefan Faure, Jérôme Nagy, Tamas Lopez-Martens, Rodrigo |
description | The development of ultra-intense and ultra-short light sources is currently a subject of intense research driven by the discovery of novel phenomena in the realm of relativistic optics, such as the production of ultrafast energetic particle and radiation beams for applications. It has been a long-standing challenge to unite two hitherto distinct classes of light sources: those achieving relativistic intensity and those with pulse durations approaching a single light cycle. While the former class traditionally involves large-scale amplification chains, the latter class places high demand on the spatiotemporal control of the electromagnetic laser field. Here, we present a light source producing waveform-controlled 1.5-cycle pulses with a 719 nm central wavelength that can be focused to relativistic intensity at a 1 kHz repetition rate based on nonlinear post-compression in a long hollow-core fiber. The unique capabilities of this source allow us to observe the first experimental indications of light waveform effects in laser wakefield acceleration of relativistic energy electrons.
Relativistic optics: High intensity ultra-short fast-repeating light pulses
A pioneering laser source combines extremely high intensity and fast-repeating pulses with ultra-short pulse duration, opening new opportunities in the field of research and technology called relativistic optics. This requires lasers that are sufficiently intense to accelerate particles such as electrons to close to light speed, when effects of relativity theory become increasingly significant. Marie Ouillé and colleagues at the CNRS Laboratoire d’Optique Appliquée in France, with co-workers in Germany, combined laser sources with light compression and manipulation methods to generate relativistic intensity pulses almost as short as a single cycle of the light wave. They say their system is currently the only light source capable of achieving pulses shorter than four femtoseconds combined with peak powers up to 1 terawatt. The researchers also demonstrated precise control over the fine structure of the light pulses. |
doi_str_mv | 10.1038/s41377-020-0280-5 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7089946</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2382033862</sourcerecordid><originalsourceid>FETCH-LOGICAL-c570t-a5a9e14d6912d6e710d4634fc7c47fe0e6c00ee2ead0feef8aab23c71b062d543</originalsourceid><addsrcrecordid>eNp1kd9rFDEQx4Motlz7B_giC77oQ-zkx26yL0Ip6gkHBanPIZedvUvdy55J7sr515tj21oLBkKGzOc7M8mXkDcMPjIQ-iJJJpSiwKFsDbR-QU45SEVVLfTLJ_EJOU_pFspqJQOtXpMTwTnTLdOn5Po7Djb7vU_ZO-pDxpB8PlQBbaTJh9WA1B3cgNXgV-tc3dk99mPcpMrm6uf8dxVxi9lnP4Yq2oxn5FVvh4Tn9-eM_Pjy-eZqThfXX79dXS6oqxVkamvbIpNd0zLeNagYdLIRsnfKSdUjYOMAEDnaDnrEXlu75MIptoSGd7UUM_JpqrvdLTfYOQw52sFso9_YeDCj9ebfTPBrsxr3RoFu29JrRj5MBdbPZPPLhTneAW-V5qLZs8K-v28Wx187TNlsfHI4DDbguEuGCy05tI2Ggr57ht6OuxjKVxwpDkLohheKTZSLY0oR-8cJGJiju2ZytwwB5uiuqYvm7dMXPyoevCwAn4BUUmGF8W_r_1f9AyGlsGw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2382033862</pqid></control><display><type>article</type><title>Relativistic-intensity near-single-cycle light waveforms at kHz repetition rate</title><source>Nature Free</source><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Springer Nature OA Free Journals</source><creator>Ouillé, Marie ; Vernier, Aline ; Böhle, Frederik ; Bocoum, Maïmouna ; Jullien, Aurélie ; Lozano, Magali ; Rousseau, Jean-Philippe ; Cheng, Zhao ; Gustas, Dominykas ; Blumenstein, Andreas ; Simon, Peter ; Haessler, Stefan ; Faure, Jérôme ; Nagy, Tamas ; Lopez-Martens, Rodrigo</creator><creatorcontrib>Ouillé, Marie ; Vernier, Aline ; Böhle, Frederik ; Bocoum, Maïmouna ; Jullien, Aurélie ; Lozano, Magali ; Rousseau, Jean-Philippe ; Cheng, Zhao ; Gustas, Dominykas ; Blumenstein, Andreas ; Simon, Peter ; Haessler, Stefan ; Faure, Jérôme ; Nagy, Tamas ; Lopez-Martens, Rodrigo</creatorcontrib><description>The development of ultra-intense and ultra-short light sources is currently a subject of intense research driven by the discovery of novel phenomena in the realm of relativistic optics, such as the production of ultrafast energetic particle and radiation beams for applications. It has been a long-standing challenge to unite two hitherto distinct classes of light sources: those achieving relativistic intensity and those with pulse durations approaching a single light cycle. While the former class traditionally involves large-scale amplification chains, the latter class places high demand on the spatiotemporal control of the electromagnetic laser field. Here, we present a light source producing waveform-controlled 1.5-cycle pulses with a 719 nm central wavelength that can be focused to relativistic intensity at a 1 kHz repetition rate based on nonlinear post-compression in a long hollow-core fiber. The unique capabilities of this source allow us to observe the first experimental indications of light waveform effects in laser wakefield acceleration of relativistic energy electrons.
Relativistic optics: High intensity ultra-short fast-repeating light pulses
A pioneering laser source combines extremely high intensity and fast-repeating pulses with ultra-short pulse duration, opening new opportunities in the field of research and technology called relativistic optics. This requires lasers that are sufficiently intense to accelerate particles such as electrons to close to light speed, when effects of relativity theory become increasingly significant. Marie Ouillé and colleagues at the CNRS Laboratoire d’Optique Appliquée in France, with co-workers in Germany, combined laser sources with light compression and manipulation methods to generate relativistic intensity pulses almost as short as a single cycle of the light wave. They say their system is currently the only light source capable of achieving pulses shorter than four femtoseconds combined with peak powers up to 1 terawatt. The researchers also demonstrated precise control over the fine structure of the light pulses.</description><identifier>ISSN: 2047-7538</identifier><identifier>ISSN: 2095-5545</identifier><identifier>EISSN: 2047-7538</identifier><identifier>DOI: 10.1038/s41377-020-0280-5</identifier><identifier>PMID: 32218918</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>639/624/1020/1088 ; 639/624/1020/1095 ; 639/766/1960/1137 ; Applied and Technical Physics ; Atomic ; Classical and Continuum Physics ; Compression ; Lasers ; Light ; Light sources ; Molecular ; Optical and Plasma Physics ; Optical Devices ; Optics ; Photonics ; Physics ; Physics and Astronomy ; Plasma Physics ; Repetition ; Ultrastructure</subject><ispartof>Light, science & applications, 2020-03, Vol.9 (1), p.47-47, Article 47</ispartof><rights>The Author(s) 2020</rights><rights>The Author(s) 2020.</rights><rights>This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c570t-a5a9e14d6912d6e710d4634fc7c47fe0e6c00ee2ead0feef8aab23c71b062d543</citedby><cites>FETCH-LOGICAL-c570t-a5a9e14d6912d6e710d4634fc7c47fe0e6c00ee2ead0feef8aab23c71b062d543</cites><orcidid>0000-0002-8158-4938 ; 0000-0002-7003-2089 ; 0000-0002-4807-4653 ; 0000-0002-1295-6419 ; 0000-0001-5244-0356 ; 0000-0002-5296-7155 ; 0000-0002-7776-8312 ; 0000-0003-0538-5774</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7089946/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7089946/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,27901,27902,41096,42165,51551,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32218918$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-02978236$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Ouillé, Marie</creatorcontrib><creatorcontrib>Vernier, Aline</creatorcontrib><creatorcontrib>Böhle, Frederik</creatorcontrib><creatorcontrib>Bocoum, Maïmouna</creatorcontrib><creatorcontrib>Jullien, Aurélie</creatorcontrib><creatorcontrib>Lozano, Magali</creatorcontrib><creatorcontrib>Rousseau, Jean-Philippe</creatorcontrib><creatorcontrib>Cheng, Zhao</creatorcontrib><creatorcontrib>Gustas, Dominykas</creatorcontrib><creatorcontrib>Blumenstein, Andreas</creatorcontrib><creatorcontrib>Simon, Peter</creatorcontrib><creatorcontrib>Haessler, Stefan</creatorcontrib><creatorcontrib>Faure, Jérôme</creatorcontrib><creatorcontrib>Nagy, Tamas</creatorcontrib><creatorcontrib>Lopez-Martens, Rodrigo</creatorcontrib><title>Relativistic-intensity near-single-cycle light waveforms at kHz repetition rate</title><title>Light, science & applications</title><addtitle>Light Sci Appl</addtitle><addtitle>Light Sci Appl</addtitle><description>The development of ultra-intense and ultra-short light sources is currently a subject of intense research driven by the discovery of novel phenomena in the realm of relativistic optics, such as the production of ultrafast energetic particle and radiation beams for applications. It has been a long-standing challenge to unite two hitherto distinct classes of light sources: those achieving relativistic intensity and those with pulse durations approaching a single light cycle. While the former class traditionally involves large-scale amplification chains, the latter class places high demand on the spatiotemporal control of the electromagnetic laser field. Here, we present a light source producing waveform-controlled 1.5-cycle pulses with a 719 nm central wavelength that can be focused to relativistic intensity at a 1 kHz repetition rate based on nonlinear post-compression in a long hollow-core fiber. The unique capabilities of this source allow us to observe the first experimental indications of light waveform effects in laser wakefield acceleration of relativistic energy electrons.
Relativistic optics: High intensity ultra-short fast-repeating light pulses
A pioneering laser source combines extremely high intensity and fast-repeating pulses with ultra-short pulse duration, opening new opportunities in the field of research and technology called relativistic optics. This requires lasers that are sufficiently intense to accelerate particles such as electrons to close to light speed, when effects of relativity theory become increasingly significant. Marie Ouillé and colleagues at the CNRS Laboratoire d’Optique Appliquée in France, with co-workers in Germany, combined laser sources with light compression and manipulation methods to generate relativistic intensity pulses almost as short as a single cycle of the light wave. They say their system is currently the only light source capable of achieving pulses shorter than four femtoseconds combined with peak powers up to 1 terawatt. The researchers also demonstrated precise control over the fine structure of the light pulses.</description><subject>639/624/1020/1088</subject><subject>639/624/1020/1095</subject><subject>639/766/1960/1137</subject><subject>Applied and Technical Physics</subject><subject>Atomic</subject><subject>Classical and Continuum Physics</subject><subject>Compression</subject><subject>Lasers</subject><subject>Light</subject><subject>Light sources</subject><subject>Molecular</subject><subject>Optical and Plasma Physics</subject><subject>Optical Devices</subject><subject>Optics</subject><subject>Photonics</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Plasma Physics</subject><subject>Repetition</subject><subject>Ultrastructure</subject><issn>2047-7538</issn><issn>2095-5545</issn><issn>2047-7538</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>BENPR</sourceid><recordid>eNp1kd9rFDEQx4Motlz7B_giC77oQ-zkx26yL0Ip6gkHBanPIZedvUvdy55J7sr515tj21oLBkKGzOc7M8mXkDcMPjIQ-iJJJpSiwKFsDbR-QU45SEVVLfTLJ_EJOU_pFspqJQOtXpMTwTnTLdOn5Po7Djb7vU_ZO-pDxpB8PlQBbaTJh9WA1B3cgNXgV-tc3dk99mPcpMrm6uf8dxVxi9lnP4Yq2oxn5FVvh4Tn9-eM_Pjy-eZqThfXX79dXS6oqxVkamvbIpNd0zLeNagYdLIRsnfKSdUjYOMAEDnaDnrEXlu75MIptoSGd7UUM_JpqrvdLTfYOQw52sFso9_YeDCj9ebfTPBrsxr3RoFu29JrRj5MBdbPZPPLhTneAW-V5qLZs8K-v28Wx187TNlsfHI4DDbguEuGCy05tI2Ggr57ht6OuxjKVxwpDkLohheKTZSLY0oR-8cJGJiju2ZytwwB5uiuqYvm7dMXPyoevCwAn4BUUmGF8W_r_1f9AyGlsGw</recordid><startdate>20200323</startdate><enddate>20200323</enddate><creator>Ouillé, Marie</creator><creator>Vernier, Aline</creator><creator>Böhle, Frederik</creator><creator>Bocoum, Maïmouna</creator><creator>Jullien, Aurélie</creator><creator>Lozano, Magali</creator><creator>Rousseau, Jean-Philippe</creator><creator>Cheng, Zhao</creator><creator>Gustas, Dominykas</creator><creator>Blumenstein, Andreas</creator><creator>Simon, Peter</creator><creator>Haessler, Stefan</creator><creator>Faure, Jérôme</creator><creator>Nagy, Tamas</creator><creator>Lopez-Martens, Rodrigo</creator><general>Nature Publishing Group UK</general><general>Springer Nature B.V</general><general>Nature Publishing Group</general><scope>C6C</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88I</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M2P</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>7X8</scope><scope>1XC</scope><scope>VOOES</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-8158-4938</orcidid><orcidid>https://orcid.org/0000-0002-7003-2089</orcidid><orcidid>https://orcid.org/0000-0002-4807-4653</orcidid><orcidid>https://orcid.org/0000-0002-1295-6419</orcidid><orcidid>https://orcid.org/0000-0001-5244-0356</orcidid><orcidid>https://orcid.org/0000-0002-5296-7155</orcidid><orcidid>https://orcid.org/0000-0002-7776-8312</orcidid><orcidid>https://orcid.org/0000-0003-0538-5774</orcidid></search><sort><creationdate>20200323</creationdate><title>Relativistic-intensity near-single-cycle light waveforms at kHz repetition rate</title><author>Ouillé, Marie ; Vernier, Aline ; Böhle, Frederik ; Bocoum, Maïmouna ; Jullien, Aurélie ; Lozano, Magali ; Rousseau, Jean-Philippe ; Cheng, Zhao ; Gustas, Dominykas ; Blumenstein, Andreas ; Simon, Peter ; Haessler, Stefan ; Faure, Jérôme ; Nagy, Tamas ; Lopez-Martens, Rodrigo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c570t-a5a9e14d6912d6e710d4634fc7c47fe0e6c00ee2ead0feef8aab23c71b062d543</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>639/624/1020/1088</topic><topic>639/624/1020/1095</topic><topic>639/766/1960/1137</topic><topic>Applied and Technical Physics</topic><topic>Atomic</topic><topic>Classical and Continuum Physics</topic><topic>Compression</topic><topic>Lasers</topic><topic>Light</topic><topic>Light sources</topic><topic>Molecular</topic><topic>Optical and Plasma Physics</topic><topic>Optical Devices</topic><topic>Optics</topic><topic>Photonics</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Plasma Physics</topic><topic>Repetition</topic><topic>Ultrastructure</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ouillé, Marie</creatorcontrib><creatorcontrib>Vernier, Aline</creatorcontrib><creatorcontrib>Böhle, Frederik</creatorcontrib><creatorcontrib>Bocoum, Maïmouna</creatorcontrib><creatorcontrib>Jullien, Aurélie</creatorcontrib><creatorcontrib>Lozano, Magali</creatorcontrib><creatorcontrib>Rousseau, Jean-Philippe</creatorcontrib><creatorcontrib>Cheng, Zhao</creatorcontrib><creatorcontrib>Gustas, Dominykas</creatorcontrib><creatorcontrib>Blumenstein, Andreas</creatorcontrib><creatorcontrib>Simon, Peter</creatorcontrib><creatorcontrib>Haessler, Stefan</creatorcontrib><creatorcontrib>Faure, Jérôme</creatorcontrib><creatorcontrib>Nagy, Tamas</creatorcontrib><creatorcontrib>Lopez-Martens, Rodrigo</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Light, science & applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ouillé, Marie</au><au>Vernier, Aline</au><au>Böhle, Frederik</au><au>Bocoum, Maïmouna</au><au>Jullien, Aurélie</au><au>Lozano, Magali</au><au>Rousseau, Jean-Philippe</au><au>Cheng, Zhao</au><au>Gustas, Dominykas</au><au>Blumenstein, Andreas</au><au>Simon, Peter</au><au>Haessler, Stefan</au><au>Faure, Jérôme</au><au>Nagy, Tamas</au><au>Lopez-Martens, Rodrigo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Relativistic-intensity near-single-cycle light waveforms at kHz repetition rate</atitle><jtitle>Light, science & applications</jtitle><stitle>Light Sci Appl</stitle><addtitle>Light Sci Appl</addtitle><date>2020-03-23</date><risdate>2020</risdate><volume>9</volume><issue>1</issue><spage>47</spage><epage>47</epage><pages>47-47</pages><artnum>47</artnum><issn>2047-7538</issn><issn>2095-5545</issn><eissn>2047-7538</eissn><abstract>The development of ultra-intense and ultra-short light sources is currently a subject of intense research driven by the discovery of novel phenomena in the realm of relativistic optics, such as the production of ultrafast energetic particle and radiation beams for applications. It has been a long-standing challenge to unite two hitherto distinct classes of light sources: those achieving relativistic intensity and those with pulse durations approaching a single light cycle. While the former class traditionally involves large-scale amplification chains, the latter class places high demand on the spatiotemporal control of the electromagnetic laser field. Here, we present a light source producing waveform-controlled 1.5-cycle pulses with a 719 nm central wavelength that can be focused to relativistic intensity at a 1 kHz repetition rate based on nonlinear post-compression in a long hollow-core fiber. The unique capabilities of this source allow us to observe the first experimental indications of light waveform effects in laser wakefield acceleration of relativistic energy electrons.
Relativistic optics: High intensity ultra-short fast-repeating light pulses
A pioneering laser source combines extremely high intensity and fast-repeating pulses with ultra-short pulse duration, opening new opportunities in the field of research and technology called relativistic optics. This requires lasers that are sufficiently intense to accelerate particles such as electrons to close to light speed, when effects of relativity theory become increasingly significant. Marie Ouillé and colleagues at the CNRS Laboratoire d’Optique Appliquée in France, with co-workers in Germany, combined laser sources with light compression and manipulation methods to generate relativistic intensity pulses almost as short as a single cycle of the light wave. They say their system is currently the only light source capable of achieving pulses shorter than four femtoseconds combined with peak powers up to 1 terawatt. The researchers also demonstrated precise control over the fine structure of the light pulses.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>32218918</pmid><doi>10.1038/s41377-020-0280-5</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0002-8158-4938</orcidid><orcidid>https://orcid.org/0000-0002-7003-2089</orcidid><orcidid>https://orcid.org/0000-0002-4807-4653</orcidid><orcidid>https://orcid.org/0000-0002-1295-6419</orcidid><orcidid>https://orcid.org/0000-0001-5244-0356</orcidid><orcidid>https://orcid.org/0000-0002-5296-7155</orcidid><orcidid>https://orcid.org/0000-0002-7776-8312</orcidid><orcidid>https://orcid.org/0000-0003-0538-5774</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2047-7538 |
ispartof | Light, science & applications, 2020-03, Vol.9 (1), p.47-47, Article 47 |
issn | 2047-7538 2095-5545 2047-7538 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7089946 |
source | Nature Free; DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals; PubMed Central; Springer Nature OA Free Journals |
subjects | 639/624/1020/1088 639/624/1020/1095 639/766/1960/1137 Applied and Technical Physics Atomic Classical and Continuum Physics Compression Lasers Light Light sources Molecular Optical and Plasma Physics Optical Devices Optics Photonics Physics Physics and Astronomy Plasma Physics Repetition Ultrastructure |
title | Relativistic-intensity near-single-cycle light waveforms at kHz repetition rate |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T02%3A05%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Relativistic-intensity%20near-single-cycle%20light%20waveforms%20at%20kHz%20repetition%20rate&rft.jtitle=Light,%20science%20&%20applications&rft.au=Ouill%C3%A9,%20Marie&rft.date=2020-03-23&rft.volume=9&rft.issue=1&rft.spage=47&rft.epage=47&rft.pages=47-47&rft.artnum=47&rft.issn=2047-7538&rft.eissn=2047-7538&rft_id=info:doi/10.1038/s41377-020-0280-5&rft_dat=%3Cproquest_pubme%3E2382033862%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2382033862&rft_id=info:pmid/32218918&rfr_iscdi=true |