Relativistic-intensity near-single-cycle light waveforms at kHz repetition rate

The development of ultra-intense and ultra-short light sources is currently a subject of intense research driven by the discovery of novel phenomena in the realm of relativistic optics, such as the production of ultrafast energetic particle and radiation beams for applications. It has been a long-st...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Light, science & applications science & applications, 2020-03, Vol.9 (1), p.47-47, Article 47
Hauptverfasser: Ouillé, Marie, Vernier, Aline, Böhle, Frederik, Bocoum, Maïmouna, Jullien, Aurélie, Lozano, Magali, Rousseau, Jean-Philippe, Cheng, Zhao, Gustas, Dominykas, Blumenstein, Andreas, Simon, Peter, Haessler, Stefan, Faure, Jérôme, Nagy, Tamas, Lopez-Martens, Rodrigo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 47
container_issue 1
container_start_page 47
container_title Light, science & applications
container_volume 9
creator Ouillé, Marie
Vernier, Aline
Böhle, Frederik
Bocoum, Maïmouna
Jullien, Aurélie
Lozano, Magali
Rousseau, Jean-Philippe
Cheng, Zhao
Gustas, Dominykas
Blumenstein, Andreas
Simon, Peter
Haessler, Stefan
Faure, Jérôme
Nagy, Tamas
Lopez-Martens, Rodrigo
description The development of ultra-intense and ultra-short light sources is currently a subject of intense research driven by the discovery of novel phenomena in the realm of relativistic optics, such as the production of ultrafast energetic particle and radiation beams for applications. It has been a long-standing challenge to unite two hitherto distinct classes of light sources: those achieving relativistic intensity and those with pulse durations approaching a single light cycle. While the former class traditionally involves large-scale amplification chains, the latter class places high demand on the spatiotemporal control of the electromagnetic laser field. Here, we present a light source producing waveform-controlled 1.5-cycle pulses with a 719 nm central wavelength that can be focused to relativistic intensity at a 1 kHz repetition rate based on nonlinear post-compression in a long hollow-core fiber. The unique capabilities of this source allow us to observe the first experimental indications of light waveform effects in laser wakefield acceleration of relativistic energy electrons. Relativistic optics: High intensity ultra-short fast-repeating light pulses A pioneering laser source combines extremely high intensity and fast-repeating pulses with ultra-short pulse duration, opening new opportunities in the field of research and technology called relativistic optics. This requires lasers that are sufficiently intense to accelerate particles such as electrons to close to light speed, when effects of relativity theory become increasingly significant. Marie Ouillé and colleagues at the CNRS Laboratoire d’Optique Appliquée in France, with co-workers in Germany, combined laser sources with light compression and manipulation methods to generate relativistic intensity pulses almost as short as a single cycle of the light wave. They say their system is currently the only light source capable of achieving pulses shorter than four femtoseconds combined with peak powers up to 1 terawatt. The researchers also demonstrated precise control over the fine structure of the light pulses.
doi_str_mv 10.1038/s41377-020-0280-5
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7089946</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2382033862</sourcerecordid><originalsourceid>FETCH-LOGICAL-c570t-a5a9e14d6912d6e710d4634fc7c47fe0e6c00ee2ead0feef8aab23c71b062d543</originalsourceid><addsrcrecordid>eNp1kd9rFDEQx4Motlz7B_giC77oQ-zkx26yL0Ip6gkHBanPIZedvUvdy55J7sr515tj21oLBkKGzOc7M8mXkDcMPjIQ-iJJJpSiwKFsDbR-QU45SEVVLfTLJ_EJOU_pFspqJQOtXpMTwTnTLdOn5Po7Djb7vU_ZO-pDxpB8PlQBbaTJh9WA1B3cgNXgV-tc3dk99mPcpMrm6uf8dxVxi9lnP4Yq2oxn5FVvh4Tn9-eM_Pjy-eZqThfXX79dXS6oqxVkamvbIpNd0zLeNagYdLIRsnfKSdUjYOMAEDnaDnrEXlu75MIptoSGd7UUM_JpqrvdLTfYOQw52sFso9_YeDCj9ebfTPBrsxr3RoFu29JrRj5MBdbPZPPLhTneAW-V5qLZs8K-v28Wx187TNlsfHI4DDbguEuGCy05tI2Ggr57ht6OuxjKVxwpDkLohheKTZSLY0oR-8cJGJiju2ZytwwB5uiuqYvm7dMXPyoevCwAn4BUUmGF8W_r_1f9AyGlsGw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2382033862</pqid></control><display><type>article</type><title>Relativistic-intensity near-single-cycle light waveforms at kHz repetition rate</title><source>Nature Free</source><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Springer Nature OA Free Journals</source><creator>Ouillé, Marie ; Vernier, Aline ; Böhle, Frederik ; Bocoum, Maïmouna ; Jullien, Aurélie ; Lozano, Magali ; Rousseau, Jean-Philippe ; Cheng, Zhao ; Gustas, Dominykas ; Blumenstein, Andreas ; Simon, Peter ; Haessler, Stefan ; Faure, Jérôme ; Nagy, Tamas ; Lopez-Martens, Rodrigo</creator><creatorcontrib>Ouillé, Marie ; Vernier, Aline ; Böhle, Frederik ; Bocoum, Maïmouna ; Jullien, Aurélie ; Lozano, Magali ; Rousseau, Jean-Philippe ; Cheng, Zhao ; Gustas, Dominykas ; Blumenstein, Andreas ; Simon, Peter ; Haessler, Stefan ; Faure, Jérôme ; Nagy, Tamas ; Lopez-Martens, Rodrigo</creatorcontrib><description>The development of ultra-intense and ultra-short light sources is currently a subject of intense research driven by the discovery of novel phenomena in the realm of relativistic optics, such as the production of ultrafast energetic particle and radiation beams for applications. It has been a long-standing challenge to unite two hitherto distinct classes of light sources: those achieving relativistic intensity and those with pulse durations approaching a single light cycle. While the former class traditionally involves large-scale amplification chains, the latter class places high demand on the spatiotemporal control of the electromagnetic laser field. Here, we present a light source producing waveform-controlled 1.5-cycle pulses with a 719 nm central wavelength that can be focused to relativistic intensity at a 1 kHz repetition rate based on nonlinear post-compression in a long hollow-core fiber. The unique capabilities of this source allow us to observe the first experimental indications of light waveform effects in laser wakefield acceleration of relativistic energy electrons. Relativistic optics: High intensity ultra-short fast-repeating light pulses A pioneering laser source combines extremely high intensity and fast-repeating pulses with ultra-short pulse duration, opening new opportunities in the field of research and technology called relativistic optics. This requires lasers that are sufficiently intense to accelerate particles such as electrons to close to light speed, when effects of relativity theory become increasingly significant. Marie Ouillé and colleagues at the CNRS Laboratoire d’Optique Appliquée in France, with co-workers in Germany, combined laser sources with light compression and manipulation methods to generate relativistic intensity pulses almost as short as a single cycle of the light wave. They say their system is currently the only light source capable of achieving pulses shorter than four femtoseconds combined with peak powers up to 1 terawatt. The researchers also demonstrated precise control over the fine structure of the light pulses.</description><identifier>ISSN: 2047-7538</identifier><identifier>ISSN: 2095-5545</identifier><identifier>EISSN: 2047-7538</identifier><identifier>DOI: 10.1038/s41377-020-0280-5</identifier><identifier>PMID: 32218918</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>639/624/1020/1088 ; 639/624/1020/1095 ; 639/766/1960/1137 ; Applied and Technical Physics ; Atomic ; Classical and Continuum Physics ; Compression ; Lasers ; Light ; Light sources ; Molecular ; Optical and Plasma Physics ; Optical Devices ; Optics ; Photonics ; Physics ; Physics and Astronomy ; Plasma Physics ; Repetition ; Ultrastructure</subject><ispartof>Light, science &amp; applications, 2020-03, Vol.9 (1), p.47-47, Article 47</ispartof><rights>The Author(s) 2020</rights><rights>The Author(s) 2020.</rights><rights>This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c570t-a5a9e14d6912d6e710d4634fc7c47fe0e6c00ee2ead0feef8aab23c71b062d543</citedby><cites>FETCH-LOGICAL-c570t-a5a9e14d6912d6e710d4634fc7c47fe0e6c00ee2ead0feef8aab23c71b062d543</cites><orcidid>0000-0002-8158-4938 ; 0000-0002-7003-2089 ; 0000-0002-4807-4653 ; 0000-0002-1295-6419 ; 0000-0001-5244-0356 ; 0000-0002-5296-7155 ; 0000-0002-7776-8312 ; 0000-0003-0538-5774</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7089946/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7089946/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,27901,27902,41096,42165,51551,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32218918$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-02978236$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Ouillé, Marie</creatorcontrib><creatorcontrib>Vernier, Aline</creatorcontrib><creatorcontrib>Böhle, Frederik</creatorcontrib><creatorcontrib>Bocoum, Maïmouna</creatorcontrib><creatorcontrib>Jullien, Aurélie</creatorcontrib><creatorcontrib>Lozano, Magali</creatorcontrib><creatorcontrib>Rousseau, Jean-Philippe</creatorcontrib><creatorcontrib>Cheng, Zhao</creatorcontrib><creatorcontrib>Gustas, Dominykas</creatorcontrib><creatorcontrib>Blumenstein, Andreas</creatorcontrib><creatorcontrib>Simon, Peter</creatorcontrib><creatorcontrib>Haessler, Stefan</creatorcontrib><creatorcontrib>Faure, Jérôme</creatorcontrib><creatorcontrib>Nagy, Tamas</creatorcontrib><creatorcontrib>Lopez-Martens, Rodrigo</creatorcontrib><title>Relativistic-intensity near-single-cycle light waveforms at kHz repetition rate</title><title>Light, science &amp; applications</title><addtitle>Light Sci Appl</addtitle><addtitle>Light Sci Appl</addtitle><description>The development of ultra-intense and ultra-short light sources is currently a subject of intense research driven by the discovery of novel phenomena in the realm of relativistic optics, such as the production of ultrafast energetic particle and radiation beams for applications. It has been a long-standing challenge to unite two hitherto distinct classes of light sources: those achieving relativistic intensity and those with pulse durations approaching a single light cycle. While the former class traditionally involves large-scale amplification chains, the latter class places high demand on the spatiotemporal control of the electromagnetic laser field. Here, we present a light source producing waveform-controlled 1.5-cycle pulses with a 719 nm central wavelength that can be focused to relativistic intensity at a 1 kHz repetition rate based on nonlinear post-compression in a long hollow-core fiber. The unique capabilities of this source allow us to observe the first experimental indications of light waveform effects in laser wakefield acceleration of relativistic energy electrons. Relativistic optics: High intensity ultra-short fast-repeating light pulses A pioneering laser source combines extremely high intensity and fast-repeating pulses with ultra-short pulse duration, opening new opportunities in the field of research and technology called relativistic optics. This requires lasers that are sufficiently intense to accelerate particles such as electrons to close to light speed, when effects of relativity theory become increasingly significant. Marie Ouillé and colleagues at the CNRS Laboratoire d’Optique Appliquée in France, with co-workers in Germany, combined laser sources with light compression and manipulation methods to generate relativistic intensity pulses almost as short as a single cycle of the light wave. They say their system is currently the only light source capable of achieving pulses shorter than four femtoseconds combined with peak powers up to 1 terawatt. The researchers also demonstrated precise control over the fine structure of the light pulses.</description><subject>639/624/1020/1088</subject><subject>639/624/1020/1095</subject><subject>639/766/1960/1137</subject><subject>Applied and Technical Physics</subject><subject>Atomic</subject><subject>Classical and Continuum Physics</subject><subject>Compression</subject><subject>Lasers</subject><subject>Light</subject><subject>Light sources</subject><subject>Molecular</subject><subject>Optical and Plasma Physics</subject><subject>Optical Devices</subject><subject>Optics</subject><subject>Photonics</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Plasma Physics</subject><subject>Repetition</subject><subject>Ultrastructure</subject><issn>2047-7538</issn><issn>2095-5545</issn><issn>2047-7538</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>BENPR</sourceid><recordid>eNp1kd9rFDEQx4Motlz7B_giC77oQ-zkx26yL0Ip6gkHBanPIZedvUvdy55J7sr515tj21oLBkKGzOc7M8mXkDcMPjIQ-iJJJpSiwKFsDbR-QU45SEVVLfTLJ_EJOU_pFspqJQOtXpMTwTnTLdOn5Po7Djb7vU_ZO-pDxpB8PlQBbaTJh9WA1B3cgNXgV-tc3dk99mPcpMrm6uf8dxVxi9lnP4Yq2oxn5FVvh4Tn9-eM_Pjy-eZqThfXX79dXS6oqxVkamvbIpNd0zLeNagYdLIRsnfKSdUjYOMAEDnaDnrEXlu75MIptoSGd7UUM_JpqrvdLTfYOQw52sFso9_YeDCj9ebfTPBrsxr3RoFu29JrRj5MBdbPZPPLhTneAW-V5qLZs8K-v28Wx187TNlsfHI4DDbguEuGCy05tI2Ggr57ht6OuxjKVxwpDkLohheKTZSLY0oR-8cJGJiju2ZytwwB5uiuqYvm7dMXPyoevCwAn4BUUmGF8W_r_1f9AyGlsGw</recordid><startdate>20200323</startdate><enddate>20200323</enddate><creator>Ouillé, Marie</creator><creator>Vernier, Aline</creator><creator>Böhle, Frederik</creator><creator>Bocoum, Maïmouna</creator><creator>Jullien, Aurélie</creator><creator>Lozano, Magali</creator><creator>Rousseau, Jean-Philippe</creator><creator>Cheng, Zhao</creator><creator>Gustas, Dominykas</creator><creator>Blumenstein, Andreas</creator><creator>Simon, Peter</creator><creator>Haessler, Stefan</creator><creator>Faure, Jérôme</creator><creator>Nagy, Tamas</creator><creator>Lopez-Martens, Rodrigo</creator><general>Nature Publishing Group UK</general><general>Springer Nature B.V</general><general>Nature Publishing Group</general><scope>C6C</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88I</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M2P</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>7X8</scope><scope>1XC</scope><scope>VOOES</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-8158-4938</orcidid><orcidid>https://orcid.org/0000-0002-7003-2089</orcidid><orcidid>https://orcid.org/0000-0002-4807-4653</orcidid><orcidid>https://orcid.org/0000-0002-1295-6419</orcidid><orcidid>https://orcid.org/0000-0001-5244-0356</orcidid><orcidid>https://orcid.org/0000-0002-5296-7155</orcidid><orcidid>https://orcid.org/0000-0002-7776-8312</orcidid><orcidid>https://orcid.org/0000-0003-0538-5774</orcidid></search><sort><creationdate>20200323</creationdate><title>Relativistic-intensity near-single-cycle light waveforms at kHz repetition rate</title><author>Ouillé, Marie ; Vernier, Aline ; Böhle, Frederik ; Bocoum, Maïmouna ; Jullien, Aurélie ; Lozano, Magali ; Rousseau, Jean-Philippe ; Cheng, Zhao ; Gustas, Dominykas ; Blumenstein, Andreas ; Simon, Peter ; Haessler, Stefan ; Faure, Jérôme ; Nagy, Tamas ; Lopez-Martens, Rodrigo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c570t-a5a9e14d6912d6e710d4634fc7c47fe0e6c00ee2ead0feef8aab23c71b062d543</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>639/624/1020/1088</topic><topic>639/624/1020/1095</topic><topic>639/766/1960/1137</topic><topic>Applied and Technical Physics</topic><topic>Atomic</topic><topic>Classical and Continuum Physics</topic><topic>Compression</topic><topic>Lasers</topic><topic>Light</topic><topic>Light sources</topic><topic>Molecular</topic><topic>Optical and Plasma Physics</topic><topic>Optical Devices</topic><topic>Optics</topic><topic>Photonics</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Plasma Physics</topic><topic>Repetition</topic><topic>Ultrastructure</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ouillé, Marie</creatorcontrib><creatorcontrib>Vernier, Aline</creatorcontrib><creatorcontrib>Böhle, Frederik</creatorcontrib><creatorcontrib>Bocoum, Maïmouna</creatorcontrib><creatorcontrib>Jullien, Aurélie</creatorcontrib><creatorcontrib>Lozano, Magali</creatorcontrib><creatorcontrib>Rousseau, Jean-Philippe</creatorcontrib><creatorcontrib>Cheng, Zhao</creatorcontrib><creatorcontrib>Gustas, Dominykas</creatorcontrib><creatorcontrib>Blumenstein, Andreas</creatorcontrib><creatorcontrib>Simon, Peter</creatorcontrib><creatorcontrib>Haessler, Stefan</creatorcontrib><creatorcontrib>Faure, Jérôme</creatorcontrib><creatorcontrib>Nagy, Tamas</creatorcontrib><creatorcontrib>Lopez-Martens, Rodrigo</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Light, science &amp; applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ouillé, Marie</au><au>Vernier, Aline</au><au>Böhle, Frederik</au><au>Bocoum, Maïmouna</au><au>Jullien, Aurélie</au><au>Lozano, Magali</au><au>Rousseau, Jean-Philippe</au><au>Cheng, Zhao</au><au>Gustas, Dominykas</au><au>Blumenstein, Andreas</au><au>Simon, Peter</au><au>Haessler, Stefan</au><au>Faure, Jérôme</au><au>Nagy, Tamas</au><au>Lopez-Martens, Rodrigo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Relativistic-intensity near-single-cycle light waveforms at kHz repetition rate</atitle><jtitle>Light, science &amp; applications</jtitle><stitle>Light Sci Appl</stitle><addtitle>Light Sci Appl</addtitle><date>2020-03-23</date><risdate>2020</risdate><volume>9</volume><issue>1</issue><spage>47</spage><epage>47</epage><pages>47-47</pages><artnum>47</artnum><issn>2047-7538</issn><issn>2095-5545</issn><eissn>2047-7538</eissn><abstract>The development of ultra-intense and ultra-short light sources is currently a subject of intense research driven by the discovery of novel phenomena in the realm of relativistic optics, such as the production of ultrafast energetic particle and radiation beams for applications. It has been a long-standing challenge to unite two hitherto distinct classes of light sources: those achieving relativistic intensity and those with pulse durations approaching a single light cycle. While the former class traditionally involves large-scale amplification chains, the latter class places high demand on the spatiotemporal control of the electromagnetic laser field. Here, we present a light source producing waveform-controlled 1.5-cycle pulses with a 719 nm central wavelength that can be focused to relativistic intensity at a 1 kHz repetition rate based on nonlinear post-compression in a long hollow-core fiber. The unique capabilities of this source allow us to observe the first experimental indications of light waveform effects in laser wakefield acceleration of relativistic energy electrons. Relativistic optics: High intensity ultra-short fast-repeating light pulses A pioneering laser source combines extremely high intensity and fast-repeating pulses with ultra-short pulse duration, opening new opportunities in the field of research and technology called relativistic optics. This requires lasers that are sufficiently intense to accelerate particles such as electrons to close to light speed, when effects of relativity theory become increasingly significant. Marie Ouillé and colleagues at the CNRS Laboratoire d’Optique Appliquée in France, with co-workers in Germany, combined laser sources with light compression and manipulation methods to generate relativistic intensity pulses almost as short as a single cycle of the light wave. They say their system is currently the only light source capable of achieving pulses shorter than four femtoseconds combined with peak powers up to 1 terawatt. The researchers also demonstrated precise control over the fine structure of the light pulses.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>32218918</pmid><doi>10.1038/s41377-020-0280-5</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0002-8158-4938</orcidid><orcidid>https://orcid.org/0000-0002-7003-2089</orcidid><orcidid>https://orcid.org/0000-0002-4807-4653</orcidid><orcidid>https://orcid.org/0000-0002-1295-6419</orcidid><orcidid>https://orcid.org/0000-0001-5244-0356</orcidid><orcidid>https://orcid.org/0000-0002-5296-7155</orcidid><orcidid>https://orcid.org/0000-0002-7776-8312</orcidid><orcidid>https://orcid.org/0000-0003-0538-5774</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2047-7538
ispartof Light, science & applications, 2020-03, Vol.9 (1), p.47-47, Article 47
issn 2047-7538
2095-5545
2047-7538
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7089946
source Nature Free; DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals; PubMed Central; Springer Nature OA Free Journals
subjects 639/624/1020/1088
639/624/1020/1095
639/766/1960/1137
Applied and Technical Physics
Atomic
Classical and Continuum Physics
Compression
Lasers
Light
Light sources
Molecular
Optical and Plasma Physics
Optical Devices
Optics
Photonics
Physics
Physics and Astronomy
Plasma Physics
Repetition
Ultrastructure
title Relativistic-intensity near-single-cycle light waveforms at kHz repetition rate
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T02%3A05%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Relativistic-intensity%20near-single-cycle%20light%20waveforms%20at%20kHz%20repetition%20rate&rft.jtitle=Light,%20science%20&%20applications&rft.au=Ouill%C3%A9,%20Marie&rft.date=2020-03-23&rft.volume=9&rft.issue=1&rft.spage=47&rft.epage=47&rft.pages=47-47&rft.artnum=47&rft.issn=2047-7538&rft.eissn=2047-7538&rft_id=info:doi/10.1038/s41377-020-0280-5&rft_dat=%3Cproquest_pubme%3E2382033862%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2382033862&rft_id=info:pmid/32218918&rfr_iscdi=true