Predictability and variability of association patterns in sooty mangabeys

In many group-living animal species, interactions take place in changing social environments, increasing the information processing necessary to optimize social decision-making. Communities with different levels of spatial and temporal cohesion should differ in the predictability of association patt...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Behavioral ecology and sociobiology 2020-04, Vol.74 (4), p.1-13, Article 46
Hauptverfasser: Mielke, Alexander, Crockford, Catherine, Wittig, Roman M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 13
container_issue 4
container_start_page 1
container_title Behavioral ecology and sociobiology
container_volume 74
creator Mielke, Alexander
Crockford, Catherine
Wittig, Roman M.
description In many group-living animal species, interactions take place in changing social environments, increasing the information processing necessary to optimize social decision-making. Communities with different levels of spatial and temporal cohesion should differ in the predictability of association patterns. While the focus in this context has been on primate species with high fission-fusion dynamics, little is known about the variability of association patterns in species with large groups and high temporal cohesion, where group size and the environment create unstable subgroups. Here, we use sooty mangabeys as a model species to test predictability on two levels: on the subgroup level and on the dyadic level. Our results show that the entirety of group members surrounding an individual is close to random in sooty mangabeys; making it unlikely that individuals can predict the exact composition of bystanders for any interaction. At the same time, we found predictable dyadic associations based on assortative mixing by age, kinship, reproductive state in females, and dominance rank; potentially providing individuals with the ability to partially predict which dyads can be usually found together. These results indicate that animals living in large cohesive groups face different challenges from those with high fission-fusion dynamics, by having to adapt to fast-changing social contexts, while unable to predict who will be close-by in future interactions. At the same time, entropy measures on their own are unable to capture the predictability of association patterns in these groups.
doi_str_mv 10.1007/s00265-020-2829-y
format Article
fullrecord <record><control><sourceid>jstor_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7089916</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>48727665</jstor_id><sourcerecordid>48727665</sourcerecordid><originalsourceid>FETCH-LOGICAL-c525t-5ee9dfe2893974cb212fe52a13b3d658cc491c92abaa8c7db06d80f5e01ef1983</originalsourceid><addsrcrecordid>eNqFkU1r3DAQhkVpaTZpf0APLYZecnE7Gkm2dCmE0I9AIDm0ZyHL8laLV9pK3oD_fbU42X4cktMg5nnfGc1LyBsKHyhA-zEDYCNqQKhRoqrnZ2RFOcMa2gafkxUwDrXgnJ2Q05w3ANBQKV-SE4aIDVVqRa5uk-u9nUznRz_NlQl9dWeSf3jHoTI5R-vN5GOodmaaXAq58qHKMRZga8LadG7Or8iLwYzZvb6vZ-THl8_fL7_V1zdfry4vrmsrUEy1cE71g0OpmGq57ZDi4AQayjrWN0JayxW1Ck1njLRt30HTSxiEA-oGqiQ7I58W392-27reujAlM-pd8luTZh2N1_92gv-p1_FOtyCVok0xOL83SPHX3uVJb322bhxNcHGfNQrkyFqF6mmUSS4RyiUL-v4_dBP3KZRLHCiqhJCcFYoulE0x5-SG494U9CFTvWSqS6b6kKmei-bd3x8-Kh5CLAAuQC6tsHbpz-jHXN8uok2eYjqactli2zSC_QZRobfS</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2381955843</pqid></control><display><type>article</type><title>Predictability and variability of association patterns in sooty mangabeys</title><source>Jstor Complete Legacy</source><source>Springer Journals</source><creator>Mielke, Alexander ; Crockford, Catherine ; Wittig, Roman M.</creator><creatorcontrib>Mielke, Alexander ; Crockford, Catherine ; Wittig, Roman M.</creatorcontrib><description>In many group-living animal species, interactions take place in changing social environments, increasing the information processing necessary to optimize social decision-making. Communities with different levels of spatial and temporal cohesion should differ in the predictability of association patterns. While the focus in this context has been on primate species with high fission-fusion dynamics, little is known about the variability of association patterns in species with large groups and high temporal cohesion, where group size and the environment create unstable subgroups. Here, we use sooty mangabeys as a model species to test predictability on two levels: on the subgroup level and on the dyadic level. Our results show that the entirety of group members surrounding an individual is close to random in sooty mangabeys; making it unlikely that individuals can predict the exact composition of bystanders for any interaction. At the same time, we found predictable dyadic associations based on assortative mixing by age, kinship, reproductive state in females, and dominance rank; potentially providing individuals with the ability to partially predict which dyads can be usually found together. These results indicate that animals living in large cohesive groups face different challenges from those with high fission-fusion dynamics, by having to adapt to fast-changing social contexts, while unable to predict who will be close-by in future interactions. At the same time, entropy measures on their own are unable to capture the predictability of association patterns in these groups.</description><identifier>ISSN: 0340-5443</identifier><identifier>EISSN: 1432-0762</identifier><identifier>DOI: 10.1007/s00265-020-2829-y</identifier><identifier>PMID: 32226199</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Science + Business Media</publisher><subject>Animal Ecology ; Animal species ; animals ; Behavioral Sciences ; Biological evolution ; Biomedical and Life Sciences ; Cercocebus ; cognition ; Cognitive ability ; Cohesion ; Complexity ; Composition ; Data processing ; Decision making ; Entropy ; evolution ; Fission ; Group size ; Information processing ; kinship ; Levels ; Life Sciences ; Model testing ; Original ; ORIGINAL ARTICLE ; Social environment ; sociobiology ; Species ; Subgroups ; Zoology</subject><ispartof>Behavioral ecology and sociobiology, 2020-04, Vol.74 (4), p.1-13, Article 46</ispartof><rights>The Author(s) 2020</rights><rights>The Author(s) 2020.</rights><rights>Behavioral Ecology and Sociobiology is a copyright of Springer, (2020). All Rights Reserved. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c525t-5ee9dfe2893974cb212fe52a13b3d658cc491c92abaa8c7db06d80f5e01ef1983</citedby><cites>FETCH-LOGICAL-c525t-5ee9dfe2893974cb212fe52a13b3d658cc491c92abaa8c7db06d80f5e01ef1983</cites><orcidid>0000-0002-8847-6665</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/48727665$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/48727665$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,776,780,799,881,27903,27904,41467,42536,51298,57996,58229</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32226199$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Mielke, Alexander</creatorcontrib><creatorcontrib>Crockford, Catherine</creatorcontrib><creatorcontrib>Wittig, Roman M.</creatorcontrib><title>Predictability and variability of association patterns in sooty mangabeys</title><title>Behavioral ecology and sociobiology</title><addtitle>Behav Ecol Sociobiol</addtitle><addtitle>Behav Ecol Sociobiol</addtitle><description>In many group-living animal species, interactions take place in changing social environments, increasing the information processing necessary to optimize social decision-making. Communities with different levels of spatial and temporal cohesion should differ in the predictability of association patterns. While the focus in this context has been on primate species with high fission-fusion dynamics, little is known about the variability of association patterns in species with large groups and high temporal cohesion, where group size and the environment create unstable subgroups. Here, we use sooty mangabeys as a model species to test predictability on two levels: on the subgroup level and on the dyadic level. Our results show that the entirety of group members surrounding an individual is close to random in sooty mangabeys; making it unlikely that individuals can predict the exact composition of bystanders for any interaction. At the same time, we found predictable dyadic associations based on assortative mixing by age, kinship, reproductive state in females, and dominance rank; potentially providing individuals with the ability to partially predict which dyads can be usually found together. These results indicate that animals living in large cohesive groups face different challenges from those with high fission-fusion dynamics, by having to adapt to fast-changing social contexts, while unable to predict who will be close-by in future interactions. At the same time, entropy measures on their own are unable to capture the predictability of association patterns in these groups.</description><subject>Animal Ecology</subject><subject>Animal species</subject><subject>animals</subject><subject>Behavioral Sciences</subject><subject>Biological evolution</subject><subject>Biomedical and Life Sciences</subject><subject>Cercocebus</subject><subject>cognition</subject><subject>Cognitive ability</subject><subject>Cohesion</subject><subject>Complexity</subject><subject>Composition</subject><subject>Data processing</subject><subject>Decision making</subject><subject>Entropy</subject><subject>evolution</subject><subject>Fission</subject><subject>Group size</subject><subject>Information processing</subject><subject>kinship</subject><subject>Levels</subject><subject>Life Sciences</subject><subject>Model testing</subject><subject>Original</subject><subject>ORIGINAL ARTICLE</subject><subject>Social environment</subject><subject>sociobiology</subject><subject>Species</subject><subject>Subgroups</subject><subject>Zoology</subject><issn>0340-5443</issn><issn>1432-0762</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNqFkU1r3DAQhkVpaTZpf0APLYZecnE7Gkm2dCmE0I9AIDm0ZyHL8laLV9pK3oD_fbU42X4cktMg5nnfGc1LyBsKHyhA-zEDYCNqQKhRoqrnZ2RFOcMa2gafkxUwDrXgnJ2Q05w3ANBQKV-SE4aIDVVqRa5uk-u9nUznRz_NlQl9dWeSf3jHoTI5R-vN5GOodmaaXAq58qHKMRZga8LadG7Or8iLwYzZvb6vZ-THl8_fL7_V1zdfry4vrmsrUEy1cE71g0OpmGq57ZDi4AQayjrWN0JayxW1Ck1njLRt30HTSxiEA-oGqiQ7I58W392-27reujAlM-pd8luTZh2N1_92gv-p1_FOtyCVok0xOL83SPHX3uVJb322bhxNcHGfNQrkyFqF6mmUSS4RyiUL-v4_dBP3KZRLHCiqhJCcFYoulE0x5-SG494U9CFTvWSqS6b6kKmei-bd3x8-Kh5CLAAuQC6tsHbpz-jHXN8uok2eYjqactli2zSC_QZRobfS</recordid><startdate>20200401</startdate><enddate>20200401</enddate><creator>Mielke, Alexander</creator><creator>Crockford, Catherine</creator><creator>Wittig, Roman M.</creator><general>Springer Science + Business Media</general><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>0-V</scope><scope>3V.</scope><scope>7QG</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7X7</scope><scope>7XB</scope><scope>88G</scope><scope>88I</scope><scope>88J</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ALSLI</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>HEHIP</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M2M</scope><scope>M2P</scope><scope>M2R</scope><scope>M2S</scope><scope>M7P</scope><scope>P64</scope><scope>PATMY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PSYQQ</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>RC3</scope><scope>7X8</scope><scope>7S9</scope><scope>L.6</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-8847-6665</orcidid></search><sort><creationdate>20200401</creationdate><title>Predictability and variability of association patterns in sooty mangabeys</title><author>Mielke, Alexander ; Crockford, Catherine ; Wittig, Roman M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c525t-5ee9dfe2893974cb212fe52a13b3d658cc491c92abaa8c7db06d80f5e01ef1983</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Animal Ecology</topic><topic>Animal species</topic><topic>animals</topic><topic>Behavioral Sciences</topic><topic>Biological evolution</topic><topic>Biomedical and Life Sciences</topic><topic>Cercocebus</topic><topic>cognition</topic><topic>Cognitive ability</topic><topic>Cohesion</topic><topic>Complexity</topic><topic>Composition</topic><topic>Data processing</topic><topic>Decision making</topic><topic>Entropy</topic><topic>evolution</topic><topic>Fission</topic><topic>Group size</topic><topic>Information processing</topic><topic>kinship</topic><topic>Levels</topic><topic>Life Sciences</topic><topic>Model testing</topic><topic>Original</topic><topic>ORIGINAL ARTICLE</topic><topic>Social environment</topic><topic>sociobiology</topic><topic>Species</topic><topic>Subgroups</topic><topic>Zoology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mielke, Alexander</creatorcontrib><creatorcontrib>Crockford, Catherine</creatorcontrib><creatorcontrib>Wittig, Roman M.</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Social Sciences Premium Collection【Remote access available】</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Psychology Database (Alumni)</collection><collection>Science Database (Alumni Edition)</collection><collection>Social Science Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Social Science Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>ProQuest Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>Sociology Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>ProQuest Psychology Journals</collection><collection>ProQuest Science Journals</collection><collection>Social Science Database</collection><collection>Sociology Database</collection><collection>ProQuest Biological Science Journals</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest One Psychology</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Behavioral ecology and sociobiology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mielke, Alexander</au><au>Crockford, Catherine</au><au>Wittig, Roman M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Predictability and variability of association patterns in sooty mangabeys</atitle><jtitle>Behavioral ecology and sociobiology</jtitle><stitle>Behav Ecol Sociobiol</stitle><addtitle>Behav Ecol Sociobiol</addtitle><date>2020-04-01</date><risdate>2020</risdate><volume>74</volume><issue>4</issue><spage>1</spage><epage>13</epage><pages>1-13</pages><artnum>46</artnum><issn>0340-5443</issn><eissn>1432-0762</eissn><abstract>In many group-living animal species, interactions take place in changing social environments, increasing the information processing necessary to optimize social decision-making. Communities with different levels of spatial and temporal cohesion should differ in the predictability of association patterns. While the focus in this context has been on primate species with high fission-fusion dynamics, little is known about the variability of association patterns in species with large groups and high temporal cohesion, where group size and the environment create unstable subgroups. Here, we use sooty mangabeys as a model species to test predictability on two levels: on the subgroup level and on the dyadic level. Our results show that the entirety of group members surrounding an individual is close to random in sooty mangabeys; making it unlikely that individuals can predict the exact composition of bystanders for any interaction. At the same time, we found predictable dyadic associations based on assortative mixing by age, kinship, reproductive state in females, and dominance rank; potentially providing individuals with the ability to partially predict which dyads can be usually found together. These results indicate that animals living in large cohesive groups face different challenges from those with high fission-fusion dynamics, by having to adapt to fast-changing social contexts, while unable to predict who will be close-by in future interactions. At the same time, entropy measures on their own are unable to capture the predictability of association patterns in these groups.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Science + Business Media</pub><pmid>32226199</pmid><doi>10.1007/s00265-020-2829-y</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-8847-6665</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0340-5443
ispartof Behavioral ecology and sociobiology, 2020-04, Vol.74 (4), p.1-13, Article 46
issn 0340-5443
1432-0762
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7089916
source Jstor Complete Legacy; Springer Journals
subjects Animal Ecology
Animal species
animals
Behavioral Sciences
Biological evolution
Biomedical and Life Sciences
Cercocebus
cognition
Cognitive ability
Cohesion
Complexity
Composition
Data processing
Decision making
Entropy
evolution
Fission
Group size
Information processing
kinship
Levels
Life Sciences
Model testing
Original
ORIGINAL ARTICLE
Social environment
sociobiology
Species
Subgroups
Zoology
title Predictability and variability of association patterns in sooty mangabeys
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T18%3A22%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Predictability%20and%20variability%20of%20association%20patterns%20in%20sooty%20mangabeys&rft.jtitle=Behavioral%20ecology%20and%20sociobiology&rft.au=Mielke,%20Alexander&rft.date=2020-04-01&rft.volume=74&rft.issue=4&rft.spage=1&rft.epage=13&rft.pages=1-13&rft.artnum=46&rft.issn=0340-5443&rft.eissn=1432-0762&rft_id=info:doi/10.1007/s00265-020-2829-y&rft_dat=%3Cjstor_pubme%3E48727665%3C/jstor_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2381955843&rft_id=info:pmid/32226199&rft_jstor_id=48727665&rfr_iscdi=true