The Molecular Control of Calcitonin Receptor Signaling

The calcitonin receptor (CTR) is a class B G protein-coupled receptor (GPCR) that responds to the peptide hormone calcitonin (CT). CTs are clinically approved for the treatment of bone diseases. We previously reported a 4.1 Å structure of the activated CTR bound to salmon CT (sCT) and heterotrimeric...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS pharmacology & translational science 2019-02, Vol.2 (1), p.31-51
Hauptverfasser: dal Maso, Emma, Glukhova, Alisa, Zhu, Yue, Garcia-Nafria, Javier, Tate, Christopher G, Atanasio, Silvia, Reynolds, Christopher A, Ramírez-Aportela, Erney, Carazo, Jose-Maria, Hick, Caroline A, Furness, Sebastian G. B, Hay, Debbie L, Liang, Yi-Lynn, Miller, Laurence J, Christopoulos, Arthur, Wang, Ming-Wei, Wootten, Denise, Sexton, Patrick M
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 51
container_issue 1
container_start_page 31
container_title ACS pharmacology & translational science
container_volume 2
creator dal Maso, Emma
Glukhova, Alisa
Zhu, Yue
Garcia-Nafria, Javier
Tate, Christopher G
Atanasio, Silvia
Reynolds, Christopher A
Ramírez-Aportela, Erney
Carazo, Jose-Maria
Hick, Caroline A
Furness, Sebastian G. B
Hay, Debbie L
Liang, Yi-Lynn
Miller, Laurence J
Christopoulos, Arthur
Wang, Ming-Wei
Wootten, Denise
Sexton, Patrick M
description The calcitonin receptor (CTR) is a class B G protein-coupled receptor (GPCR) that responds to the peptide hormone calcitonin (CT). CTs are clinically approved for the treatment of bone diseases. We previously reported a 4.1 Å structure of the activated CTR bound to salmon CT (sCT) and heterotrimeric Gs protein by cryo-electron microscopy (Liang, Y.-L., et al. Phase-plate cryo- EM structure of a class B GPCR-G protein complex. Nature 2017, 546, 118–123). In the current study, we have reprocessed the electron micrographs to yield a 3.3 Å map of the complex. This has allowed us to model extracellular loops (ECLs) 2 and 3, and the peptide N-terminus that previously could not be resolved. We have also performed alanine scanning mutagenesis of ECL1 and the upper segment of transmembrane helix 1 (TM1) and its extension into the receptor extracellular domain (TM1 stalk), with effects on peptide binding and function assessed by cAMP accumulation and ERK1/2 phosphorylation. These data were combined with previously published alanine scanning mutagenesis of ECL2 and ECL3 and the new structural information to provide a comprehensive 3D map of the molecular surface of the CTR that controls binding and signaling of distinct CT and related peptides. The work highlights distinctions in how different, related, class B receptors may be activated. The new mutational data on the TM1 stalk and ECL1 have also provided critical insights into the divergent control of cAMP versus pERK signaling and, collectively with previous mutagenesis data, offer evidence that the conformations linked to these different signaling pathways are, in many ways, mutually exclusive. This study furthers our understanding of the complex nature of signaling elicited by GPCRs and, in particular, that of the therapeutically important class B subfamily.
doi_str_mv 10.1021/acsptsci.8b00056
format Article
fullrecord <record><control><sourceid>acs_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7088896</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>b11668210</sourcerecordid><originalsourceid>FETCH-LOGICAL-a499t-25ee3a3ae062268da09bc3d17a83956cc5852bde57399229f0648a8b4ad53d163</originalsourceid><addsrcrecordid>eNp1kF1LwzAUhoMobszdeyX9AXaeJEub3AhS_IKJoPM6pGm6ZXRNSTrBf2_GPpgXXuVAnvc9hwehawwTDATfKR26Pmg74SUAsOwMDQnLWSow8POTeYDGIawiQgAoFnCJBpQQLAhmQ5TNlyZ5c43Rm0b5pHBt712TuDopVKNt71rbJh9Gm653Pvm0i1Y1tl1coYtaNcGM9-8IfT09zouXdPb-_Fo8zFI1FaJPCTOGKqoMZIRkvFIgSk0rnCtOBcu0ZpyRsjIsp0IQImrIplzxcqoqFrGMjtD9rrfblGtTaRPPU43svF0r_yOdsvLvT2uXcuG-ZQ6cc7EtgF2B9i4Eb-pjFoPcapQHjXKvMUZuTnceAwdpEbjdATEqV27jo5Pwf98vH71_SQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>The Molecular Control of Calcitonin Receptor Signaling</title><source>PubMed Central</source><source>American Chemical Society Journals</source><creator>dal Maso, Emma ; Glukhova, Alisa ; Zhu, Yue ; Garcia-Nafria, Javier ; Tate, Christopher G ; Atanasio, Silvia ; Reynolds, Christopher A ; Ramírez-Aportela, Erney ; Carazo, Jose-Maria ; Hick, Caroline A ; Furness, Sebastian G. B ; Hay, Debbie L ; Liang, Yi-Lynn ; Miller, Laurence J ; Christopoulos, Arthur ; Wang, Ming-Wei ; Wootten, Denise ; Sexton, Patrick M</creator><creatorcontrib>dal Maso, Emma ; Glukhova, Alisa ; Zhu, Yue ; Garcia-Nafria, Javier ; Tate, Christopher G ; Atanasio, Silvia ; Reynolds, Christopher A ; Ramírez-Aportela, Erney ; Carazo, Jose-Maria ; Hick, Caroline A ; Furness, Sebastian G. B ; Hay, Debbie L ; Liang, Yi-Lynn ; Miller, Laurence J ; Christopoulos, Arthur ; Wang, Ming-Wei ; Wootten, Denise ; Sexton, Patrick M</creatorcontrib><description>The calcitonin receptor (CTR) is a class B G protein-coupled receptor (GPCR) that responds to the peptide hormone calcitonin (CT). CTs are clinically approved for the treatment of bone diseases. We previously reported a 4.1 Å structure of the activated CTR bound to salmon CT (sCT) and heterotrimeric Gs protein by cryo-electron microscopy (Liang, Y.-L., et al. Phase-plate cryo- EM structure of a class B GPCR-G protein complex. Nature 2017, 546, 118–123). In the current study, we have reprocessed the electron micrographs to yield a 3.3 Å map of the complex. This has allowed us to model extracellular loops (ECLs) 2 and 3, and the peptide N-terminus that previously could not be resolved. We have also performed alanine scanning mutagenesis of ECL1 and the upper segment of transmembrane helix 1 (TM1) and its extension into the receptor extracellular domain (TM1 stalk), with effects on peptide binding and function assessed by cAMP accumulation and ERK1/2 phosphorylation. These data were combined with previously published alanine scanning mutagenesis of ECL2 and ECL3 and the new structural information to provide a comprehensive 3D map of the molecular surface of the CTR that controls binding and signaling of distinct CT and related peptides. The work highlights distinctions in how different, related, class B receptors may be activated. The new mutational data on the TM1 stalk and ECL1 have also provided critical insights into the divergent control of cAMP versus pERK signaling and, collectively with previous mutagenesis data, offer evidence that the conformations linked to these different signaling pathways are, in many ways, mutually exclusive. This study furthers our understanding of the complex nature of signaling elicited by GPCRs and, in particular, that of the therapeutically important class B subfamily.</description><identifier>ISSN: 2575-9108</identifier><identifier>EISSN: 2575-9108</identifier><identifier>DOI: 10.1021/acsptsci.8b00056</identifier><identifier>PMID: 32219215</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><ispartof>ACS pharmacology &amp; translational science, 2019-02, Vol.2 (1), p.31-51</ispartof><rights>Copyright © 2019 American Chemical Society.</rights><rights>Copyright © 2019 American Chemical Society 2019 American Chemical Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a499t-25ee3a3ae062268da09bc3d17a83956cc5852bde57399229f0648a8b4ad53d163</citedby><cites>FETCH-LOGICAL-a499t-25ee3a3ae062268da09bc3d17a83956cc5852bde57399229f0648a8b4ad53d163</cites><orcidid>0000-0001-8902-2473 ; 0000-0001-8655-8221 ; 0000-0002-9558-5122</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acsptsci.8b00056$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acsptsci.8b00056$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>230,314,723,776,780,881,2752,27053,27901,27902,53766,53768,56713,56763</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32219215$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>dal Maso, Emma</creatorcontrib><creatorcontrib>Glukhova, Alisa</creatorcontrib><creatorcontrib>Zhu, Yue</creatorcontrib><creatorcontrib>Garcia-Nafria, Javier</creatorcontrib><creatorcontrib>Tate, Christopher G</creatorcontrib><creatorcontrib>Atanasio, Silvia</creatorcontrib><creatorcontrib>Reynolds, Christopher A</creatorcontrib><creatorcontrib>Ramírez-Aportela, Erney</creatorcontrib><creatorcontrib>Carazo, Jose-Maria</creatorcontrib><creatorcontrib>Hick, Caroline A</creatorcontrib><creatorcontrib>Furness, Sebastian G. B</creatorcontrib><creatorcontrib>Hay, Debbie L</creatorcontrib><creatorcontrib>Liang, Yi-Lynn</creatorcontrib><creatorcontrib>Miller, Laurence J</creatorcontrib><creatorcontrib>Christopoulos, Arthur</creatorcontrib><creatorcontrib>Wang, Ming-Wei</creatorcontrib><creatorcontrib>Wootten, Denise</creatorcontrib><creatorcontrib>Sexton, Patrick M</creatorcontrib><title>The Molecular Control of Calcitonin Receptor Signaling</title><title>ACS pharmacology &amp; translational science</title><addtitle>ACS Pharmacol. Transl. Sci</addtitle><description>The calcitonin receptor (CTR) is a class B G protein-coupled receptor (GPCR) that responds to the peptide hormone calcitonin (CT). CTs are clinically approved for the treatment of bone diseases. We previously reported a 4.1 Å structure of the activated CTR bound to salmon CT (sCT) and heterotrimeric Gs protein by cryo-electron microscopy (Liang, Y.-L., et al. Phase-plate cryo- EM structure of a class B GPCR-G protein complex. Nature 2017, 546, 118–123). In the current study, we have reprocessed the electron micrographs to yield a 3.3 Å map of the complex. This has allowed us to model extracellular loops (ECLs) 2 and 3, and the peptide N-terminus that previously could not be resolved. We have also performed alanine scanning mutagenesis of ECL1 and the upper segment of transmembrane helix 1 (TM1) and its extension into the receptor extracellular domain (TM1 stalk), with effects on peptide binding and function assessed by cAMP accumulation and ERK1/2 phosphorylation. These data were combined with previously published alanine scanning mutagenesis of ECL2 and ECL3 and the new structural information to provide a comprehensive 3D map of the molecular surface of the CTR that controls binding and signaling of distinct CT and related peptides. The work highlights distinctions in how different, related, class B receptors may be activated. The new mutational data on the TM1 stalk and ECL1 have also provided critical insights into the divergent control of cAMP versus pERK signaling and, collectively with previous mutagenesis data, offer evidence that the conformations linked to these different signaling pathways are, in many ways, mutually exclusive. This study furthers our understanding of the complex nature of signaling elicited by GPCRs and, in particular, that of the therapeutically important class B subfamily.</description><issn>2575-9108</issn><issn>2575-9108</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp1kF1LwzAUhoMobszdeyX9AXaeJEub3AhS_IKJoPM6pGm6ZXRNSTrBf2_GPpgXXuVAnvc9hwehawwTDATfKR26Pmg74SUAsOwMDQnLWSow8POTeYDGIawiQgAoFnCJBpQQLAhmQ5TNlyZ5c43Rm0b5pHBt712TuDopVKNt71rbJh9Gm653Pvm0i1Y1tl1coYtaNcGM9-8IfT09zouXdPb-_Fo8zFI1FaJPCTOGKqoMZIRkvFIgSk0rnCtOBcu0ZpyRsjIsp0IQImrIplzxcqoqFrGMjtD9rrfblGtTaRPPU43svF0r_yOdsvLvT2uXcuG-ZQ6cc7EtgF2B9i4Eb-pjFoPcapQHjXKvMUZuTnceAwdpEbjdATEqV27jo5Pwf98vH71_SQ</recordid><startdate>20190208</startdate><enddate>20190208</enddate><creator>dal Maso, Emma</creator><creator>Glukhova, Alisa</creator><creator>Zhu, Yue</creator><creator>Garcia-Nafria, Javier</creator><creator>Tate, Christopher G</creator><creator>Atanasio, Silvia</creator><creator>Reynolds, Christopher A</creator><creator>Ramírez-Aportela, Erney</creator><creator>Carazo, Jose-Maria</creator><creator>Hick, Caroline A</creator><creator>Furness, Sebastian G. B</creator><creator>Hay, Debbie L</creator><creator>Liang, Yi-Lynn</creator><creator>Miller, Laurence J</creator><creator>Christopoulos, Arthur</creator><creator>Wang, Ming-Wei</creator><creator>Wootten, Denise</creator><creator>Sexton, Patrick M</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-8902-2473</orcidid><orcidid>https://orcid.org/0000-0001-8655-8221</orcidid><orcidid>https://orcid.org/0000-0002-9558-5122</orcidid></search><sort><creationdate>20190208</creationdate><title>The Molecular Control of Calcitonin Receptor Signaling</title><author>dal Maso, Emma ; Glukhova, Alisa ; Zhu, Yue ; Garcia-Nafria, Javier ; Tate, Christopher G ; Atanasio, Silvia ; Reynolds, Christopher A ; Ramírez-Aportela, Erney ; Carazo, Jose-Maria ; Hick, Caroline A ; Furness, Sebastian G. B ; Hay, Debbie L ; Liang, Yi-Lynn ; Miller, Laurence J ; Christopoulos, Arthur ; Wang, Ming-Wei ; Wootten, Denise ; Sexton, Patrick M</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a499t-25ee3a3ae062268da09bc3d17a83956cc5852bde57399229f0648a8b4ad53d163</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>dal Maso, Emma</creatorcontrib><creatorcontrib>Glukhova, Alisa</creatorcontrib><creatorcontrib>Zhu, Yue</creatorcontrib><creatorcontrib>Garcia-Nafria, Javier</creatorcontrib><creatorcontrib>Tate, Christopher G</creatorcontrib><creatorcontrib>Atanasio, Silvia</creatorcontrib><creatorcontrib>Reynolds, Christopher A</creatorcontrib><creatorcontrib>Ramírez-Aportela, Erney</creatorcontrib><creatorcontrib>Carazo, Jose-Maria</creatorcontrib><creatorcontrib>Hick, Caroline A</creatorcontrib><creatorcontrib>Furness, Sebastian G. B</creatorcontrib><creatorcontrib>Hay, Debbie L</creatorcontrib><creatorcontrib>Liang, Yi-Lynn</creatorcontrib><creatorcontrib>Miller, Laurence J</creatorcontrib><creatorcontrib>Christopoulos, Arthur</creatorcontrib><creatorcontrib>Wang, Ming-Wei</creatorcontrib><creatorcontrib>Wootten, Denise</creatorcontrib><creatorcontrib>Sexton, Patrick M</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>ACS pharmacology &amp; translational science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>dal Maso, Emma</au><au>Glukhova, Alisa</au><au>Zhu, Yue</au><au>Garcia-Nafria, Javier</au><au>Tate, Christopher G</au><au>Atanasio, Silvia</au><au>Reynolds, Christopher A</au><au>Ramírez-Aportela, Erney</au><au>Carazo, Jose-Maria</au><au>Hick, Caroline A</au><au>Furness, Sebastian G. B</au><au>Hay, Debbie L</au><au>Liang, Yi-Lynn</au><au>Miller, Laurence J</au><au>Christopoulos, Arthur</au><au>Wang, Ming-Wei</au><au>Wootten, Denise</au><au>Sexton, Patrick M</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The Molecular Control of Calcitonin Receptor Signaling</atitle><jtitle>ACS pharmacology &amp; translational science</jtitle><addtitle>ACS Pharmacol. Transl. Sci</addtitle><date>2019-02-08</date><risdate>2019</risdate><volume>2</volume><issue>1</issue><spage>31</spage><epage>51</epage><pages>31-51</pages><issn>2575-9108</issn><eissn>2575-9108</eissn><abstract>The calcitonin receptor (CTR) is a class B G protein-coupled receptor (GPCR) that responds to the peptide hormone calcitonin (CT). CTs are clinically approved for the treatment of bone diseases. We previously reported a 4.1 Å structure of the activated CTR bound to salmon CT (sCT) and heterotrimeric Gs protein by cryo-electron microscopy (Liang, Y.-L., et al. Phase-plate cryo- EM structure of a class B GPCR-G protein complex. Nature 2017, 546, 118–123). In the current study, we have reprocessed the electron micrographs to yield a 3.3 Å map of the complex. This has allowed us to model extracellular loops (ECLs) 2 and 3, and the peptide N-terminus that previously could not be resolved. We have also performed alanine scanning mutagenesis of ECL1 and the upper segment of transmembrane helix 1 (TM1) and its extension into the receptor extracellular domain (TM1 stalk), with effects on peptide binding and function assessed by cAMP accumulation and ERK1/2 phosphorylation. These data were combined with previously published alanine scanning mutagenesis of ECL2 and ECL3 and the new structural information to provide a comprehensive 3D map of the molecular surface of the CTR that controls binding and signaling of distinct CT and related peptides. The work highlights distinctions in how different, related, class B receptors may be activated. The new mutational data on the TM1 stalk and ECL1 have also provided critical insights into the divergent control of cAMP versus pERK signaling and, collectively with previous mutagenesis data, offer evidence that the conformations linked to these different signaling pathways are, in many ways, mutually exclusive. This study furthers our understanding of the complex nature of signaling elicited by GPCRs and, in particular, that of the therapeutically important class B subfamily.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>32219215</pmid><doi>10.1021/acsptsci.8b00056</doi><tpages>21</tpages><orcidid>https://orcid.org/0000-0001-8902-2473</orcidid><orcidid>https://orcid.org/0000-0001-8655-8221</orcidid><orcidid>https://orcid.org/0000-0002-9558-5122</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2575-9108
ispartof ACS pharmacology & translational science, 2019-02, Vol.2 (1), p.31-51
issn 2575-9108
2575-9108
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7088896
source PubMed Central; American Chemical Society Journals
title The Molecular Control of Calcitonin Receptor Signaling
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T13%3A42%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acs_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20Molecular%20Control%20of%20Calcitonin%20Receptor%20Signaling&rft.jtitle=ACS%20pharmacology%20&%20translational%20science&rft.au=dal%20Maso,%20Emma&rft.date=2019-02-08&rft.volume=2&rft.issue=1&rft.spage=31&rft.epage=51&rft.pages=31-51&rft.issn=2575-9108&rft.eissn=2575-9108&rft_id=info:doi/10.1021/acsptsci.8b00056&rft_dat=%3Cacs_pubme%3Eb11668210%3C/acs_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/32219215&rfr_iscdi=true