Hardness and Wear Resistance of Dental Biomedical Nanomaterials in a Humid Environment with Non-Stationary Temperatures

This study discusses a quantitative fatigue evaluation of polymer-ceramic composites for dental restorations, i.e., commercial material (Filtek Z550) and experimental materials Ex-nano (G), Ex-flow (G). Their evaluation is based on the following descriptors: microhardness, scratch resistance, and sl...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Materials 2020-03, Vol.13 (5), p.1255
Hauptverfasser: Pieniak, Daniel, Walczak, Agata, Walczak, Mariusz, Przystupa, Krzysztof, Niewczas, Agata M
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 5
container_start_page 1255
container_title Materials
container_volume 13
creator Pieniak, Daniel
Walczak, Agata
Walczak, Mariusz
Przystupa, Krzysztof
Niewczas, Agata M
description This study discusses a quantitative fatigue evaluation of polymer-ceramic composites for dental restorations, i.e., commercial material (Filtek Z550) and experimental materials Ex-nano (G), Ex-flow (G). Their evaluation is based on the following descriptors: microhardness, scratch resistance, and sliding wear. In order to reflect factors of environmental degradation conditions, thermal fatigue was simulated with a special computer-controlled device performing algorithms of thermocycling. Specimens intended for the surface strength and wear tests underwent 10 hydrothermal fatigue cycles. Thermocycling was preceded by aging, which meant immersing the specimens in artificial saliva at 37 °C for 30 days. Microhardness tests were performed with the Vickers hardness test method. The scratch test was done with a Rockwell diamond cone indenter. Sliding ball-on-disc friction tests were performed against an alumina ball in the presence of artificial saliva. A direct positive correlation was found between thermocycling fatigue and microhardness. The dominant mechanism of the wear of the experimental composites after thermocycling is the removal of fragments of the materials in the form of flakes from the friction surface (spalling). Hydrothermal fatigue is synergistic with mechanical fatigue.
doi_str_mv 10.3390/ma13051255
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7085084</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2377339509</sourcerecordid><originalsourceid>FETCH-LOGICAL-c406t-b9bc1e548b2e978c2a3592a6cf024662205b4aaab7afc660347aba9c6a7b638d3</originalsourceid><addsrcrecordid>eNpdkV1rFjEQhYMottTe-AMk4I0Iq_nO5kbQ2voKpYJWvAyz2axN2U3eJtkW_31TW2t1bmZgnjmc4SD0nJI3nBvydgHKiaRMykdolxqjOmqEePxg3kH7pZyTVpzTnpmnaIczqgSTYhddbSCP0ZeCIY74h4eMv_oSSoXoPE4T_uhjhRl_CGnxY3BtPIGYFqg-B5gLDhED3qxLGPFhvAw5xaVd4KtQz_BJit23CjWkCPkXPvXL1meoa_blGXoytXO_f9f30Pejw9ODTXf85dPng_fHnRNE1W4wg6Nein5g3ujeMeDSMFBuIkwoxRiRgwCAQcPklCJcaBjAOAV6ULwf-R56d6u7XYf2gGveMsx2m8PSLNkEwf67ieHM_kyXVpNekl40gVd3AjldrL5Uu4Ti_DxD9GktlnGtWxCSmIa-_A89T2uO7b3fFNVaihvq9S3lciol--neDCX2JlL7N9IGv3ho_x79EyC_BjH8naA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2377177549</pqid></control><display><type>article</type><title>Hardness and Wear Resistance of Dental Biomedical Nanomaterials in a Humid Environment with Non-Stationary Temperatures</title><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><source>PubMed Central Open Access</source><creator>Pieniak, Daniel ; Walczak, Agata ; Walczak, Mariusz ; Przystupa, Krzysztof ; Niewczas, Agata M</creator><creatorcontrib>Pieniak, Daniel ; Walczak, Agata ; Walczak, Mariusz ; Przystupa, Krzysztof ; Niewczas, Agata M</creatorcontrib><description>This study discusses a quantitative fatigue evaluation of polymer-ceramic composites for dental restorations, i.e., commercial material (Filtek Z550) and experimental materials Ex-nano (G), Ex-flow (G). Their evaluation is based on the following descriptors: microhardness, scratch resistance, and sliding wear. In order to reflect factors of environmental degradation conditions, thermal fatigue was simulated with a special computer-controlled device performing algorithms of thermocycling. Specimens intended for the surface strength and wear tests underwent 10 hydrothermal fatigue cycles. Thermocycling was preceded by aging, which meant immersing the specimens in artificial saliva at 37 °C for 30 days. Microhardness tests were performed with the Vickers hardness test method. The scratch test was done with a Rockwell diamond cone indenter. Sliding ball-on-disc friction tests were performed against an alumina ball in the presence of artificial saliva. A direct positive correlation was found between thermocycling fatigue and microhardness. The dominant mechanism of the wear of the experimental composites after thermocycling is the removal of fragments of the materials in the form of flakes from the friction surface (spalling). Hydrothermal fatigue is synergistic with mechanical fatigue.</description><identifier>ISSN: 1996-1944</identifier><identifier>EISSN: 1996-1944</identifier><identifier>DOI: 10.3390/ma13051255</identifier><identifier>PMID: 32164254</identifier><language>eng</language><publisher>Switzerland: MDPI AG</publisher><subject>Aging ; Algorithms ; Aluminum oxide ; Biomedical materials ; Composite materials ; Computer simulation ; Dental materials ; Diamond pyramid hardness tests ; Diamonds ; Fatigue tests ; Frictional wear ; Laboratories ; Load ; Nanomaterials ; Physiology ; Polymer matrix composites ; Polymers ; Researchers ; Saliva ; Scratch resistance ; Scratch tests ; Sliding friction ; Spalling ; Thermal cycling ; Thermal fatigue ; Thermal simulation ; Wear mechanisms ; Wear resistance</subject><ispartof>Materials, 2020-03, Vol.13 (5), p.1255</ispartof><rights>2020. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2020 by the authors. 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c406t-b9bc1e548b2e978c2a3592a6cf024662205b4aaab7afc660347aba9c6a7b638d3</citedby><cites>FETCH-LOGICAL-c406t-b9bc1e548b2e978c2a3592a6cf024662205b4aaab7afc660347aba9c6a7b638d3</cites><orcidid>0000-0001-7807-3515 ; 0000-0003-4361-2763 ; 0000-0001-6728-9134</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7085084/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7085084/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,27901,27902,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32164254$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Pieniak, Daniel</creatorcontrib><creatorcontrib>Walczak, Agata</creatorcontrib><creatorcontrib>Walczak, Mariusz</creatorcontrib><creatorcontrib>Przystupa, Krzysztof</creatorcontrib><creatorcontrib>Niewczas, Agata M</creatorcontrib><title>Hardness and Wear Resistance of Dental Biomedical Nanomaterials in a Humid Environment with Non-Stationary Temperatures</title><title>Materials</title><addtitle>Materials (Basel)</addtitle><description>This study discusses a quantitative fatigue evaluation of polymer-ceramic composites for dental restorations, i.e., commercial material (Filtek Z550) and experimental materials Ex-nano (G), Ex-flow (G). Their evaluation is based on the following descriptors: microhardness, scratch resistance, and sliding wear. In order to reflect factors of environmental degradation conditions, thermal fatigue was simulated with a special computer-controlled device performing algorithms of thermocycling. Specimens intended for the surface strength and wear tests underwent 10 hydrothermal fatigue cycles. Thermocycling was preceded by aging, which meant immersing the specimens in artificial saliva at 37 °C for 30 days. Microhardness tests were performed with the Vickers hardness test method. The scratch test was done with a Rockwell diamond cone indenter. Sliding ball-on-disc friction tests were performed against an alumina ball in the presence of artificial saliva. A direct positive correlation was found between thermocycling fatigue and microhardness. The dominant mechanism of the wear of the experimental composites after thermocycling is the removal of fragments of the materials in the form of flakes from the friction surface (spalling). Hydrothermal fatigue is synergistic with mechanical fatigue.</description><subject>Aging</subject><subject>Algorithms</subject><subject>Aluminum oxide</subject><subject>Biomedical materials</subject><subject>Composite materials</subject><subject>Computer simulation</subject><subject>Dental materials</subject><subject>Diamond pyramid hardness tests</subject><subject>Diamonds</subject><subject>Fatigue tests</subject><subject>Frictional wear</subject><subject>Laboratories</subject><subject>Load</subject><subject>Nanomaterials</subject><subject>Physiology</subject><subject>Polymer matrix composites</subject><subject>Polymers</subject><subject>Researchers</subject><subject>Saliva</subject><subject>Scratch resistance</subject><subject>Scratch tests</subject><subject>Sliding friction</subject><subject>Spalling</subject><subject>Thermal cycling</subject><subject>Thermal fatigue</subject><subject>Thermal simulation</subject><subject>Wear mechanisms</subject><subject>Wear resistance</subject><issn>1996-1944</issn><issn>1996-1944</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNpdkV1rFjEQhYMottTe-AMk4I0Iq_nO5kbQ2voKpYJWvAyz2axN2U3eJtkW_31TW2t1bmZgnjmc4SD0nJI3nBvydgHKiaRMykdolxqjOmqEePxg3kH7pZyTVpzTnpmnaIczqgSTYhddbSCP0ZeCIY74h4eMv_oSSoXoPE4T_uhjhRl_CGnxY3BtPIGYFqg-B5gLDhED3qxLGPFhvAw5xaVd4KtQz_BJit23CjWkCPkXPvXL1meoa_blGXoytXO_f9f30Pejw9ODTXf85dPng_fHnRNE1W4wg6Nein5g3ujeMeDSMFBuIkwoxRiRgwCAQcPklCJcaBjAOAV6ULwf-R56d6u7XYf2gGveMsx2m8PSLNkEwf67ieHM_kyXVpNekl40gVd3AjldrL5Uu4Ti_DxD9GktlnGtWxCSmIa-_A89T2uO7b3fFNVaihvq9S3lciol--neDCX2JlL7N9IGv3ho_x79EyC_BjH8naA</recordid><startdate>20200310</startdate><enddate>20200310</enddate><creator>Pieniak, Daniel</creator><creator>Walczak, Agata</creator><creator>Walczak, Mariusz</creator><creator>Przystupa, Krzysztof</creator><creator>Niewczas, Agata M</creator><general>MDPI AG</general><general>MDPI</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-7807-3515</orcidid><orcidid>https://orcid.org/0000-0003-4361-2763</orcidid><orcidid>https://orcid.org/0000-0001-6728-9134</orcidid></search><sort><creationdate>20200310</creationdate><title>Hardness and Wear Resistance of Dental Biomedical Nanomaterials in a Humid Environment with Non-Stationary Temperatures</title><author>Pieniak, Daniel ; Walczak, Agata ; Walczak, Mariusz ; Przystupa, Krzysztof ; Niewczas, Agata M</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c406t-b9bc1e548b2e978c2a3592a6cf024662205b4aaab7afc660347aba9c6a7b638d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Aging</topic><topic>Algorithms</topic><topic>Aluminum oxide</topic><topic>Biomedical materials</topic><topic>Composite materials</topic><topic>Computer simulation</topic><topic>Dental materials</topic><topic>Diamond pyramid hardness tests</topic><topic>Diamonds</topic><topic>Fatigue tests</topic><topic>Frictional wear</topic><topic>Laboratories</topic><topic>Load</topic><topic>Nanomaterials</topic><topic>Physiology</topic><topic>Polymer matrix composites</topic><topic>Polymers</topic><topic>Researchers</topic><topic>Saliva</topic><topic>Scratch resistance</topic><topic>Scratch tests</topic><topic>Sliding friction</topic><topic>Spalling</topic><topic>Thermal cycling</topic><topic>Thermal fatigue</topic><topic>Thermal simulation</topic><topic>Wear mechanisms</topic><topic>Wear resistance</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pieniak, Daniel</creatorcontrib><creatorcontrib>Walczak, Agata</creatorcontrib><creatorcontrib>Walczak, Mariusz</creatorcontrib><creatorcontrib>Przystupa, Krzysztof</creatorcontrib><creatorcontrib>Niewczas, Agata M</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pieniak, Daniel</au><au>Walczak, Agata</au><au>Walczak, Mariusz</au><au>Przystupa, Krzysztof</au><au>Niewczas, Agata M</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Hardness and Wear Resistance of Dental Biomedical Nanomaterials in a Humid Environment with Non-Stationary Temperatures</atitle><jtitle>Materials</jtitle><addtitle>Materials (Basel)</addtitle><date>2020-03-10</date><risdate>2020</risdate><volume>13</volume><issue>5</issue><spage>1255</spage><pages>1255-</pages><issn>1996-1944</issn><eissn>1996-1944</eissn><abstract>This study discusses a quantitative fatigue evaluation of polymer-ceramic composites for dental restorations, i.e., commercial material (Filtek Z550) and experimental materials Ex-nano (G), Ex-flow (G). Their evaluation is based on the following descriptors: microhardness, scratch resistance, and sliding wear. In order to reflect factors of environmental degradation conditions, thermal fatigue was simulated with a special computer-controlled device performing algorithms of thermocycling. Specimens intended for the surface strength and wear tests underwent 10 hydrothermal fatigue cycles. Thermocycling was preceded by aging, which meant immersing the specimens in artificial saliva at 37 °C for 30 days. Microhardness tests were performed with the Vickers hardness test method. The scratch test was done with a Rockwell diamond cone indenter. Sliding ball-on-disc friction tests were performed against an alumina ball in the presence of artificial saliva. A direct positive correlation was found between thermocycling fatigue and microhardness. The dominant mechanism of the wear of the experimental composites after thermocycling is the removal of fragments of the materials in the form of flakes from the friction surface (spalling). Hydrothermal fatigue is synergistic with mechanical fatigue.</abstract><cop>Switzerland</cop><pub>MDPI AG</pub><pmid>32164254</pmid><doi>10.3390/ma13051255</doi><orcidid>https://orcid.org/0000-0001-7807-3515</orcidid><orcidid>https://orcid.org/0000-0003-4361-2763</orcidid><orcidid>https://orcid.org/0000-0001-6728-9134</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1996-1944
ispartof Materials, 2020-03, Vol.13 (5), p.1255
issn 1996-1944
1996-1944
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7085084
source MDPI - Multidisciplinary Digital Publishing Institute; EZB-FREE-00999 freely available EZB journals; PubMed Central; Free Full-Text Journals in Chemistry; PubMed Central Open Access
subjects Aging
Algorithms
Aluminum oxide
Biomedical materials
Composite materials
Computer simulation
Dental materials
Diamond pyramid hardness tests
Diamonds
Fatigue tests
Frictional wear
Laboratories
Load
Nanomaterials
Physiology
Polymer matrix composites
Polymers
Researchers
Saliva
Scratch resistance
Scratch tests
Sliding friction
Spalling
Thermal cycling
Thermal fatigue
Thermal simulation
Wear mechanisms
Wear resistance
title Hardness and Wear Resistance of Dental Biomedical Nanomaterials in a Humid Environment with Non-Stationary Temperatures
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T11%3A31%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Hardness%20and%20Wear%20Resistance%20of%20Dental%20Biomedical%20Nanomaterials%20in%20a%20Humid%20Environment%20with%20Non-Stationary%20Temperatures&rft.jtitle=Materials&rft.au=Pieniak,%20Daniel&rft.date=2020-03-10&rft.volume=13&rft.issue=5&rft.spage=1255&rft.pages=1255-&rft.issn=1996-1944&rft.eissn=1996-1944&rft_id=info:doi/10.3390/ma13051255&rft_dat=%3Cproquest_pubme%3E2377339509%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2377177549&rft_id=info:pmid/32164254&rfr_iscdi=true