Hardness and Wear Resistance of Dental Biomedical Nanomaterials in a Humid Environment with Non-Stationary Temperatures
This study discusses a quantitative fatigue evaluation of polymer-ceramic composites for dental restorations, i.e., commercial material (Filtek Z550) and experimental materials Ex-nano (G), Ex-flow (G). Their evaluation is based on the following descriptors: microhardness, scratch resistance, and sl...
Gespeichert in:
Veröffentlicht in: | Materials 2020-03, Vol.13 (5), p.1255 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 5 |
container_start_page | 1255 |
container_title | Materials |
container_volume | 13 |
creator | Pieniak, Daniel Walczak, Agata Walczak, Mariusz Przystupa, Krzysztof Niewczas, Agata M |
description | This study discusses a quantitative fatigue evaluation of polymer-ceramic composites for dental restorations, i.e., commercial material (Filtek Z550) and experimental materials Ex-nano (G), Ex-flow (G). Their evaluation is based on the following descriptors: microhardness, scratch resistance, and sliding wear. In order to reflect factors of environmental degradation conditions, thermal fatigue was simulated with a special computer-controlled device performing algorithms of thermocycling. Specimens intended for the surface strength and wear tests underwent 10
hydrothermal fatigue cycles. Thermocycling was preceded by aging, which meant immersing the specimens in artificial saliva at 37 °C for 30 days. Microhardness tests were performed with the Vickers hardness test method. The scratch test was done with a Rockwell diamond cone indenter. Sliding ball-on-disc friction tests were performed against an alumina ball in the presence of artificial saliva. A direct positive correlation was found between thermocycling fatigue and microhardness. The dominant mechanism of the wear of the experimental composites after thermocycling is the removal of fragments of the materials in the form of flakes from the friction surface (spalling). Hydrothermal fatigue is synergistic with mechanical fatigue. |
doi_str_mv | 10.3390/ma13051255 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7085084</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2377339509</sourcerecordid><originalsourceid>FETCH-LOGICAL-c406t-b9bc1e548b2e978c2a3592a6cf024662205b4aaab7afc660347aba9c6a7b638d3</originalsourceid><addsrcrecordid>eNpdkV1rFjEQhYMottTe-AMk4I0Iq_nO5kbQ2voKpYJWvAyz2axN2U3eJtkW_31TW2t1bmZgnjmc4SD0nJI3nBvydgHKiaRMykdolxqjOmqEePxg3kH7pZyTVpzTnpmnaIczqgSTYhddbSCP0ZeCIY74h4eMv_oSSoXoPE4T_uhjhRl_CGnxY3BtPIGYFqg-B5gLDhED3qxLGPFhvAw5xaVd4KtQz_BJit23CjWkCPkXPvXL1meoa_blGXoytXO_f9f30Pejw9ODTXf85dPng_fHnRNE1W4wg6Nein5g3ujeMeDSMFBuIkwoxRiRgwCAQcPklCJcaBjAOAV6ULwf-R56d6u7XYf2gGveMsx2m8PSLNkEwf67ieHM_kyXVpNekl40gVd3AjldrL5Uu4Ti_DxD9GktlnGtWxCSmIa-_A89T2uO7b3fFNVaihvq9S3lciol--neDCX2JlL7N9IGv3ho_x79EyC_BjH8naA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2377177549</pqid></control><display><type>article</type><title>Hardness and Wear Resistance of Dental Biomedical Nanomaterials in a Humid Environment with Non-Stationary Temperatures</title><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><source>PubMed Central Open Access</source><creator>Pieniak, Daniel ; Walczak, Agata ; Walczak, Mariusz ; Przystupa, Krzysztof ; Niewczas, Agata M</creator><creatorcontrib>Pieniak, Daniel ; Walczak, Agata ; Walczak, Mariusz ; Przystupa, Krzysztof ; Niewczas, Agata M</creatorcontrib><description>This study discusses a quantitative fatigue evaluation of polymer-ceramic composites for dental restorations, i.e., commercial material (Filtek Z550) and experimental materials Ex-nano (G), Ex-flow (G). Their evaluation is based on the following descriptors: microhardness, scratch resistance, and sliding wear. In order to reflect factors of environmental degradation conditions, thermal fatigue was simulated with a special computer-controlled device performing algorithms of thermocycling. Specimens intended for the surface strength and wear tests underwent 10
hydrothermal fatigue cycles. Thermocycling was preceded by aging, which meant immersing the specimens in artificial saliva at 37 °C for 30 days. Microhardness tests were performed with the Vickers hardness test method. The scratch test was done with a Rockwell diamond cone indenter. Sliding ball-on-disc friction tests were performed against an alumina ball in the presence of artificial saliva. A direct positive correlation was found between thermocycling fatigue and microhardness. The dominant mechanism of the wear of the experimental composites after thermocycling is the removal of fragments of the materials in the form of flakes from the friction surface (spalling). Hydrothermal fatigue is synergistic with mechanical fatigue.</description><identifier>ISSN: 1996-1944</identifier><identifier>EISSN: 1996-1944</identifier><identifier>DOI: 10.3390/ma13051255</identifier><identifier>PMID: 32164254</identifier><language>eng</language><publisher>Switzerland: MDPI AG</publisher><subject>Aging ; Algorithms ; Aluminum oxide ; Biomedical materials ; Composite materials ; Computer simulation ; Dental materials ; Diamond pyramid hardness tests ; Diamonds ; Fatigue tests ; Frictional wear ; Laboratories ; Load ; Nanomaterials ; Physiology ; Polymer matrix composites ; Polymers ; Researchers ; Saliva ; Scratch resistance ; Scratch tests ; Sliding friction ; Spalling ; Thermal cycling ; Thermal fatigue ; Thermal simulation ; Wear mechanisms ; Wear resistance</subject><ispartof>Materials, 2020-03, Vol.13 (5), p.1255</ispartof><rights>2020. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2020 by the authors. 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c406t-b9bc1e548b2e978c2a3592a6cf024662205b4aaab7afc660347aba9c6a7b638d3</citedby><cites>FETCH-LOGICAL-c406t-b9bc1e548b2e978c2a3592a6cf024662205b4aaab7afc660347aba9c6a7b638d3</cites><orcidid>0000-0001-7807-3515 ; 0000-0003-4361-2763 ; 0000-0001-6728-9134</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7085084/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7085084/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,27901,27902,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32164254$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Pieniak, Daniel</creatorcontrib><creatorcontrib>Walczak, Agata</creatorcontrib><creatorcontrib>Walczak, Mariusz</creatorcontrib><creatorcontrib>Przystupa, Krzysztof</creatorcontrib><creatorcontrib>Niewczas, Agata M</creatorcontrib><title>Hardness and Wear Resistance of Dental Biomedical Nanomaterials in a Humid Environment with Non-Stationary Temperatures</title><title>Materials</title><addtitle>Materials (Basel)</addtitle><description>This study discusses a quantitative fatigue evaluation of polymer-ceramic composites for dental restorations, i.e., commercial material (Filtek Z550) and experimental materials Ex-nano (G), Ex-flow (G). Their evaluation is based on the following descriptors: microhardness, scratch resistance, and sliding wear. In order to reflect factors of environmental degradation conditions, thermal fatigue was simulated with a special computer-controlled device performing algorithms of thermocycling. Specimens intended for the surface strength and wear tests underwent 10
hydrothermal fatigue cycles. Thermocycling was preceded by aging, which meant immersing the specimens in artificial saliva at 37 °C for 30 days. Microhardness tests were performed with the Vickers hardness test method. The scratch test was done with a Rockwell diamond cone indenter. Sliding ball-on-disc friction tests were performed against an alumina ball in the presence of artificial saliva. A direct positive correlation was found between thermocycling fatigue and microhardness. The dominant mechanism of the wear of the experimental composites after thermocycling is the removal of fragments of the materials in the form of flakes from the friction surface (spalling). Hydrothermal fatigue is synergistic with mechanical fatigue.</description><subject>Aging</subject><subject>Algorithms</subject><subject>Aluminum oxide</subject><subject>Biomedical materials</subject><subject>Composite materials</subject><subject>Computer simulation</subject><subject>Dental materials</subject><subject>Diamond pyramid hardness tests</subject><subject>Diamonds</subject><subject>Fatigue tests</subject><subject>Frictional wear</subject><subject>Laboratories</subject><subject>Load</subject><subject>Nanomaterials</subject><subject>Physiology</subject><subject>Polymer matrix composites</subject><subject>Polymers</subject><subject>Researchers</subject><subject>Saliva</subject><subject>Scratch resistance</subject><subject>Scratch tests</subject><subject>Sliding friction</subject><subject>Spalling</subject><subject>Thermal cycling</subject><subject>Thermal fatigue</subject><subject>Thermal simulation</subject><subject>Wear mechanisms</subject><subject>Wear resistance</subject><issn>1996-1944</issn><issn>1996-1944</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNpdkV1rFjEQhYMottTe-AMk4I0Iq_nO5kbQ2voKpYJWvAyz2axN2U3eJtkW_31TW2t1bmZgnjmc4SD0nJI3nBvydgHKiaRMykdolxqjOmqEePxg3kH7pZyTVpzTnpmnaIczqgSTYhddbSCP0ZeCIY74h4eMv_oSSoXoPE4T_uhjhRl_CGnxY3BtPIGYFqg-B5gLDhED3qxLGPFhvAw5xaVd4KtQz_BJit23CjWkCPkXPvXL1meoa_blGXoytXO_f9f30Pejw9ODTXf85dPng_fHnRNE1W4wg6Nein5g3ujeMeDSMFBuIkwoxRiRgwCAQcPklCJcaBjAOAV6ULwf-R56d6u7XYf2gGveMsx2m8PSLNkEwf67ieHM_kyXVpNekl40gVd3AjldrL5Uu4Ti_DxD9GktlnGtWxCSmIa-_A89T2uO7b3fFNVaihvq9S3lciol--neDCX2JlL7N9IGv3ho_x79EyC_BjH8naA</recordid><startdate>20200310</startdate><enddate>20200310</enddate><creator>Pieniak, Daniel</creator><creator>Walczak, Agata</creator><creator>Walczak, Mariusz</creator><creator>Przystupa, Krzysztof</creator><creator>Niewczas, Agata M</creator><general>MDPI AG</general><general>MDPI</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-7807-3515</orcidid><orcidid>https://orcid.org/0000-0003-4361-2763</orcidid><orcidid>https://orcid.org/0000-0001-6728-9134</orcidid></search><sort><creationdate>20200310</creationdate><title>Hardness and Wear Resistance of Dental Biomedical Nanomaterials in a Humid Environment with Non-Stationary Temperatures</title><author>Pieniak, Daniel ; Walczak, Agata ; Walczak, Mariusz ; Przystupa, Krzysztof ; Niewczas, Agata M</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c406t-b9bc1e548b2e978c2a3592a6cf024662205b4aaab7afc660347aba9c6a7b638d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Aging</topic><topic>Algorithms</topic><topic>Aluminum oxide</topic><topic>Biomedical materials</topic><topic>Composite materials</topic><topic>Computer simulation</topic><topic>Dental materials</topic><topic>Diamond pyramid hardness tests</topic><topic>Diamonds</topic><topic>Fatigue tests</topic><topic>Frictional wear</topic><topic>Laboratories</topic><topic>Load</topic><topic>Nanomaterials</topic><topic>Physiology</topic><topic>Polymer matrix composites</topic><topic>Polymers</topic><topic>Researchers</topic><topic>Saliva</topic><topic>Scratch resistance</topic><topic>Scratch tests</topic><topic>Sliding friction</topic><topic>Spalling</topic><topic>Thermal cycling</topic><topic>Thermal fatigue</topic><topic>Thermal simulation</topic><topic>Wear mechanisms</topic><topic>Wear resistance</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pieniak, Daniel</creatorcontrib><creatorcontrib>Walczak, Agata</creatorcontrib><creatorcontrib>Walczak, Mariusz</creatorcontrib><creatorcontrib>Przystupa, Krzysztof</creatorcontrib><creatorcontrib>Niewczas, Agata M</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pieniak, Daniel</au><au>Walczak, Agata</au><au>Walczak, Mariusz</au><au>Przystupa, Krzysztof</au><au>Niewczas, Agata M</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Hardness and Wear Resistance of Dental Biomedical Nanomaterials in a Humid Environment with Non-Stationary Temperatures</atitle><jtitle>Materials</jtitle><addtitle>Materials (Basel)</addtitle><date>2020-03-10</date><risdate>2020</risdate><volume>13</volume><issue>5</issue><spage>1255</spage><pages>1255-</pages><issn>1996-1944</issn><eissn>1996-1944</eissn><abstract>This study discusses a quantitative fatigue evaluation of polymer-ceramic composites for dental restorations, i.e., commercial material (Filtek Z550) and experimental materials Ex-nano (G), Ex-flow (G). Their evaluation is based on the following descriptors: microhardness, scratch resistance, and sliding wear. In order to reflect factors of environmental degradation conditions, thermal fatigue was simulated with a special computer-controlled device performing algorithms of thermocycling. Specimens intended for the surface strength and wear tests underwent 10
hydrothermal fatigue cycles. Thermocycling was preceded by aging, which meant immersing the specimens in artificial saliva at 37 °C for 30 days. Microhardness tests were performed with the Vickers hardness test method. The scratch test was done with a Rockwell diamond cone indenter. Sliding ball-on-disc friction tests were performed against an alumina ball in the presence of artificial saliva. A direct positive correlation was found between thermocycling fatigue and microhardness. The dominant mechanism of the wear of the experimental composites after thermocycling is the removal of fragments of the materials in the form of flakes from the friction surface (spalling). Hydrothermal fatigue is synergistic with mechanical fatigue.</abstract><cop>Switzerland</cop><pub>MDPI AG</pub><pmid>32164254</pmid><doi>10.3390/ma13051255</doi><orcidid>https://orcid.org/0000-0001-7807-3515</orcidid><orcidid>https://orcid.org/0000-0003-4361-2763</orcidid><orcidid>https://orcid.org/0000-0001-6728-9134</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1996-1944 |
ispartof | Materials, 2020-03, Vol.13 (5), p.1255 |
issn | 1996-1944 1996-1944 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7085084 |
source | MDPI - Multidisciplinary Digital Publishing Institute; EZB-FREE-00999 freely available EZB journals; PubMed Central; Free Full-Text Journals in Chemistry; PubMed Central Open Access |
subjects | Aging Algorithms Aluminum oxide Biomedical materials Composite materials Computer simulation Dental materials Diamond pyramid hardness tests Diamonds Fatigue tests Frictional wear Laboratories Load Nanomaterials Physiology Polymer matrix composites Polymers Researchers Saliva Scratch resistance Scratch tests Sliding friction Spalling Thermal cycling Thermal fatigue Thermal simulation Wear mechanisms Wear resistance |
title | Hardness and Wear Resistance of Dental Biomedical Nanomaterials in a Humid Environment with Non-Stationary Temperatures |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T11%3A31%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Hardness%20and%20Wear%20Resistance%20of%20Dental%20Biomedical%20Nanomaterials%20in%20a%20Humid%20Environment%20with%20Non-Stationary%20Temperatures&rft.jtitle=Materials&rft.au=Pieniak,%20Daniel&rft.date=2020-03-10&rft.volume=13&rft.issue=5&rft.spage=1255&rft.pages=1255-&rft.issn=1996-1944&rft.eissn=1996-1944&rft_id=info:doi/10.3390/ma13051255&rft_dat=%3Cproquest_pubme%3E2377339509%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2377177549&rft_id=info:pmid/32164254&rfr_iscdi=true |