A Predictive Model for Height Tracking in an Adult Male Population in Bangladesh to Reduce Input Errors

The advancement of ICT and affordability of medical sensors enable healthcare data to be obtained remotely. Remote healthcare data is erroneous in nature. Detection of errors for remote healthcare data has not been significantly studied. This research aims to design and develop a software system to...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of environmental research and public health 2020-03, Vol.17 (5), p.1806
Hauptverfasser: Hasan, Mehdi, Yokota, Fumihiko, Islam, Rafiqul, Hisazumi, Kenji, Fukuda, Akira, Ahmed, Ashir
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 5
container_start_page 1806
container_title International journal of environmental research and public health
container_volume 17
creator Hasan, Mehdi
Yokota, Fumihiko
Islam, Rafiqul
Hisazumi, Kenji
Fukuda, Akira
Ahmed, Ashir
description The advancement of ICT and affordability of medical sensors enable healthcare data to be obtained remotely. Remote healthcare data is erroneous in nature. Detection of errors for remote healthcare data has not been significantly studied. This research aims to design and develop a software system to detect and reduce such healthcare data errors. Enormous research efforts produced error detection algorithms, however, the detection is done at the server side after a substantial amount of data is archived. Errors can be efficiently reduced if the suspicious data can be detected at the source. We took the approach to predict acceptable range of anthropometric data of each patient. We analyzed 40,391 records to monitor the growth patterns. We plotted the anthropometric items e.g., Height, Weight, BMI, Waist and Hip size for males and females. The plots show some patterns based on different age groups. This paper reports one parameter, height of males. We found three groups that can be classified with similar growth patterns: Age group 20-49, no significant change; Age group 50-64, slightly decremented pattern; and Age group 65-100, a drastic height loss. The acceptable range can change over time. The system estimates the updated trend from new health records.
doi_str_mv 10.3390/ijerph17051806
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7084907</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2377334137</sourcerecordid><originalsourceid>FETCH-LOGICAL-c439t-8f77d46334137e8c2b1464829c38f8168b392f8a2c35c1d58e1b7752c86fbc6a3</originalsourceid><addsrcrecordid>eNpdkc1LJDEQxcOirB-71z0uAS97GU06mSR9EWbFL1BWFvcc0unqnsxmkjZJC_73to6KeqqC-tXjPR5CPyg5ZKwmR24FaVhSSeZUEfEF7VIhyIwLQrfe7TtoL-cVIUxxUX9FO6yigjPOd1G_wDcJWmeLuwd8HVvwuIsJX4DrlwXfJmP_u9BjF7AJeNGOvuBr4wHfxGH0prgYnm6_Tei9aSEvcYn4L7SjBXwZhrHg05Riyt_Qdmd8hu8vcx_9Ozu9PbmYXf05vzxZXM0sZ3WZqU7KlgvGOGUSlK0aygVXVW2Z6hQVqmF11SlTWTa3tJ0roI2U88oq0TVWGLaPjje6w9isobUQSjJeD8mtTXrQ0Tj98RLcUvfxXkuieE3kJPDrRSDFuxFy0WuXLXhvAsQx64pJubE3oQef0FUcU5jiPVOUCMX4RB1uKJtizgm6NzOU6KcO9ccOp4ef7yO84a-lsUeTHZgH</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2377106834</pqid></control><display><type>article</type><title>A Predictive Model for Height Tracking in an Adult Male Population in Bangladesh to Reduce Input Errors</title><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><source>PubMed Central Open Access</source><creator>Hasan, Mehdi ; Yokota, Fumihiko ; Islam, Rafiqul ; Hisazumi, Kenji ; Fukuda, Akira ; Ahmed, Ashir</creator><creatorcontrib>Hasan, Mehdi ; Yokota, Fumihiko ; Islam, Rafiqul ; Hisazumi, Kenji ; Fukuda, Akira ; Ahmed, Ashir</creatorcontrib><description>The advancement of ICT and affordability of medical sensors enable healthcare data to be obtained remotely. Remote healthcare data is erroneous in nature. Detection of errors for remote healthcare data has not been significantly studied. This research aims to design and develop a software system to detect and reduce such healthcare data errors. Enormous research efforts produced error detection algorithms, however, the detection is done at the server side after a substantial amount of data is archived. Errors can be efficiently reduced if the suspicious data can be detected at the source. We took the approach to predict acceptable range of anthropometric data of each patient. We analyzed 40,391 records to monitor the growth patterns. We plotted the anthropometric items e.g., Height, Weight, BMI, Waist and Hip size for males and females. The plots show some patterns based on different age groups. This paper reports one parameter, height of males. We found three groups that can be classified with similar growth patterns: Age group 20-49, no significant change; Age group 50-64, slightly decremented pattern; and Age group 65-100, a drastic height loss. The acceptable range can change over time. The system estimates the updated trend from new health records.</description><identifier>ISSN: 1660-4601</identifier><identifier>ISSN: 1661-7827</identifier><identifier>EISSN: 1660-4601</identifier><identifier>DOI: 10.3390/ijerph17051806</identifier><identifier>PMID: 32164344</identifier><language>eng</language><publisher>Switzerland: MDPI AG</publisher><subject>Age ; Anthropometry ; Archives &amp; records ; Body height ; Clinics ; Developing countries ; Digitization ; Error detection ; Females ; Gender ; Growth patterns ; Health care ; LDCs ; Males ; Medical equipment ; Medical personnel ; Morbidity ; Personal health ; Prediction models ; Remote sensors ; Telemedicine ; Upgrading</subject><ispartof>International journal of environmental research and public health, 2020-03, Vol.17 (5), p.1806</ispartof><rights>2020. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2020 by the authors. 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c439t-8f77d46334137e8c2b1464829c38f8168b392f8a2c35c1d58e1b7752c86fbc6a3</cites><orcidid>0000-0002-5180-2156 ; 0000-0002-8125-471X ; 0000-0002-6275-9472</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7084907/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7084907/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,27901,27902,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32164344$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Hasan, Mehdi</creatorcontrib><creatorcontrib>Yokota, Fumihiko</creatorcontrib><creatorcontrib>Islam, Rafiqul</creatorcontrib><creatorcontrib>Hisazumi, Kenji</creatorcontrib><creatorcontrib>Fukuda, Akira</creatorcontrib><creatorcontrib>Ahmed, Ashir</creatorcontrib><title>A Predictive Model for Height Tracking in an Adult Male Population in Bangladesh to Reduce Input Errors</title><title>International journal of environmental research and public health</title><addtitle>Int J Environ Res Public Health</addtitle><description>The advancement of ICT and affordability of medical sensors enable healthcare data to be obtained remotely. Remote healthcare data is erroneous in nature. Detection of errors for remote healthcare data has not been significantly studied. This research aims to design and develop a software system to detect and reduce such healthcare data errors. Enormous research efforts produced error detection algorithms, however, the detection is done at the server side after a substantial amount of data is archived. Errors can be efficiently reduced if the suspicious data can be detected at the source. We took the approach to predict acceptable range of anthropometric data of each patient. We analyzed 40,391 records to monitor the growth patterns. We plotted the anthropometric items e.g., Height, Weight, BMI, Waist and Hip size for males and females. The plots show some patterns based on different age groups. This paper reports one parameter, height of males. We found three groups that can be classified with similar growth patterns: Age group 20-49, no significant change; Age group 50-64, slightly decremented pattern; and Age group 65-100, a drastic height loss. The acceptable range can change over time. The system estimates the updated trend from new health records.</description><subject>Age</subject><subject>Anthropometry</subject><subject>Archives &amp; records</subject><subject>Body height</subject><subject>Clinics</subject><subject>Developing countries</subject><subject>Digitization</subject><subject>Error detection</subject><subject>Females</subject><subject>Gender</subject><subject>Growth patterns</subject><subject>Health care</subject><subject>LDCs</subject><subject>Males</subject><subject>Medical equipment</subject><subject>Medical personnel</subject><subject>Morbidity</subject><subject>Personal health</subject><subject>Prediction models</subject><subject>Remote sensors</subject><subject>Telemedicine</subject><subject>Upgrading</subject><issn>1660-4601</issn><issn>1661-7827</issn><issn>1660-4601</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNpdkc1LJDEQxcOirB-71z0uAS97GU06mSR9EWbFL1BWFvcc0unqnsxmkjZJC_73to6KeqqC-tXjPR5CPyg5ZKwmR24FaVhSSeZUEfEF7VIhyIwLQrfe7TtoL-cVIUxxUX9FO6yigjPOd1G_wDcJWmeLuwd8HVvwuIsJX4DrlwXfJmP_u9BjF7AJeNGOvuBr4wHfxGH0prgYnm6_Tei9aSEvcYn4L7SjBXwZhrHg05Riyt_Qdmd8hu8vcx_9Ozu9PbmYXf05vzxZXM0sZ3WZqU7KlgvGOGUSlK0aygVXVW2Z6hQVqmF11SlTWTa3tJ0roI2U88oq0TVWGLaPjje6w9isobUQSjJeD8mtTXrQ0Tj98RLcUvfxXkuieE3kJPDrRSDFuxFy0WuXLXhvAsQx64pJubE3oQef0FUcU5jiPVOUCMX4RB1uKJtizgm6NzOU6KcO9ccOp4ef7yO84a-lsUeTHZgH</recordid><startdate>20200310</startdate><enddate>20200310</enddate><creator>Hasan, Mehdi</creator><creator>Yokota, Fumihiko</creator><creator>Islam, Rafiqul</creator><creator>Hisazumi, Kenji</creator><creator>Fukuda, Akira</creator><creator>Ahmed, Ashir</creator><general>MDPI AG</general><general>MDPI</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8C1</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>K9.</scope><scope>M0S</scope><scope>M1P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-5180-2156</orcidid><orcidid>https://orcid.org/0000-0002-8125-471X</orcidid><orcidid>https://orcid.org/0000-0002-6275-9472</orcidid></search><sort><creationdate>20200310</creationdate><title>A Predictive Model for Height Tracking in an Adult Male Population in Bangladesh to Reduce Input Errors</title><author>Hasan, Mehdi ; Yokota, Fumihiko ; Islam, Rafiqul ; Hisazumi, Kenji ; Fukuda, Akira ; Ahmed, Ashir</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c439t-8f77d46334137e8c2b1464829c38f8168b392f8a2c35c1d58e1b7752c86fbc6a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Age</topic><topic>Anthropometry</topic><topic>Archives &amp; records</topic><topic>Body height</topic><topic>Clinics</topic><topic>Developing countries</topic><topic>Digitization</topic><topic>Error detection</topic><topic>Females</topic><topic>Gender</topic><topic>Growth patterns</topic><topic>Health care</topic><topic>LDCs</topic><topic>Males</topic><topic>Medical equipment</topic><topic>Medical personnel</topic><topic>Morbidity</topic><topic>Personal health</topic><topic>Prediction models</topic><topic>Remote sensors</topic><topic>Telemedicine</topic><topic>Upgrading</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hasan, Mehdi</creatorcontrib><creatorcontrib>Yokota, Fumihiko</creatorcontrib><creatorcontrib>Islam, Rafiqul</creatorcontrib><creatorcontrib>Hisazumi, Kenji</creatorcontrib><creatorcontrib>Fukuda, Akira</creatorcontrib><creatorcontrib>Ahmed, Ashir</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Public Health Database</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>International journal of environmental research and public health</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hasan, Mehdi</au><au>Yokota, Fumihiko</au><au>Islam, Rafiqul</au><au>Hisazumi, Kenji</au><au>Fukuda, Akira</au><au>Ahmed, Ashir</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Predictive Model for Height Tracking in an Adult Male Population in Bangladesh to Reduce Input Errors</atitle><jtitle>International journal of environmental research and public health</jtitle><addtitle>Int J Environ Res Public Health</addtitle><date>2020-03-10</date><risdate>2020</risdate><volume>17</volume><issue>5</issue><spage>1806</spage><pages>1806-</pages><issn>1660-4601</issn><issn>1661-7827</issn><eissn>1660-4601</eissn><abstract>The advancement of ICT and affordability of medical sensors enable healthcare data to be obtained remotely. Remote healthcare data is erroneous in nature. Detection of errors for remote healthcare data has not been significantly studied. This research aims to design and develop a software system to detect and reduce such healthcare data errors. Enormous research efforts produced error detection algorithms, however, the detection is done at the server side after a substantial amount of data is archived. Errors can be efficiently reduced if the suspicious data can be detected at the source. We took the approach to predict acceptable range of anthropometric data of each patient. We analyzed 40,391 records to monitor the growth patterns. We plotted the anthropometric items e.g., Height, Weight, BMI, Waist and Hip size for males and females. The plots show some patterns based on different age groups. This paper reports one parameter, height of males. We found three groups that can be classified with similar growth patterns: Age group 20-49, no significant change; Age group 50-64, slightly decremented pattern; and Age group 65-100, a drastic height loss. The acceptable range can change over time. The system estimates the updated trend from new health records.</abstract><cop>Switzerland</cop><pub>MDPI AG</pub><pmid>32164344</pmid><doi>10.3390/ijerph17051806</doi><orcidid>https://orcid.org/0000-0002-5180-2156</orcidid><orcidid>https://orcid.org/0000-0002-8125-471X</orcidid><orcidid>https://orcid.org/0000-0002-6275-9472</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1660-4601
ispartof International journal of environmental research and public health, 2020-03, Vol.17 (5), p.1806
issn 1660-4601
1661-7827
1660-4601
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7084907
source MDPI - Multidisciplinary Digital Publishing Institute; EZB-FREE-00999 freely available EZB journals; PubMed Central; Free Full-Text Journals in Chemistry; PubMed Central Open Access
subjects Age
Anthropometry
Archives & records
Body height
Clinics
Developing countries
Digitization
Error detection
Females
Gender
Growth patterns
Health care
LDCs
Males
Medical equipment
Medical personnel
Morbidity
Personal health
Prediction models
Remote sensors
Telemedicine
Upgrading
title A Predictive Model for Height Tracking in an Adult Male Population in Bangladesh to Reduce Input Errors
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T10%3A07%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Predictive%20Model%20for%20Height%20Tracking%20in%20an%20Adult%20Male%20Population%20in%20Bangladesh%20to%20Reduce%20Input%20Errors&rft.jtitle=International%20journal%20of%20environmental%20research%20and%20public%20health&rft.au=Hasan,%20Mehdi&rft.date=2020-03-10&rft.volume=17&rft.issue=5&rft.spage=1806&rft.pages=1806-&rft.issn=1660-4601&rft.eissn=1660-4601&rft_id=info:doi/10.3390/ijerph17051806&rft_dat=%3Cproquest_pubme%3E2377334137%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2377106834&rft_id=info:pmid/32164344&rfr_iscdi=true