Privacy-Preserving Process Mining in Healthcare

Process mining has been successfully applied in the healthcare domain and has helped touncover various insights for improving healthcare processes. While the benefits of process miningare widely acknowledged, many people rightfully have concerns about irresponsible uses of personaldata. Healthcare i...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of environmental research and public health 2020-03, Vol.17 (5), p.1612
Hauptverfasser: Pika, Anastasiia, Wynn, Moe T, Budiono, Stephanus, Ter Hofstede, Arthur H M, van der Aalst, Wil M P, Reijers, Hajo A
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 5
container_start_page 1612
container_title International journal of environmental research and public health
container_volume 17
creator Pika, Anastasiia
Wynn, Moe T
Budiono, Stephanus
Ter Hofstede, Arthur H M
van der Aalst, Wil M P
Reijers, Hajo A
description Process mining has been successfully applied in the healthcare domain and has helped touncover various insights for improving healthcare processes. While the benefits of process miningare widely acknowledged, many people rightfully have concerns about irresponsible uses of personaldata. Healthcare information systems contain highly sensitive information and healthcare regulationsoften require protection of data privacy. The need to comply with strict privacy requirements mayresult in a decreased data utility for analysis. Until recently, data privacy issues did not get muchattention in the process mining community; however, several privacy-preserving data transformationtechniques have been proposed in the data mining community. Many similarities between datamining and process mining exist, but there are key differences that make privacy-preserving datamining techniques unsuitable to anonymise process data (without adaptations). In this article, weanalyse data privacy and utility requirements for healthcare process data and assess the suitabilityof privacy-preserving data transformation methods to anonymise healthcare data. We demonstratehow some of these anonymisation methods affect various process mining results using three publiclyavailable healthcare event logs. We describe a framework for privacy-preserving process mining thatcan support healthcare process mining analyses. We also advocate the recording of privacy metadatato capture information about privacy-preserving transformations performed on an event log.
doi_str_mv 10.3390/ijerph17051612
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7084661</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2371858705</sourcerecordid><originalsourceid>FETCH-LOGICAL-c390t-4ab4b14f82f70744d2faf0b0893f370c82210893afa7c021906af1499f6b9bff3</originalsourceid><addsrcrecordid>eNpVUMFOAjEQbYxGEL16NBy9LMy0pbt7MTEExQQjBz033dJCybKL7ULC31sCEjjNTOa9N28eIY8IPcZy6Lul8esFpjBAgfSKtFEISLgAvD7rW-QuhCUAy7jIb0mLUWQYGW3Sn3q3VXqXTL0Jxm9dNe9Ofa1NCN1PV-1HV3XHRpXNQitv7smNVWUwD8faIT9vo-_hOJl8vX8MXyeJjq6ahKuCF8htRm0KKeczapWFArKcWZaCzijF_aCsSjVQzEEoizzPrSjywlrWIS8H3fWmWJmZNlXjVSnX3q2U38laOXm5qdxCzuutTCH-KDAKPB8FfP27MaGRKxe0KUtVmXoTJGUpZoMsBhehvQNU-zoEb-zpDILcpywvU46Ep3NzJ_h_rOwP_r15Tg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2371858705</pqid></control><display><type>article</type><title>Privacy-Preserving Process Mining in Healthcare</title><source>PubMed Central Open Access</source><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Pika, Anastasiia ; Wynn, Moe T ; Budiono, Stephanus ; Ter Hofstede, Arthur H M ; van der Aalst, Wil M P ; Reijers, Hajo A</creator><creatorcontrib>Pika, Anastasiia ; Wynn, Moe T ; Budiono, Stephanus ; Ter Hofstede, Arthur H M ; van der Aalst, Wil M P ; Reijers, Hajo A</creatorcontrib><description>Process mining has been successfully applied in the healthcare domain and has helped touncover various insights for improving healthcare processes. While the benefits of process miningare widely acknowledged, many people rightfully have concerns about irresponsible uses of personaldata. Healthcare information systems contain highly sensitive information and healthcare regulationsoften require protection of data privacy. The need to comply with strict privacy requirements mayresult in a decreased data utility for analysis. Until recently, data privacy issues did not get muchattention in the process mining community; however, several privacy-preserving data transformationtechniques have been proposed in the data mining community. Many similarities between datamining and process mining exist, but there are key differences that make privacy-preserving datamining techniques unsuitable to anonymise process data (without adaptations). In this article, weanalyse data privacy and utility requirements for healthcare process data and assess the suitabilityof privacy-preserving data transformation methods to anonymise healthcare data. We demonstratehow some of these anonymisation methods affect various process mining results using three publiclyavailable healthcare event logs. We describe a framework for privacy-preserving process mining thatcan support healthcare process mining analyses. We also advocate the recording of privacy metadatato capture information about privacy-preserving transformations performed on an event log.</description><identifier>ISSN: 1660-4601</identifier><identifier>ISSN: 1661-7827</identifier><identifier>EISSN: 1660-4601</identifier><identifier>DOI: 10.3390/ijerph17051612</identifier><identifier>PMID: 32131516</identifier><language>eng</language><publisher>Switzerland: MDPI</publisher><ispartof>International journal of environmental research and public health, 2020-03, Vol.17 (5), p.1612</ispartof><rights>2020 by the authors. 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c390t-4ab4b14f82f70744d2faf0b0893f370c82210893afa7c021906af1499f6b9bff3</citedby><cites>FETCH-LOGICAL-c390t-4ab4b14f82f70744d2faf0b0893f370c82210893afa7c021906af1499f6b9bff3</cites><orcidid>0000-0001-6452-6915</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7084661/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7084661/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32131516$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Pika, Anastasiia</creatorcontrib><creatorcontrib>Wynn, Moe T</creatorcontrib><creatorcontrib>Budiono, Stephanus</creatorcontrib><creatorcontrib>Ter Hofstede, Arthur H M</creatorcontrib><creatorcontrib>van der Aalst, Wil M P</creatorcontrib><creatorcontrib>Reijers, Hajo A</creatorcontrib><title>Privacy-Preserving Process Mining in Healthcare</title><title>International journal of environmental research and public health</title><addtitle>Int J Environ Res Public Health</addtitle><description>Process mining has been successfully applied in the healthcare domain and has helped touncover various insights for improving healthcare processes. While the benefits of process miningare widely acknowledged, many people rightfully have concerns about irresponsible uses of personaldata. Healthcare information systems contain highly sensitive information and healthcare regulationsoften require protection of data privacy. The need to comply with strict privacy requirements mayresult in a decreased data utility for analysis. Until recently, data privacy issues did not get muchattention in the process mining community; however, several privacy-preserving data transformationtechniques have been proposed in the data mining community. Many similarities between datamining and process mining exist, but there are key differences that make privacy-preserving datamining techniques unsuitable to anonymise process data (without adaptations). In this article, weanalyse data privacy and utility requirements for healthcare process data and assess the suitabilityof privacy-preserving data transformation methods to anonymise healthcare data. We demonstratehow some of these anonymisation methods affect various process mining results using three publiclyavailable healthcare event logs. We describe a framework for privacy-preserving process mining thatcan support healthcare process mining analyses. We also advocate the recording of privacy metadatato capture information about privacy-preserving transformations performed on an event log.</description><issn>1660-4601</issn><issn>1661-7827</issn><issn>1660-4601</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNpVUMFOAjEQbYxGEL16NBy9LMy0pbt7MTEExQQjBz033dJCybKL7ULC31sCEjjNTOa9N28eIY8IPcZy6Lul8esFpjBAgfSKtFEISLgAvD7rW-QuhCUAy7jIb0mLUWQYGW3Sn3q3VXqXTL0Jxm9dNe9Ofa1NCN1PV-1HV3XHRpXNQitv7smNVWUwD8faIT9vo-_hOJl8vX8MXyeJjq6ahKuCF8htRm0KKeczapWFArKcWZaCzijF_aCsSjVQzEEoizzPrSjywlrWIS8H3fWmWJmZNlXjVSnX3q2U38laOXm5qdxCzuutTCH-KDAKPB8FfP27MaGRKxe0KUtVmXoTJGUpZoMsBhehvQNU-zoEb-zpDILcpywvU46Ep3NzJ_h_rOwP_r15Tg</recordid><startdate>20200302</startdate><enddate>20200302</enddate><creator>Pika, Anastasiia</creator><creator>Wynn, Moe T</creator><creator>Budiono, Stephanus</creator><creator>Ter Hofstede, Arthur H M</creator><creator>van der Aalst, Wil M P</creator><creator>Reijers, Hajo A</creator><general>MDPI</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-6452-6915</orcidid></search><sort><creationdate>20200302</creationdate><title>Privacy-Preserving Process Mining in Healthcare</title><author>Pika, Anastasiia ; Wynn, Moe T ; Budiono, Stephanus ; Ter Hofstede, Arthur H M ; van der Aalst, Wil M P ; Reijers, Hajo A</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c390t-4ab4b14f82f70744d2faf0b0893f370c82210893afa7c021906af1499f6b9bff3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pika, Anastasiia</creatorcontrib><creatorcontrib>Wynn, Moe T</creatorcontrib><creatorcontrib>Budiono, Stephanus</creatorcontrib><creatorcontrib>Ter Hofstede, Arthur H M</creatorcontrib><creatorcontrib>van der Aalst, Wil M P</creatorcontrib><creatorcontrib>Reijers, Hajo A</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>International journal of environmental research and public health</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pika, Anastasiia</au><au>Wynn, Moe T</au><au>Budiono, Stephanus</au><au>Ter Hofstede, Arthur H M</au><au>van der Aalst, Wil M P</au><au>Reijers, Hajo A</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Privacy-Preserving Process Mining in Healthcare</atitle><jtitle>International journal of environmental research and public health</jtitle><addtitle>Int J Environ Res Public Health</addtitle><date>2020-03-02</date><risdate>2020</risdate><volume>17</volume><issue>5</issue><spage>1612</spage><pages>1612-</pages><issn>1660-4601</issn><issn>1661-7827</issn><eissn>1660-4601</eissn><abstract>Process mining has been successfully applied in the healthcare domain and has helped touncover various insights for improving healthcare processes. While the benefits of process miningare widely acknowledged, many people rightfully have concerns about irresponsible uses of personaldata. Healthcare information systems contain highly sensitive information and healthcare regulationsoften require protection of data privacy. The need to comply with strict privacy requirements mayresult in a decreased data utility for analysis. Until recently, data privacy issues did not get muchattention in the process mining community; however, several privacy-preserving data transformationtechniques have been proposed in the data mining community. Many similarities between datamining and process mining exist, but there are key differences that make privacy-preserving datamining techniques unsuitable to anonymise process data (without adaptations). In this article, weanalyse data privacy and utility requirements for healthcare process data and assess the suitabilityof privacy-preserving data transformation methods to anonymise healthcare data. We demonstratehow some of these anonymisation methods affect various process mining results using three publiclyavailable healthcare event logs. We describe a framework for privacy-preserving process mining thatcan support healthcare process mining analyses. We also advocate the recording of privacy metadatato capture information about privacy-preserving transformations performed on an event log.</abstract><cop>Switzerland</cop><pub>MDPI</pub><pmid>32131516</pmid><doi>10.3390/ijerph17051612</doi><orcidid>https://orcid.org/0000-0001-6452-6915</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1660-4601
ispartof International journal of environmental research and public health, 2020-03, Vol.17 (5), p.1612
issn 1660-4601
1661-7827
1660-4601
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7084661
source PubMed Central Open Access; MDPI - Multidisciplinary Digital Publishing Institute; EZB-FREE-00999 freely available EZB journals; PubMed Central; Free Full-Text Journals in Chemistry
title Privacy-Preserving Process Mining in Healthcare
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-21T14%3A18%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Privacy-Preserving%20Process%20Mining%20in%20Healthcare&rft.jtitle=International%20journal%20of%20environmental%20research%20and%20public%20health&rft.au=Pika,%20Anastasiia&rft.date=2020-03-02&rft.volume=17&rft.issue=5&rft.spage=1612&rft.pages=1612-&rft.issn=1660-4601&rft.eissn=1660-4601&rft_id=info:doi/10.3390/ijerph17051612&rft_dat=%3Cproquest_pubme%3E2371858705%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2371858705&rft_id=info:pmid/32131516&rfr_iscdi=true