The regulatory and transcriptional landscape associated with carbon utilization in a filamentous fungus
Filamentous fungi, such as Neurospora crassa, are very efficient in deconstructing plant biomass by the secretion of an arsenal of plant cell wall-degrading enzymes, by remodeling metabolism to accommodate production of secreted enzymes, and by enabling transport and intracellular utilization of pla...
Gespeichert in:
Veröffentlicht in: | Proceedings of the National Academy of Sciences - PNAS 2020-03, Vol.117 (11), p.6003-6013 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 6013 |
---|---|
container_issue | 11 |
container_start_page | 6003 |
container_title | Proceedings of the National Academy of Sciences - PNAS |
container_volume | 117 |
creator | Wu, Vincent W. Thieme, Nils Huberman, Lori B. Dietschmann, Axel Kowbel, David J. Lee, Juna Calhoun, Sara Singan, Vasanth R. Lipzen, Anna Xiong, Yi Monti, Remo Blow, Matthew J. O’Malley, Ronan C. Grigoriev, Igor V. Benz, J. Philipp Glass, N. Louise |
description | Filamentous fungi, such as Neurospora crassa, are very efficient in deconstructing plant biomass by the secretion of an arsenal of plant cell wall-degrading enzymes, by remodeling metabolism to accommodate production of secreted enzymes, and by enabling transport and intracellular utilization of plant biomass components. Although a number of enzymes and transcriptional regulators involved in plant biomass utilization have been identified, how filamentous fungi sense and integrate nutritional information encoded in the plant cell wall into a regulatory hierarchy for optimal utilization of complex carbon sources is not understood. Here, we performed transcriptional profiling of N. crassa on 40 different carbon sources, including plant biomass, to provide data on how fungi sense simple to complex carbohydrates. From these data, we identified regulatory factors in N. crassa and characterized one (PDR-2) associated with pectin utilization and one with pectin/hemicellulose utilization (ARA-1). Using in vitro DNA affinity purification sequencing (DAP-seq), we identified direct targets of transcription factors involved in regulating genes encoding plant cell wall-degrading enzymes. In particular, our data clarified the role of the transcription factor VIB-1 in the regulation of genes encoding plant cell wall-degrading enzymes and nutrient scavenging and revealed a major role of the carbon catabolite repressor CRE-1 in regulating the expression of major facilitator transporter genes. These data contribute to a more complete understanding of cross talk between transcription factors and their target genes, which are involved in regulating nutrient sensing and plant biomass utilization on a global level. |
doi_str_mv | 10.1073/pnas.1915611117 |
format | Article |
fullrecord | <record><control><sourceid>jstor_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7084071</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>26929364</jstor_id><sourcerecordid>26929364</sourcerecordid><originalsourceid>FETCH-LOGICAL-c470t-730f6cb9419b01e3beb80463a79665d1a9fb23e5d507d9ddf492aea1c4351f993</originalsourceid><addsrcrecordid>eNqNksuPFCEQxonRuOPo2ZOG6MXE9G7xaLq5mGwmvpJNvKxnQtP0DJMeaIF2s_71y9jr-DjJBQK_KuqrrxB6TuCcQMMuJq_TOZGkFqSs5gFaEZCkElzCQ7QCoE3VcsrP0JOU9gAg6xYeozNGCy0kWaHt9c7iaLfzqHOIt1j7HueofTLRTdkFr0c8lstk9GSxTikYp7Pt8Y3LO2x07ILHc3aj-6GPOHYeazy4UR-sz2FOeJj9dk5P0aNBj8k-u9_X6OuH99ebT9XVl4-fN5dXleEN5KphMAjTSU5kB8SyznYtcMF0I4Woe6Ll0FFm676Gppd9P3BJtdXEcFaTQUq2Ru-WvNPcHWxvShFRj2qK7qDjrQraqb9fvNupbfiuGmg5NKQkeLUkCCk7lYzL1uxM8N6arIgACrIt0Jv7X2L4NtuU1cElY8fSKVs0K8qE5AzqUvkavf4H3Yc5lrYeqaIKGG14oS4WysSQUrTDqWIC6ui0OjqtfjtdIl7-KfTE_7K2AG8X4MZ2YShCrDf2hJVZqCkAIeUAgha6_X964_JPszdh9rmEvlhC96mM0CmGCkklE5zdAZkh0Mk</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2379603274</pqid></control><display><type>article</type><title>The regulatory and transcriptional landscape associated with carbon utilization in a filamentous fungus</title><source>MEDLINE</source><source>JSTOR Archive Collection A-Z Listing</source><source>Web of Science - Science Citation Index Expanded - 2020<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" /></source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Wu, Vincent W. ; Thieme, Nils ; Huberman, Lori B. ; Dietschmann, Axel ; Kowbel, David J. ; Lee, Juna ; Calhoun, Sara ; Singan, Vasanth R. ; Lipzen, Anna ; Xiong, Yi ; Monti, Remo ; Blow, Matthew J. ; O’Malley, Ronan C. ; Grigoriev, Igor V. ; Benz, J. Philipp ; Glass, N. Louise</creator><creatorcontrib>Wu, Vincent W. ; Thieme, Nils ; Huberman, Lori B. ; Dietschmann, Axel ; Kowbel, David J. ; Lee, Juna ; Calhoun, Sara ; Singan, Vasanth R. ; Lipzen, Anna ; Xiong, Yi ; Monti, Remo ; Blow, Matthew J. ; O’Malley, Ronan C. ; Grigoriev, Igor V. ; Benz, J. Philipp ; Glass, N. Louise ; Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States)</creatorcontrib><description>Filamentous fungi, such as Neurospora crassa, are very efficient in deconstructing plant biomass by the secretion of an arsenal of plant cell wall-degrading enzymes, by remodeling metabolism to accommodate production of secreted enzymes, and by enabling transport and intracellular utilization of plant biomass components. Although a number of enzymes and transcriptional regulators involved in plant biomass utilization have been identified, how filamentous fungi sense and integrate nutritional information encoded in the plant cell wall into a regulatory hierarchy for optimal utilization of complex carbon sources is not understood. Here, we performed transcriptional profiling of N. crassa on 40 different carbon sources, including plant biomass, to provide data on how fungi sense simple to complex carbohydrates. From these data, we identified regulatory factors in N. crassa and characterized one (PDR-2) associated with pectin utilization and one with pectin/hemicellulose utilization (ARA-1). Using in vitro DNA affinity purification sequencing (DAP-seq), we identified direct targets of transcription factors involved in regulating genes encoding plant cell wall-degrading enzymes. In particular, our data clarified the role of the transcription factor VIB-1 in the regulation of genes encoding plant cell wall-degrading enzymes and nutrient scavenging and revealed a major role of the carbon catabolite repressor CRE-1 in regulating the expression of major facilitator transporter genes. These data contribute to a more complete understanding of cross talk between transcription factors and their target genes, which are involved in regulating nutrient sensing and plant biomass utilization on a global level.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.1915611117</identifier><identifier>PMID: 32111691</identifier><language>eng</language><publisher>WASHINGTON: National Academy of Sciences</publisher><subject>BASIC BIOLOGICAL SCIENCES ; Biofuels ; Biological Sciences ; Biomass ; Carbohydrates ; Carbon ; Carbon sources ; Catabolite Repression ; Cell Wall - chemistry ; Cell Wall - metabolism ; Cell walls ; Crosstalk ; DAP-seq ; Degradation ; Deoxyribonucleic acid ; DNA ; DNA sequencing ; Enzymes ; Fungal Proteins - metabolism ; Fungi ; Gene expression ; Gene Expression Regulation, Fungal ; Gene regulation ; Genes ; Hemicellulose ; Information processing ; Metabolic Engineering - methods ; Metabolic Networks and Pathways - genetics ; Metabolism ; Multidisciplinary Sciences ; Neurospora ; Neurospora crassa - genetics ; Neurospora crassa - metabolism ; nutrient sensing ; Nutrient utilization ; Nutrients ; Pectin ; Pectins - metabolism ; Plant biomass ; plant biomass deconstruction ; Polysaccharides - metabolism ; Purification ; RNA-Seq ; Scavenging ; Science & Technology ; Science & Technology - Other Topics ; Target recognition ; Transcription factors ; Transcription Factors - metabolism ; transcriptional networks ; Utilization</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2020-03, Vol.117 (11), p.6003-6013</ispartof><rights>Copyright © 2020 the Author(s). Published by PNAS.</rights><rights>Copyright National Academy of Sciences Mar 17, 2020</rights><rights>Copyright © 2020 the Author(s). Published by PNAS. 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>60</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000520011000062</woscitedreferencesoriginalsourcerecordid><citedby>FETCH-LOGICAL-c470t-730f6cb9419b01e3beb80463a79665d1a9fb23e5d507d9ddf492aea1c4351f993</citedby><cites>FETCH-LOGICAL-c470t-730f6cb9419b01e3beb80463a79665d1a9fb23e5d507d9ddf492aea1c4351f993</cites><orcidid>0000-0003-3405-5563 ; 0000-0002-6354-8319 ; 0000-0001-5361-4514 ; 0000-0003-2638-8528 ; 0000-0002-0598-9714 ; 0000-0003-2942-1338 ; 0000-0002-4844-2890 ; 0000000248442890 ; 0000000153614514</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/26929364$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/26929364$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,315,729,782,786,805,887,27931,27932,28255,53798,53800,58024,58257</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32111691$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/1602098$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Wu, Vincent W.</creatorcontrib><creatorcontrib>Thieme, Nils</creatorcontrib><creatorcontrib>Huberman, Lori B.</creatorcontrib><creatorcontrib>Dietschmann, Axel</creatorcontrib><creatorcontrib>Kowbel, David J.</creatorcontrib><creatorcontrib>Lee, Juna</creatorcontrib><creatorcontrib>Calhoun, Sara</creatorcontrib><creatorcontrib>Singan, Vasanth R.</creatorcontrib><creatorcontrib>Lipzen, Anna</creatorcontrib><creatorcontrib>Xiong, Yi</creatorcontrib><creatorcontrib>Monti, Remo</creatorcontrib><creatorcontrib>Blow, Matthew J.</creatorcontrib><creatorcontrib>O’Malley, Ronan C.</creatorcontrib><creatorcontrib>Grigoriev, Igor V.</creatorcontrib><creatorcontrib>Benz, J. Philipp</creatorcontrib><creatorcontrib>Glass, N. Louise</creatorcontrib><creatorcontrib>Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States)</creatorcontrib><title>The regulatory and transcriptional landscape associated with carbon utilization in a filamentous fungus</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>P NATL ACAD SCI USA</addtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><description>Filamentous fungi, such as Neurospora crassa, are very efficient in deconstructing plant biomass by the secretion of an arsenal of plant cell wall-degrading enzymes, by remodeling metabolism to accommodate production of secreted enzymes, and by enabling transport and intracellular utilization of plant biomass components. Although a number of enzymes and transcriptional regulators involved in plant biomass utilization have been identified, how filamentous fungi sense and integrate nutritional information encoded in the plant cell wall into a regulatory hierarchy for optimal utilization of complex carbon sources is not understood. Here, we performed transcriptional profiling of N. crassa on 40 different carbon sources, including plant biomass, to provide data on how fungi sense simple to complex carbohydrates. From these data, we identified regulatory factors in N. crassa and characterized one (PDR-2) associated with pectin utilization and one with pectin/hemicellulose utilization (ARA-1). Using in vitro DNA affinity purification sequencing (DAP-seq), we identified direct targets of transcription factors involved in regulating genes encoding plant cell wall-degrading enzymes. In particular, our data clarified the role of the transcription factor VIB-1 in the regulation of genes encoding plant cell wall-degrading enzymes and nutrient scavenging and revealed a major role of the carbon catabolite repressor CRE-1 in regulating the expression of major facilitator transporter genes. These data contribute to a more complete understanding of cross talk between transcription factors and their target genes, which are involved in regulating nutrient sensing and plant biomass utilization on a global level.</description><subject>BASIC BIOLOGICAL SCIENCES</subject><subject>Biofuels</subject><subject>Biological Sciences</subject><subject>Biomass</subject><subject>Carbohydrates</subject><subject>Carbon</subject><subject>Carbon sources</subject><subject>Catabolite Repression</subject><subject>Cell Wall - chemistry</subject><subject>Cell Wall - metabolism</subject><subject>Cell walls</subject><subject>Crosstalk</subject><subject>DAP-seq</subject><subject>Degradation</subject><subject>Deoxyribonucleic acid</subject><subject>DNA</subject><subject>DNA sequencing</subject><subject>Enzymes</subject><subject>Fungal Proteins - metabolism</subject><subject>Fungi</subject><subject>Gene expression</subject><subject>Gene Expression Regulation, Fungal</subject><subject>Gene regulation</subject><subject>Genes</subject><subject>Hemicellulose</subject><subject>Information processing</subject><subject>Metabolic Engineering - methods</subject><subject>Metabolic Networks and Pathways - genetics</subject><subject>Metabolism</subject><subject>Multidisciplinary Sciences</subject><subject>Neurospora</subject><subject>Neurospora crassa - genetics</subject><subject>Neurospora crassa - metabolism</subject><subject>nutrient sensing</subject><subject>Nutrient utilization</subject><subject>Nutrients</subject><subject>Pectin</subject><subject>Pectins - metabolism</subject><subject>Plant biomass</subject><subject>plant biomass deconstruction</subject><subject>Polysaccharides - metabolism</subject><subject>Purification</subject><subject>RNA-Seq</subject><subject>Scavenging</subject><subject>Science & Technology</subject><subject>Science & Technology - Other Topics</subject><subject>Target recognition</subject><subject>Transcription factors</subject><subject>Transcription Factors - metabolism</subject><subject>transcriptional networks</subject><subject>Utilization</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>AOWDO</sourceid><sourceid>EIF</sourceid><recordid>eNqNksuPFCEQxonRuOPo2ZOG6MXE9G7xaLq5mGwmvpJNvKxnQtP0DJMeaIF2s_71y9jr-DjJBQK_KuqrrxB6TuCcQMMuJq_TOZGkFqSs5gFaEZCkElzCQ7QCoE3VcsrP0JOU9gAg6xYeozNGCy0kWaHt9c7iaLfzqHOIt1j7HueofTLRTdkFr0c8lstk9GSxTikYp7Pt8Y3LO2x07ILHc3aj-6GPOHYeazy4UR-sz2FOeJj9dk5P0aNBj8k-u9_X6OuH99ebT9XVl4-fN5dXleEN5KphMAjTSU5kB8SyznYtcMF0I4Woe6Ll0FFm676Gppd9P3BJtdXEcFaTQUq2Ru-WvNPcHWxvShFRj2qK7qDjrQraqb9fvNupbfiuGmg5NKQkeLUkCCk7lYzL1uxM8N6arIgACrIt0Jv7X2L4NtuU1cElY8fSKVs0K8qE5AzqUvkavf4H3Yc5lrYeqaIKGG14oS4WysSQUrTDqWIC6ui0OjqtfjtdIl7-KfTE_7K2AG8X4MZ2YShCrDf2hJVZqCkAIeUAgha6_X964_JPszdh9rmEvlhC96mM0CmGCkklE5zdAZkh0Mk</recordid><startdate>20200317</startdate><enddate>20200317</enddate><creator>Wu, Vincent W.</creator><creator>Thieme, Nils</creator><creator>Huberman, Lori B.</creator><creator>Dietschmann, Axel</creator><creator>Kowbel, David J.</creator><creator>Lee, Juna</creator><creator>Calhoun, Sara</creator><creator>Singan, Vasanth R.</creator><creator>Lipzen, Anna</creator><creator>Xiong, Yi</creator><creator>Monti, Remo</creator><creator>Blow, Matthew J.</creator><creator>O’Malley, Ronan C.</creator><creator>Grigoriev, Igor V.</creator><creator>Benz, J. Philipp</creator><creator>Glass, N. Louise</creator><general>National Academy of Sciences</general><general>Natl Acad Sciences</general><scope>AOWDO</scope><scope>BLEPL</scope><scope>DTL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>OTOTI</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-3405-5563</orcidid><orcidid>https://orcid.org/0000-0002-6354-8319</orcidid><orcidid>https://orcid.org/0000-0001-5361-4514</orcidid><orcidid>https://orcid.org/0000-0003-2638-8528</orcidid><orcidid>https://orcid.org/0000-0002-0598-9714</orcidid><orcidid>https://orcid.org/0000-0003-2942-1338</orcidid><orcidid>https://orcid.org/0000-0002-4844-2890</orcidid><orcidid>https://orcid.org/0000000248442890</orcidid><orcidid>https://orcid.org/0000000153614514</orcidid></search><sort><creationdate>20200317</creationdate><title>The regulatory and transcriptional landscape associated with carbon utilization in a filamentous fungus</title><author>Wu, Vincent W. ; Thieme, Nils ; Huberman, Lori B. ; Dietschmann, Axel ; Kowbel, David J. ; Lee, Juna ; Calhoun, Sara ; Singan, Vasanth R. ; Lipzen, Anna ; Xiong, Yi ; Monti, Remo ; Blow, Matthew J. ; O’Malley, Ronan C. ; Grigoriev, Igor V. ; Benz, J. Philipp ; Glass, N. Louise</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c470t-730f6cb9419b01e3beb80463a79665d1a9fb23e5d507d9ddf492aea1c4351f993</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>BASIC BIOLOGICAL SCIENCES</topic><topic>Biofuels</topic><topic>Biological Sciences</topic><topic>Biomass</topic><topic>Carbohydrates</topic><topic>Carbon</topic><topic>Carbon sources</topic><topic>Catabolite Repression</topic><topic>Cell Wall - chemistry</topic><topic>Cell Wall - metabolism</topic><topic>Cell walls</topic><topic>Crosstalk</topic><topic>DAP-seq</topic><topic>Degradation</topic><topic>Deoxyribonucleic acid</topic><topic>DNA</topic><topic>DNA sequencing</topic><topic>Enzymes</topic><topic>Fungal Proteins - metabolism</topic><topic>Fungi</topic><topic>Gene expression</topic><topic>Gene Expression Regulation, Fungal</topic><topic>Gene regulation</topic><topic>Genes</topic><topic>Hemicellulose</topic><topic>Information processing</topic><topic>Metabolic Engineering - methods</topic><topic>Metabolic Networks and Pathways - genetics</topic><topic>Metabolism</topic><topic>Multidisciplinary Sciences</topic><topic>Neurospora</topic><topic>Neurospora crassa - genetics</topic><topic>Neurospora crassa - metabolism</topic><topic>nutrient sensing</topic><topic>Nutrient utilization</topic><topic>Nutrients</topic><topic>Pectin</topic><topic>Pectins - metabolism</topic><topic>Plant biomass</topic><topic>plant biomass deconstruction</topic><topic>Polysaccharides - metabolism</topic><topic>Purification</topic><topic>RNA-Seq</topic><topic>Scavenging</topic><topic>Science & Technology</topic><topic>Science & Technology - Other Topics</topic><topic>Target recognition</topic><topic>Transcription factors</topic><topic>Transcription Factors - metabolism</topic><topic>transcriptional networks</topic><topic>Utilization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wu, Vincent W.</creatorcontrib><creatorcontrib>Thieme, Nils</creatorcontrib><creatorcontrib>Huberman, Lori B.</creatorcontrib><creatorcontrib>Dietschmann, Axel</creatorcontrib><creatorcontrib>Kowbel, David J.</creatorcontrib><creatorcontrib>Lee, Juna</creatorcontrib><creatorcontrib>Calhoun, Sara</creatorcontrib><creatorcontrib>Singan, Vasanth R.</creatorcontrib><creatorcontrib>Lipzen, Anna</creatorcontrib><creatorcontrib>Xiong, Yi</creatorcontrib><creatorcontrib>Monti, Remo</creatorcontrib><creatorcontrib>Blow, Matthew J.</creatorcontrib><creatorcontrib>O’Malley, Ronan C.</creatorcontrib><creatorcontrib>Grigoriev, Igor V.</creatorcontrib><creatorcontrib>Benz, J. Philipp</creatorcontrib><creatorcontrib>Glass, N. Louise</creatorcontrib><creatorcontrib>Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States)</creatorcontrib><collection>Web of Science - Science Citation Index Expanded - 2020</collection><collection>Web of Science Core Collection</collection><collection>Science Citation Index Expanded</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wu, Vincent W.</au><au>Thieme, Nils</au><au>Huberman, Lori B.</au><au>Dietschmann, Axel</au><au>Kowbel, David J.</au><au>Lee, Juna</au><au>Calhoun, Sara</au><au>Singan, Vasanth R.</au><au>Lipzen, Anna</au><au>Xiong, Yi</au><au>Monti, Remo</au><au>Blow, Matthew J.</au><au>O’Malley, Ronan C.</au><au>Grigoriev, Igor V.</au><au>Benz, J. Philipp</au><au>Glass, N. Louise</au><aucorp>Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The regulatory and transcriptional landscape associated with carbon utilization in a filamentous fungus</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><stitle>P NATL ACAD SCI USA</stitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2020-03-17</date><risdate>2020</risdate><volume>117</volume><issue>11</issue><spage>6003</spage><epage>6013</epage><pages>6003-6013</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>Filamentous fungi, such as Neurospora crassa, are very efficient in deconstructing plant biomass by the secretion of an arsenal of plant cell wall-degrading enzymes, by remodeling metabolism to accommodate production of secreted enzymes, and by enabling transport and intracellular utilization of plant biomass components. Although a number of enzymes and transcriptional regulators involved in plant biomass utilization have been identified, how filamentous fungi sense and integrate nutritional information encoded in the plant cell wall into a regulatory hierarchy for optimal utilization of complex carbon sources is not understood. Here, we performed transcriptional profiling of N. crassa on 40 different carbon sources, including plant biomass, to provide data on how fungi sense simple to complex carbohydrates. From these data, we identified regulatory factors in N. crassa and characterized one (PDR-2) associated with pectin utilization and one with pectin/hemicellulose utilization (ARA-1). Using in vitro DNA affinity purification sequencing (DAP-seq), we identified direct targets of transcription factors involved in regulating genes encoding plant cell wall-degrading enzymes. In particular, our data clarified the role of the transcription factor VIB-1 in the regulation of genes encoding plant cell wall-degrading enzymes and nutrient scavenging and revealed a major role of the carbon catabolite repressor CRE-1 in regulating the expression of major facilitator transporter genes. These data contribute to a more complete understanding of cross talk between transcription factors and their target genes, which are involved in regulating nutrient sensing and plant biomass utilization on a global level.</abstract><cop>WASHINGTON</cop><pub>National Academy of Sciences</pub><pmid>32111691</pmid><doi>10.1073/pnas.1915611117</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0003-3405-5563</orcidid><orcidid>https://orcid.org/0000-0002-6354-8319</orcidid><orcidid>https://orcid.org/0000-0001-5361-4514</orcidid><orcidid>https://orcid.org/0000-0003-2638-8528</orcidid><orcidid>https://orcid.org/0000-0002-0598-9714</orcidid><orcidid>https://orcid.org/0000-0003-2942-1338</orcidid><orcidid>https://orcid.org/0000-0002-4844-2890</orcidid><orcidid>https://orcid.org/0000000248442890</orcidid><orcidid>https://orcid.org/0000000153614514</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0027-8424 |
ispartof | Proceedings of the National Academy of Sciences - PNAS, 2020-03, Vol.117 (11), p.6003-6013 |
issn | 0027-8424 1091-6490 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7084071 |
source | MEDLINE; JSTOR Archive Collection A-Z Listing; Web of Science - Science Citation Index Expanded - 2020<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" />; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry |
subjects | BASIC BIOLOGICAL SCIENCES Biofuels Biological Sciences Biomass Carbohydrates Carbon Carbon sources Catabolite Repression Cell Wall - chemistry Cell Wall - metabolism Cell walls Crosstalk DAP-seq Degradation Deoxyribonucleic acid DNA DNA sequencing Enzymes Fungal Proteins - metabolism Fungi Gene expression Gene Expression Regulation, Fungal Gene regulation Genes Hemicellulose Information processing Metabolic Engineering - methods Metabolic Networks and Pathways - genetics Metabolism Multidisciplinary Sciences Neurospora Neurospora crassa - genetics Neurospora crassa - metabolism nutrient sensing Nutrient utilization Nutrients Pectin Pectins - metabolism Plant biomass plant biomass deconstruction Polysaccharides - metabolism Purification RNA-Seq Scavenging Science & Technology Science & Technology - Other Topics Target recognition Transcription factors Transcription Factors - metabolism transcriptional networks Utilization |
title | The regulatory and transcriptional landscape associated with carbon utilization in a filamentous fungus |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-05T01%3A27%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20regulatory%20and%20transcriptional%20landscape%20associated%20with%20carbon%20utilization%20in%20a%20filamentous%20fungus&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Wu,%20Vincent%20W.&rft.aucorp=Lawrence%20Berkeley%20National%20Laboratory%20(LBNL),%20Berkeley,%20CA%20(United%20States)&rft.date=2020-03-17&rft.volume=117&rft.issue=11&rft.spage=6003&rft.epage=6013&rft.pages=6003-6013&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.1915611117&rft_dat=%3Cjstor_pubme%3E26929364%3C/jstor_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2379603274&rft_id=info:pmid/32111691&rft_jstor_id=26929364&rfr_iscdi=true |