The regulatory and transcriptional landscape associated with carbon utilization in a filamentous fungus

Filamentous fungi, such as Neurospora crassa, are very efficient in deconstructing plant biomass by the secretion of an arsenal of plant cell wall-degrading enzymes, by remodeling metabolism to accommodate production of secreted enzymes, and by enabling transport and intracellular utilization of pla...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the National Academy of Sciences - PNAS 2020-03, Vol.117 (11), p.6003-6013
Hauptverfasser: Wu, Vincent W., Thieme, Nils, Huberman, Lori B., Dietschmann, Axel, Kowbel, David J., Lee, Juna, Calhoun, Sara, Singan, Vasanth R., Lipzen, Anna, Xiong, Yi, Monti, Remo, Blow, Matthew J., O’Malley, Ronan C., Grigoriev, Igor V., Benz, J. Philipp, Glass, N. Louise
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 6013
container_issue 11
container_start_page 6003
container_title Proceedings of the National Academy of Sciences - PNAS
container_volume 117
creator Wu, Vincent W.
Thieme, Nils
Huberman, Lori B.
Dietschmann, Axel
Kowbel, David J.
Lee, Juna
Calhoun, Sara
Singan, Vasanth R.
Lipzen, Anna
Xiong, Yi
Monti, Remo
Blow, Matthew J.
O’Malley, Ronan C.
Grigoriev, Igor V.
Benz, J. Philipp
Glass, N. Louise
description Filamentous fungi, such as Neurospora crassa, are very efficient in deconstructing plant biomass by the secretion of an arsenal of plant cell wall-degrading enzymes, by remodeling metabolism to accommodate production of secreted enzymes, and by enabling transport and intracellular utilization of plant biomass components. Although a number of enzymes and transcriptional regulators involved in plant biomass utilization have been identified, how filamentous fungi sense and integrate nutritional information encoded in the plant cell wall into a regulatory hierarchy for optimal utilization of complex carbon sources is not understood. Here, we performed transcriptional profiling of N. crassa on 40 different carbon sources, including plant biomass, to provide data on how fungi sense simple to complex carbohydrates. From these data, we identified regulatory factors in N. crassa and characterized one (PDR-2) associated with pectin utilization and one with pectin/hemicellulose utilization (ARA-1). Using in vitro DNA affinity purification sequencing (DAP-seq), we identified direct targets of transcription factors involved in regulating genes encoding plant cell wall-degrading enzymes. In particular, our data clarified the role of the transcription factor VIB-1 in the regulation of genes encoding plant cell wall-degrading enzymes and nutrient scavenging and revealed a major role of the carbon catabolite repressor CRE-1 in regulating the expression of major facilitator transporter genes. These data contribute to a more complete understanding of cross talk between transcription factors and their target genes, which are involved in regulating nutrient sensing and plant biomass utilization on a global level.
doi_str_mv 10.1073/pnas.1915611117
format Article
fullrecord <record><control><sourceid>jstor_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7084071</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>26929364</jstor_id><sourcerecordid>26929364</sourcerecordid><originalsourceid>FETCH-LOGICAL-c470t-730f6cb9419b01e3beb80463a79665d1a9fb23e5d507d9ddf492aea1c4351f993</originalsourceid><addsrcrecordid>eNqNksuPFCEQxonRuOPo2ZOG6MXE9G7xaLq5mGwmvpJNvKxnQtP0DJMeaIF2s_71y9jr-DjJBQK_KuqrrxB6TuCcQMMuJq_TOZGkFqSs5gFaEZCkElzCQ7QCoE3VcsrP0JOU9gAg6xYeozNGCy0kWaHt9c7iaLfzqHOIt1j7HueofTLRTdkFr0c8lstk9GSxTikYp7Pt8Y3LO2x07ILHc3aj-6GPOHYeazy4UR-sz2FOeJj9dk5P0aNBj8k-u9_X6OuH99ebT9XVl4-fN5dXleEN5KphMAjTSU5kB8SyznYtcMF0I4Woe6Ll0FFm676Gppd9P3BJtdXEcFaTQUq2Ru-WvNPcHWxvShFRj2qK7qDjrQraqb9fvNupbfiuGmg5NKQkeLUkCCk7lYzL1uxM8N6arIgACrIt0Jv7X2L4NtuU1cElY8fSKVs0K8qE5AzqUvkavf4H3Yc5lrYeqaIKGG14oS4WysSQUrTDqWIC6ui0OjqtfjtdIl7-KfTE_7K2AG8X4MZ2YShCrDf2hJVZqCkAIeUAgha6_X964_JPszdh9rmEvlhC96mM0CmGCkklE5zdAZkh0Mk</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2379603274</pqid></control><display><type>article</type><title>The regulatory and transcriptional landscape associated with carbon utilization in a filamentous fungus</title><source>MEDLINE</source><source>JSTOR Archive Collection A-Z Listing</source><source>Web of Science - Science Citation Index Expanded - 2020&lt;img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" /&gt;</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Wu, Vincent W. ; Thieme, Nils ; Huberman, Lori B. ; Dietschmann, Axel ; Kowbel, David J. ; Lee, Juna ; Calhoun, Sara ; Singan, Vasanth R. ; Lipzen, Anna ; Xiong, Yi ; Monti, Remo ; Blow, Matthew J. ; O’Malley, Ronan C. ; Grigoriev, Igor V. ; Benz, J. Philipp ; Glass, N. Louise</creator><creatorcontrib>Wu, Vincent W. ; Thieme, Nils ; Huberman, Lori B. ; Dietschmann, Axel ; Kowbel, David J. ; Lee, Juna ; Calhoun, Sara ; Singan, Vasanth R. ; Lipzen, Anna ; Xiong, Yi ; Monti, Remo ; Blow, Matthew J. ; O’Malley, Ronan C. ; Grigoriev, Igor V. ; Benz, J. Philipp ; Glass, N. Louise ; Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States)</creatorcontrib><description>Filamentous fungi, such as Neurospora crassa, are very efficient in deconstructing plant biomass by the secretion of an arsenal of plant cell wall-degrading enzymes, by remodeling metabolism to accommodate production of secreted enzymes, and by enabling transport and intracellular utilization of plant biomass components. Although a number of enzymes and transcriptional regulators involved in plant biomass utilization have been identified, how filamentous fungi sense and integrate nutritional information encoded in the plant cell wall into a regulatory hierarchy for optimal utilization of complex carbon sources is not understood. Here, we performed transcriptional profiling of N. crassa on 40 different carbon sources, including plant biomass, to provide data on how fungi sense simple to complex carbohydrates. From these data, we identified regulatory factors in N. crassa and characterized one (PDR-2) associated with pectin utilization and one with pectin/hemicellulose utilization (ARA-1). Using in vitro DNA affinity purification sequencing (DAP-seq), we identified direct targets of transcription factors involved in regulating genes encoding plant cell wall-degrading enzymes. In particular, our data clarified the role of the transcription factor VIB-1 in the regulation of genes encoding plant cell wall-degrading enzymes and nutrient scavenging and revealed a major role of the carbon catabolite repressor CRE-1 in regulating the expression of major facilitator transporter genes. These data contribute to a more complete understanding of cross talk between transcription factors and their target genes, which are involved in regulating nutrient sensing and plant biomass utilization on a global level.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.1915611117</identifier><identifier>PMID: 32111691</identifier><language>eng</language><publisher>WASHINGTON: National Academy of Sciences</publisher><subject>BASIC BIOLOGICAL SCIENCES ; Biofuels ; Biological Sciences ; Biomass ; Carbohydrates ; Carbon ; Carbon sources ; Catabolite Repression ; Cell Wall - chemistry ; Cell Wall - metabolism ; Cell walls ; Crosstalk ; DAP-seq ; Degradation ; Deoxyribonucleic acid ; DNA ; DNA sequencing ; Enzymes ; Fungal Proteins - metabolism ; Fungi ; Gene expression ; Gene Expression Regulation, Fungal ; Gene regulation ; Genes ; Hemicellulose ; Information processing ; Metabolic Engineering - methods ; Metabolic Networks and Pathways - genetics ; Metabolism ; Multidisciplinary Sciences ; Neurospora ; Neurospora crassa - genetics ; Neurospora crassa - metabolism ; nutrient sensing ; Nutrient utilization ; Nutrients ; Pectin ; Pectins - metabolism ; Plant biomass ; plant biomass deconstruction ; Polysaccharides - metabolism ; Purification ; RNA-Seq ; Scavenging ; Science &amp; Technology ; Science &amp; Technology - Other Topics ; Target recognition ; Transcription factors ; Transcription Factors - metabolism ; transcriptional networks ; Utilization</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2020-03, Vol.117 (11), p.6003-6013</ispartof><rights>Copyright © 2020 the Author(s). Published by PNAS.</rights><rights>Copyright National Academy of Sciences Mar 17, 2020</rights><rights>Copyright © 2020 the Author(s). Published by PNAS. 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>60</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000520011000062</woscitedreferencesoriginalsourcerecordid><citedby>FETCH-LOGICAL-c470t-730f6cb9419b01e3beb80463a79665d1a9fb23e5d507d9ddf492aea1c4351f993</citedby><cites>FETCH-LOGICAL-c470t-730f6cb9419b01e3beb80463a79665d1a9fb23e5d507d9ddf492aea1c4351f993</cites><orcidid>0000-0003-3405-5563 ; 0000-0002-6354-8319 ; 0000-0001-5361-4514 ; 0000-0003-2638-8528 ; 0000-0002-0598-9714 ; 0000-0003-2942-1338 ; 0000-0002-4844-2890 ; 0000000248442890 ; 0000000153614514</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/26929364$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/26929364$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,315,729,782,786,805,887,27931,27932,28255,53798,53800,58024,58257</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32111691$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/1602098$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Wu, Vincent W.</creatorcontrib><creatorcontrib>Thieme, Nils</creatorcontrib><creatorcontrib>Huberman, Lori B.</creatorcontrib><creatorcontrib>Dietschmann, Axel</creatorcontrib><creatorcontrib>Kowbel, David J.</creatorcontrib><creatorcontrib>Lee, Juna</creatorcontrib><creatorcontrib>Calhoun, Sara</creatorcontrib><creatorcontrib>Singan, Vasanth R.</creatorcontrib><creatorcontrib>Lipzen, Anna</creatorcontrib><creatorcontrib>Xiong, Yi</creatorcontrib><creatorcontrib>Monti, Remo</creatorcontrib><creatorcontrib>Blow, Matthew J.</creatorcontrib><creatorcontrib>O’Malley, Ronan C.</creatorcontrib><creatorcontrib>Grigoriev, Igor V.</creatorcontrib><creatorcontrib>Benz, J. Philipp</creatorcontrib><creatorcontrib>Glass, N. Louise</creatorcontrib><creatorcontrib>Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States)</creatorcontrib><title>The regulatory and transcriptional landscape associated with carbon utilization in a filamentous fungus</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>P NATL ACAD SCI USA</addtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><description>Filamentous fungi, such as Neurospora crassa, are very efficient in deconstructing plant biomass by the secretion of an arsenal of plant cell wall-degrading enzymes, by remodeling metabolism to accommodate production of secreted enzymes, and by enabling transport and intracellular utilization of plant biomass components. Although a number of enzymes and transcriptional regulators involved in plant biomass utilization have been identified, how filamentous fungi sense and integrate nutritional information encoded in the plant cell wall into a regulatory hierarchy for optimal utilization of complex carbon sources is not understood. Here, we performed transcriptional profiling of N. crassa on 40 different carbon sources, including plant biomass, to provide data on how fungi sense simple to complex carbohydrates. From these data, we identified regulatory factors in N. crassa and characterized one (PDR-2) associated with pectin utilization and one with pectin/hemicellulose utilization (ARA-1). Using in vitro DNA affinity purification sequencing (DAP-seq), we identified direct targets of transcription factors involved in regulating genes encoding plant cell wall-degrading enzymes. In particular, our data clarified the role of the transcription factor VIB-1 in the regulation of genes encoding plant cell wall-degrading enzymes and nutrient scavenging and revealed a major role of the carbon catabolite repressor CRE-1 in regulating the expression of major facilitator transporter genes. These data contribute to a more complete understanding of cross talk between transcription factors and their target genes, which are involved in regulating nutrient sensing and plant biomass utilization on a global level.</description><subject>BASIC BIOLOGICAL SCIENCES</subject><subject>Biofuels</subject><subject>Biological Sciences</subject><subject>Biomass</subject><subject>Carbohydrates</subject><subject>Carbon</subject><subject>Carbon sources</subject><subject>Catabolite Repression</subject><subject>Cell Wall - chemistry</subject><subject>Cell Wall - metabolism</subject><subject>Cell walls</subject><subject>Crosstalk</subject><subject>DAP-seq</subject><subject>Degradation</subject><subject>Deoxyribonucleic acid</subject><subject>DNA</subject><subject>DNA sequencing</subject><subject>Enzymes</subject><subject>Fungal Proteins - metabolism</subject><subject>Fungi</subject><subject>Gene expression</subject><subject>Gene Expression Regulation, Fungal</subject><subject>Gene regulation</subject><subject>Genes</subject><subject>Hemicellulose</subject><subject>Information processing</subject><subject>Metabolic Engineering - methods</subject><subject>Metabolic Networks and Pathways - genetics</subject><subject>Metabolism</subject><subject>Multidisciplinary Sciences</subject><subject>Neurospora</subject><subject>Neurospora crassa - genetics</subject><subject>Neurospora crassa - metabolism</subject><subject>nutrient sensing</subject><subject>Nutrient utilization</subject><subject>Nutrients</subject><subject>Pectin</subject><subject>Pectins - metabolism</subject><subject>Plant biomass</subject><subject>plant biomass deconstruction</subject><subject>Polysaccharides - metabolism</subject><subject>Purification</subject><subject>RNA-Seq</subject><subject>Scavenging</subject><subject>Science &amp; Technology</subject><subject>Science &amp; Technology - Other Topics</subject><subject>Target recognition</subject><subject>Transcription factors</subject><subject>Transcription Factors - metabolism</subject><subject>transcriptional networks</subject><subject>Utilization</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>AOWDO</sourceid><sourceid>EIF</sourceid><recordid>eNqNksuPFCEQxonRuOPo2ZOG6MXE9G7xaLq5mGwmvpJNvKxnQtP0DJMeaIF2s_71y9jr-DjJBQK_KuqrrxB6TuCcQMMuJq_TOZGkFqSs5gFaEZCkElzCQ7QCoE3VcsrP0JOU9gAg6xYeozNGCy0kWaHt9c7iaLfzqHOIt1j7HueofTLRTdkFr0c8lstk9GSxTikYp7Pt8Y3LO2x07ILHc3aj-6GPOHYeazy4UR-sz2FOeJj9dk5P0aNBj8k-u9_X6OuH99ebT9XVl4-fN5dXleEN5KphMAjTSU5kB8SyznYtcMF0I4Woe6Ll0FFm676Gppd9P3BJtdXEcFaTQUq2Ru-WvNPcHWxvShFRj2qK7qDjrQraqb9fvNupbfiuGmg5NKQkeLUkCCk7lYzL1uxM8N6arIgACrIt0Jv7X2L4NtuU1cElY8fSKVs0K8qE5AzqUvkavf4H3Yc5lrYeqaIKGG14oS4WysSQUrTDqWIC6ui0OjqtfjtdIl7-KfTE_7K2AG8X4MZ2YShCrDf2hJVZqCkAIeUAgha6_X964_JPszdh9rmEvlhC96mM0CmGCkklE5zdAZkh0Mk</recordid><startdate>20200317</startdate><enddate>20200317</enddate><creator>Wu, Vincent W.</creator><creator>Thieme, Nils</creator><creator>Huberman, Lori B.</creator><creator>Dietschmann, Axel</creator><creator>Kowbel, David J.</creator><creator>Lee, Juna</creator><creator>Calhoun, Sara</creator><creator>Singan, Vasanth R.</creator><creator>Lipzen, Anna</creator><creator>Xiong, Yi</creator><creator>Monti, Remo</creator><creator>Blow, Matthew J.</creator><creator>O’Malley, Ronan C.</creator><creator>Grigoriev, Igor V.</creator><creator>Benz, J. Philipp</creator><creator>Glass, N. Louise</creator><general>National Academy of Sciences</general><general>Natl Acad Sciences</general><scope>AOWDO</scope><scope>BLEPL</scope><scope>DTL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>OTOTI</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-3405-5563</orcidid><orcidid>https://orcid.org/0000-0002-6354-8319</orcidid><orcidid>https://orcid.org/0000-0001-5361-4514</orcidid><orcidid>https://orcid.org/0000-0003-2638-8528</orcidid><orcidid>https://orcid.org/0000-0002-0598-9714</orcidid><orcidid>https://orcid.org/0000-0003-2942-1338</orcidid><orcidid>https://orcid.org/0000-0002-4844-2890</orcidid><orcidid>https://orcid.org/0000000248442890</orcidid><orcidid>https://orcid.org/0000000153614514</orcidid></search><sort><creationdate>20200317</creationdate><title>The regulatory and transcriptional landscape associated with carbon utilization in a filamentous fungus</title><author>Wu, Vincent W. ; Thieme, Nils ; Huberman, Lori B. ; Dietschmann, Axel ; Kowbel, David J. ; Lee, Juna ; Calhoun, Sara ; Singan, Vasanth R. ; Lipzen, Anna ; Xiong, Yi ; Monti, Remo ; Blow, Matthew J. ; O’Malley, Ronan C. ; Grigoriev, Igor V. ; Benz, J. Philipp ; Glass, N. Louise</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c470t-730f6cb9419b01e3beb80463a79665d1a9fb23e5d507d9ddf492aea1c4351f993</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>BASIC BIOLOGICAL SCIENCES</topic><topic>Biofuels</topic><topic>Biological Sciences</topic><topic>Biomass</topic><topic>Carbohydrates</topic><topic>Carbon</topic><topic>Carbon sources</topic><topic>Catabolite Repression</topic><topic>Cell Wall - chemistry</topic><topic>Cell Wall - metabolism</topic><topic>Cell walls</topic><topic>Crosstalk</topic><topic>DAP-seq</topic><topic>Degradation</topic><topic>Deoxyribonucleic acid</topic><topic>DNA</topic><topic>DNA sequencing</topic><topic>Enzymes</topic><topic>Fungal Proteins - metabolism</topic><topic>Fungi</topic><topic>Gene expression</topic><topic>Gene Expression Regulation, Fungal</topic><topic>Gene regulation</topic><topic>Genes</topic><topic>Hemicellulose</topic><topic>Information processing</topic><topic>Metabolic Engineering - methods</topic><topic>Metabolic Networks and Pathways - genetics</topic><topic>Metabolism</topic><topic>Multidisciplinary Sciences</topic><topic>Neurospora</topic><topic>Neurospora crassa - genetics</topic><topic>Neurospora crassa - metabolism</topic><topic>nutrient sensing</topic><topic>Nutrient utilization</topic><topic>Nutrients</topic><topic>Pectin</topic><topic>Pectins - metabolism</topic><topic>Plant biomass</topic><topic>plant biomass deconstruction</topic><topic>Polysaccharides - metabolism</topic><topic>Purification</topic><topic>RNA-Seq</topic><topic>Scavenging</topic><topic>Science &amp; Technology</topic><topic>Science &amp; Technology - Other Topics</topic><topic>Target recognition</topic><topic>Transcription factors</topic><topic>Transcription Factors - metabolism</topic><topic>transcriptional networks</topic><topic>Utilization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wu, Vincent W.</creatorcontrib><creatorcontrib>Thieme, Nils</creatorcontrib><creatorcontrib>Huberman, Lori B.</creatorcontrib><creatorcontrib>Dietschmann, Axel</creatorcontrib><creatorcontrib>Kowbel, David J.</creatorcontrib><creatorcontrib>Lee, Juna</creatorcontrib><creatorcontrib>Calhoun, Sara</creatorcontrib><creatorcontrib>Singan, Vasanth R.</creatorcontrib><creatorcontrib>Lipzen, Anna</creatorcontrib><creatorcontrib>Xiong, Yi</creatorcontrib><creatorcontrib>Monti, Remo</creatorcontrib><creatorcontrib>Blow, Matthew J.</creatorcontrib><creatorcontrib>O’Malley, Ronan C.</creatorcontrib><creatorcontrib>Grigoriev, Igor V.</creatorcontrib><creatorcontrib>Benz, J. Philipp</creatorcontrib><creatorcontrib>Glass, N. Louise</creatorcontrib><creatorcontrib>Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States)</creatorcontrib><collection>Web of Science - Science Citation Index Expanded - 2020</collection><collection>Web of Science Core Collection</collection><collection>Science Citation Index Expanded</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wu, Vincent W.</au><au>Thieme, Nils</au><au>Huberman, Lori B.</au><au>Dietschmann, Axel</au><au>Kowbel, David J.</au><au>Lee, Juna</au><au>Calhoun, Sara</au><au>Singan, Vasanth R.</au><au>Lipzen, Anna</au><au>Xiong, Yi</au><au>Monti, Remo</au><au>Blow, Matthew J.</au><au>O’Malley, Ronan C.</au><au>Grigoriev, Igor V.</au><au>Benz, J. Philipp</au><au>Glass, N. Louise</au><aucorp>Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The regulatory and transcriptional landscape associated with carbon utilization in a filamentous fungus</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><stitle>P NATL ACAD SCI USA</stitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2020-03-17</date><risdate>2020</risdate><volume>117</volume><issue>11</issue><spage>6003</spage><epage>6013</epage><pages>6003-6013</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>Filamentous fungi, such as Neurospora crassa, are very efficient in deconstructing plant biomass by the secretion of an arsenal of plant cell wall-degrading enzymes, by remodeling metabolism to accommodate production of secreted enzymes, and by enabling transport and intracellular utilization of plant biomass components. Although a number of enzymes and transcriptional regulators involved in plant biomass utilization have been identified, how filamentous fungi sense and integrate nutritional information encoded in the plant cell wall into a regulatory hierarchy for optimal utilization of complex carbon sources is not understood. Here, we performed transcriptional profiling of N. crassa on 40 different carbon sources, including plant biomass, to provide data on how fungi sense simple to complex carbohydrates. From these data, we identified regulatory factors in N. crassa and characterized one (PDR-2) associated with pectin utilization and one with pectin/hemicellulose utilization (ARA-1). Using in vitro DNA affinity purification sequencing (DAP-seq), we identified direct targets of transcription factors involved in regulating genes encoding plant cell wall-degrading enzymes. In particular, our data clarified the role of the transcription factor VIB-1 in the regulation of genes encoding plant cell wall-degrading enzymes and nutrient scavenging and revealed a major role of the carbon catabolite repressor CRE-1 in regulating the expression of major facilitator transporter genes. These data contribute to a more complete understanding of cross talk between transcription factors and their target genes, which are involved in regulating nutrient sensing and plant biomass utilization on a global level.</abstract><cop>WASHINGTON</cop><pub>National Academy of Sciences</pub><pmid>32111691</pmid><doi>10.1073/pnas.1915611117</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0003-3405-5563</orcidid><orcidid>https://orcid.org/0000-0002-6354-8319</orcidid><orcidid>https://orcid.org/0000-0001-5361-4514</orcidid><orcidid>https://orcid.org/0000-0003-2638-8528</orcidid><orcidid>https://orcid.org/0000-0002-0598-9714</orcidid><orcidid>https://orcid.org/0000-0003-2942-1338</orcidid><orcidid>https://orcid.org/0000-0002-4844-2890</orcidid><orcidid>https://orcid.org/0000000248442890</orcidid><orcidid>https://orcid.org/0000000153614514</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0027-8424
ispartof Proceedings of the National Academy of Sciences - PNAS, 2020-03, Vol.117 (11), p.6003-6013
issn 0027-8424
1091-6490
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7084071
source MEDLINE; JSTOR Archive Collection A-Z Listing; Web of Science - Science Citation Index Expanded - 2020<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" />; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry
subjects BASIC BIOLOGICAL SCIENCES
Biofuels
Biological Sciences
Biomass
Carbohydrates
Carbon
Carbon sources
Catabolite Repression
Cell Wall - chemistry
Cell Wall - metabolism
Cell walls
Crosstalk
DAP-seq
Degradation
Deoxyribonucleic acid
DNA
DNA sequencing
Enzymes
Fungal Proteins - metabolism
Fungi
Gene expression
Gene Expression Regulation, Fungal
Gene regulation
Genes
Hemicellulose
Information processing
Metabolic Engineering - methods
Metabolic Networks and Pathways - genetics
Metabolism
Multidisciplinary Sciences
Neurospora
Neurospora crassa - genetics
Neurospora crassa - metabolism
nutrient sensing
Nutrient utilization
Nutrients
Pectin
Pectins - metabolism
Plant biomass
plant biomass deconstruction
Polysaccharides - metabolism
Purification
RNA-Seq
Scavenging
Science & Technology
Science & Technology - Other Topics
Target recognition
Transcription factors
Transcription Factors - metabolism
transcriptional networks
Utilization
title The regulatory and transcriptional landscape associated with carbon utilization in a filamentous fungus
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-05T01%3A27%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20regulatory%20and%20transcriptional%20landscape%20associated%20with%20carbon%20utilization%20in%20a%20filamentous%20fungus&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Wu,%20Vincent%20W.&rft.aucorp=Lawrence%20Berkeley%20National%20Laboratory%20(LBNL),%20Berkeley,%20CA%20(United%20States)&rft.date=2020-03-17&rft.volume=117&rft.issue=11&rft.spage=6003&rft.epage=6013&rft.pages=6003-6013&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.1915611117&rft_dat=%3Cjstor_pubme%3E26929364%3C/jstor_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2379603274&rft_id=info:pmid/32111691&rft_jstor_id=26929364&rfr_iscdi=true