Insulin activates hepatic Wnt/β-catenin signaling through stearoyl-CoA desaturase 1 and Porcupine

The Wnt/β-catenin pathway plays a pivotal role in liver structural and metabolic homeostasis. Wnt activity is tightly regulated by the acyltransferase Porcupine through the addition of palmitoleate. Interestingly palmitoleate can be endogenously produced by the stearoyl-CoA desaturase 1 (SCD1), a li...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Scientific reports 2020-03, Vol.10 (1), p.5186-5186, Article 5186
Hauptverfasser: Cabrae, Régine, Dubuquoy, Céline, Caüzac, Michèle, Morzyglod, Lucille, Guilmeau, Sandra, Noblet, Bénédicte, Fève, Bruno, Postic, Catherine, Burnol, Anne-Françoise, Moldes, Marthe
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 5186
container_issue 1
container_start_page 5186
container_title Scientific reports
container_volume 10
creator Cabrae, Régine
Dubuquoy, Céline
Caüzac, Michèle
Morzyglod, Lucille
Guilmeau, Sandra
Noblet, Bénédicte
Fève, Bruno
Postic, Catherine
Burnol, Anne-Françoise
Moldes, Marthe
description The Wnt/β-catenin pathway plays a pivotal role in liver structural and metabolic homeostasis. Wnt activity is tightly regulated by the acyltransferase Porcupine through the addition of palmitoleate. Interestingly palmitoleate can be endogenously produced by the stearoyl-CoA desaturase 1 (SCD1), a lipogenic enzyme transcriptionally regulated by insulin. This study aimed to determine whether nutritional conditions, and insulin, regulate Wnt pathway activity in liver. An adenoviral TRE-Luciferase reporter was used as a readout of Wnt/β-catenin pathway activity, in vivo in mouse liver and in vitro in primary hepatocytes. Refeeding enhanced TRE-Luciferase activity and expression of Wnt target genes in mice liver, revealing a nutritional regulation of the Wnt/β-catenin pathway. This effect was inhibited in liver specific insulin receptor KO (iLIRKO) mice and upon wortmannin or rapamycin treatment. Overexpression or inhibition of SCD1 expression regulated Wnt/β-catenin activity in primary hepatocytes. Similarly, palmitoleate added exogenously or produced by SCD1-mediated desaturation of palmitate, induced Wnt signaling activity. Interestingly, this effect was abolished in the absence of Porcupine, suggesting that both SCD1 and Porcupine are key mediators of insulin-induced Wnt/β-catenin activity in hepatocytes. Altogether, our findings suggest that insulin and lipogenesis act as potential novel physiological inducers of hepatic Wnt/β-catenin pathway.
doi_str_mv 10.1038/s41598-020-61869-4
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7083857</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2380032588</sourcerecordid><originalsourceid>FETCH-LOGICAL-c508t-78c111978090c641f6c97f5040199074d3206ae6b3d59cc36bf6dcae6debc3ab3</originalsourceid><addsrcrecordid>eNp9kc1u1DAQxyMEolXpC3BAlrjAIXT8Ece-IK1WlFZaqT0UcbQcx_mosvZiOyv1tXgQnqluU0rbA77YmvnNf8bzL4r3GL5goOIkMlxJUQKBkmPBZcleFYcEWFUSSsjrJ--D4jjGa8inIpJh-bY4oARLQTk5LJpzF-dpdEibNO51shENdqfTaNBPl07-_C5NDroMxLF3OpM9SkPwcz-gmKwO_mYq136FWht1moOOFmGkXYsufTDzbnT2XfGm01O0xw_3UfHj9NvV-qzcXHw_X682palApLIWBmMsawESDGe440bWXQUMsJRQs5YS4NryhraVNIbypuOtyYHWNobqhh4VXxfd3dxsbWusS0FPahfGrQ43yutRPc-4cVC936saBBVVnQU-LwLDi7Kz1UbdxYCRvDSo9ziznx6aBf9rtjGp7RiNnSbtrJ-jIlRgTirBIKMfX6DXfg55l_cUAM2YyBRZKBN8jMF2jxNgUHeOq8VxlR1X944rlos-PP3yY8lffzNAFyDmlOtt-Nf7P7K3D0e3Rg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2380032588</pqid></control><display><type>article</type><title>Insulin activates hepatic Wnt/β-catenin signaling through stearoyl-CoA desaturase 1 and Porcupine</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Springer Nature OA Free Journals</source><source>Nature Free</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Cabrae, Régine ; Dubuquoy, Céline ; Caüzac, Michèle ; Morzyglod, Lucille ; Guilmeau, Sandra ; Noblet, Bénédicte ; Fève, Bruno ; Postic, Catherine ; Burnol, Anne-Françoise ; Moldes, Marthe</creator><creatorcontrib>Cabrae, Régine ; Dubuquoy, Céline ; Caüzac, Michèle ; Morzyglod, Lucille ; Guilmeau, Sandra ; Noblet, Bénédicte ; Fève, Bruno ; Postic, Catherine ; Burnol, Anne-Françoise ; Moldes, Marthe</creatorcontrib><description>The Wnt/β-catenin pathway plays a pivotal role in liver structural and metabolic homeostasis. Wnt activity is tightly regulated by the acyltransferase Porcupine through the addition of palmitoleate. Interestingly palmitoleate can be endogenously produced by the stearoyl-CoA desaturase 1 (SCD1), a lipogenic enzyme transcriptionally regulated by insulin. This study aimed to determine whether nutritional conditions, and insulin, regulate Wnt pathway activity in liver. An adenoviral TRE-Luciferase reporter was used as a readout of Wnt/β-catenin pathway activity, in vivo in mouse liver and in vitro in primary hepatocytes. Refeeding enhanced TRE-Luciferase activity and expression of Wnt target genes in mice liver, revealing a nutritional regulation of the Wnt/β-catenin pathway. This effect was inhibited in liver specific insulin receptor KO (iLIRKO) mice and upon wortmannin or rapamycin treatment. Overexpression or inhibition of SCD1 expression regulated Wnt/β-catenin activity in primary hepatocytes. Similarly, palmitoleate added exogenously or produced by SCD1-mediated desaturation of palmitate, induced Wnt signaling activity. Interestingly, this effect was abolished in the absence of Porcupine, suggesting that both SCD1 and Porcupine are key mediators of insulin-induced Wnt/β-catenin activity in hepatocytes. Altogether, our findings suggest that insulin and lipogenesis act as potential novel physiological inducers of hepatic Wnt/β-catenin pathway.</description><identifier>ISSN: 2045-2322</identifier><identifier>EISSN: 2045-2322</identifier><identifier>DOI: 10.1038/s41598-020-61869-4</identifier><identifier>PMID: 32198362</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>13 ; 13/89 ; 13/95 ; 38 ; 631/443/319/1557 ; 631/80/86/2367 ; 64 ; 64/60 ; Acyltransferase ; Acyltransferases - metabolism ; Animals ; beta Catenin - drug effects ; beta Catenin - metabolism ; Cellular Biology ; Desaturase ; Fatty Acids, Monounsaturated - pharmacology ; Hepatocytes ; Hepatocytes - metabolism ; Homeostasis ; Humanities and Social Sciences ; Insulin ; Insulin - metabolism ; Life Sciences ; Lipogenesis ; Lipogenesis - drug effects ; Liver ; Liver - metabolism ; Liver - pathology ; Male ; Membrane Proteins - metabolism ; Mice ; Mice, Inbred C57BL ; multidisciplinary ; Nutrition ; Palmitic acid ; Rapamycin ; Science ; Science (multidisciplinary) ; Signal transduction ; Stearoyl-CoA desaturase ; Stearoyl-CoA Desaturase - genetics ; Stearoyl-CoA Desaturase - metabolism ; Sterol Regulatory Element Binding Protein 1 - metabolism ; Transcription ; Wnt protein ; Wnt Signaling Pathway - drug effects ; Wnt Signaling Pathway - physiology ; Wortmannin ; β-Catenin</subject><ispartof>Scientific reports, 2020-03, Vol.10 (1), p.5186-5186, Article 5186</ispartof><rights>The Author(s) 2020</rights><rights>This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c508t-78c111978090c641f6c97f5040199074d3206ae6b3d59cc36bf6dcae6debc3ab3</citedby><cites>FETCH-LOGICAL-c508t-78c111978090c641f6c97f5040199074d3206ae6b3d59cc36bf6dcae6debc3ab3</cites><orcidid>0000-0002-8260-1218</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7083857/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7083857/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,27924,27925,41120,42189,51576,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32198362$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-04236207$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Cabrae, Régine</creatorcontrib><creatorcontrib>Dubuquoy, Céline</creatorcontrib><creatorcontrib>Caüzac, Michèle</creatorcontrib><creatorcontrib>Morzyglod, Lucille</creatorcontrib><creatorcontrib>Guilmeau, Sandra</creatorcontrib><creatorcontrib>Noblet, Bénédicte</creatorcontrib><creatorcontrib>Fève, Bruno</creatorcontrib><creatorcontrib>Postic, Catherine</creatorcontrib><creatorcontrib>Burnol, Anne-Françoise</creatorcontrib><creatorcontrib>Moldes, Marthe</creatorcontrib><title>Insulin activates hepatic Wnt/β-catenin signaling through stearoyl-CoA desaturase 1 and Porcupine</title><title>Scientific reports</title><addtitle>Sci Rep</addtitle><addtitle>Sci Rep</addtitle><description>The Wnt/β-catenin pathway plays a pivotal role in liver structural and metabolic homeostasis. Wnt activity is tightly regulated by the acyltransferase Porcupine through the addition of palmitoleate. Interestingly palmitoleate can be endogenously produced by the stearoyl-CoA desaturase 1 (SCD1), a lipogenic enzyme transcriptionally regulated by insulin. This study aimed to determine whether nutritional conditions, and insulin, regulate Wnt pathway activity in liver. An adenoviral TRE-Luciferase reporter was used as a readout of Wnt/β-catenin pathway activity, in vivo in mouse liver and in vitro in primary hepatocytes. Refeeding enhanced TRE-Luciferase activity and expression of Wnt target genes in mice liver, revealing a nutritional regulation of the Wnt/β-catenin pathway. This effect was inhibited in liver specific insulin receptor KO (iLIRKO) mice and upon wortmannin or rapamycin treatment. Overexpression or inhibition of SCD1 expression regulated Wnt/β-catenin activity in primary hepatocytes. Similarly, palmitoleate added exogenously or produced by SCD1-mediated desaturation of palmitate, induced Wnt signaling activity. Interestingly, this effect was abolished in the absence of Porcupine, suggesting that both SCD1 and Porcupine are key mediators of insulin-induced Wnt/β-catenin activity in hepatocytes. Altogether, our findings suggest that insulin and lipogenesis act as potential novel physiological inducers of hepatic Wnt/β-catenin pathway.</description><subject>13</subject><subject>13/89</subject><subject>13/95</subject><subject>38</subject><subject>631/443/319/1557</subject><subject>631/80/86/2367</subject><subject>64</subject><subject>64/60</subject><subject>Acyltransferase</subject><subject>Acyltransferases - metabolism</subject><subject>Animals</subject><subject>beta Catenin - drug effects</subject><subject>beta Catenin - metabolism</subject><subject>Cellular Biology</subject><subject>Desaturase</subject><subject>Fatty Acids, Monounsaturated - pharmacology</subject><subject>Hepatocytes</subject><subject>Hepatocytes - metabolism</subject><subject>Homeostasis</subject><subject>Humanities and Social Sciences</subject><subject>Insulin</subject><subject>Insulin - metabolism</subject><subject>Life Sciences</subject><subject>Lipogenesis</subject><subject>Lipogenesis - drug effects</subject><subject>Liver</subject><subject>Liver - metabolism</subject><subject>Liver - pathology</subject><subject>Male</subject><subject>Membrane Proteins - metabolism</subject><subject>Mice</subject><subject>Mice, Inbred C57BL</subject><subject>multidisciplinary</subject><subject>Nutrition</subject><subject>Palmitic acid</subject><subject>Rapamycin</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>Signal transduction</subject><subject>Stearoyl-CoA desaturase</subject><subject>Stearoyl-CoA Desaturase - genetics</subject><subject>Stearoyl-CoA Desaturase - metabolism</subject><subject>Sterol Regulatory Element Binding Protein 1 - metabolism</subject><subject>Transcription</subject><subject>Wnt protein</subject><subject>Wnt Signaling Pathway - drug effects</subject><subject>Wnt Signaling Pathway - physiology</subject><subject>Wortmannin</subject><subject>β-Catenin</subject><issn>2045-2322</issn><issn>2045-2322</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kc1u1DAQxyMEolXpC3BAlrjAIXT8Ece-IK1WlFZaqT0UcbQcx_mosvZiOyv1tXgQnqluU0rbA77YmvnNf8bzL4r3GL5goOIkMlxJUQKBkmPBZcleFYcEWFUSSsjrJ--D4jjGa8inIpJh-bY4oARLQTk5LJpzF-dpdEibNO51shENdqfTaNBPl07-_C5NDroMxLF3OpM9SkPwcz-gmKwO_mYq136FWht1moOOFmGkXYsufTDzbnT2XfGm01O0xw_3UfHj9NvV-qzcXHw_X682palApLIWBmMsawESDGe440bWXQUMsJRQs5YS4NryhraVNIbypuOtyYHWNobqhh4VXxfd3dxsbWusS0FPahfGrQ43yutRPc-4cVC936saBBVVnQU-LwLDi7Kz1UbdxYCRvDSo9ziznx6aBf9rtjGp7RiNnSbtrJ-jIlRgTirBIKMfX6DXfg55l_cUAM2YyBRZKBN8jMF2jxNgUHeOq8VxlR1X944rlos-PP3yY8lffzNAFyDmlOtt-Nf7P7K3D0e3Rg</recordid><startdate>20200320</startdate><enddate>20200320</enddate><creator>Cabrae, Régine</creator><creator>Dubuquoy, Céline</creator><creator>Caüzac, Michèle</creator><creator>Morzyglod, Lucille</creator><creator>Guilmeau, Sandra</creator><creator>Noblet, Bénédicte</creator><creator>Fève, Bruno</creator><creator>Postic, Catherine</creator><creator>Burnol, Anne-Françoise</creator><creator>Moldes, Marthe</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>7X8</scope><scope>1XC</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-8260-1218</orcidid></search><sort><creationdate>20200320</creationdate><title>Insulin activates hepatic Wnt/β-catenin signaling through stearoyl-CoA desaturase 1 and Porcupine</title><author>Cabrae, Régine ; Dubuquoy, Céline ; Caüzac, Michèle ; Morzyglod, Lucille ; Guilmeau, Sandra ; Noblet, Bénédicte ; Fève, Bruno ; Postic, Catherine ; Burnol, Anne-Françoise ; Moldes, Marthe</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c508t-78c111978090c641f6c97f5040199074d3206ae6b3d59cc36bf6dcae6debc3ab3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>13</topic><topic>13/89</topic><topic>13/95</topic><topic>38</topic><topic>631/443/319/1557</topic><topic>631/80/86/2367</topic><topic>64</topic><topic>64/60</topic><topic>Acyltransferase</topic><topic>Acyltransferases - metabolism</topic><topic>Animals</topic><topic>beta Catenin - drug effects</topic><topic>beta Catenin - metabolism</topic><topic>Cellular Biology</topic><topic>Desaturase</topic><topic>Fatty Acids, Monounsaturated - pharmacology</topic><topic>Hepatocytes</topic><topic>Hepatocytes - metabolism</topic><topic>Homeostasis</topic><topic>Humanities and Social Sciences</topic><topic>Insulin</topic><topic>Insulin - metabolism</topic><topic>Life Sciences</topic><topic>Lipogenesis</topic><topic>Lipogenesis - drug effects</topic><topic>Liver</topic><topic>Liver - metabolism</topic><topic>Liver - pathology</topic><topic>Male</topic><topic>Membrane Proteins - metabolism</topic><topic>Mice</topic><topic>Mice, Inbred C57BL</topic><topic>multidisciplinary</topic><topic>Nutrition</topic><topic>Palmitic acid</topic><topic>Rapamycin</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>Signal transduction</topic><topic>Stearoyl-CoA desaturase</topic><topic>Stearoyl-CoA Desaturase - genetics</topic><topic>Stearoyl-CoA Desaturase - metabolism</topic><topic>Sterol Regulatory Element Binding Protein 1 - metabolism</topic><topic>Transcription</topic><topic>Wnt protein</topic><topic>Wnt Signaling Pathway - drug effects</topic><topic>Wnt Signaling Pathway - physiology</topic><topic>Wortmannin</topic><topic>β-Catenin</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cabrae, Régine</creatorcontrib><creatorcontrib>Dubuquoy, Céline</creatorcontrib><creatorcontrib>Caüzac, Michèle</creatorcontrib><creatorcontrib>Morzyglod, Lucille</creatorcontrib><creatorcontrib>Guilmeau, Sandra</creatorcontrib><creatorcontrib>Noblet, Bénédicte</creatorcontrib><creatorcontrib>Fève, Bruno</creatorcontrib><creatorcontrib>Postic, Catherine</creatorcontrib><creatorcontrib>Burnol, Anne-Françoise</creatorcontrib><creatorcontrib>Moldes, Marthe</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Scientific reports</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cabrae, Régine</au><au>Dubuquoy, Céline</au><au>Caüzac, Michèle</au><au>Morzyglod, Lucille</au><au>Guilmeau, Sandra</au><au>Noblet, Bénédicte</au><au>Fève, Bruno</au><au>Postic, Catherine</au><au>Burnol, Anne-Françoise</au><au>Moldes, Marthe</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Insulin activates hepatic Wnt/β-catenin signaling through stearoyl-CoA desaturase 1 and Porcupine</atitle><jtitle>Scientific reports</jtitle><stitle>Sci Rep</stitle><addtitle>Sci Rep</addtitle><date>2020-03-20</date><risdate>2020</risdate><volume>10</volume><issue>1</issue><spage>5186</spage><epage>5186</epage><pages>5186-5186</pages><artnum>5186</artnum><issn>2045-2322</issn><eissn>2045-2322</eissn><abstract>The Wnt/β-catenin pathway plays a pivotal role in liver structural and metabolic homeostasis. Wnt activity is tightly regulated by the acyltransferase Porcupine through the addition of palmitoleate. Interestingly palmitoleate can be endogenously produced by the stearoyl-CoA desaturase 1 (SCD1), a lipogenic enzyme transcriptionally regulated by insulin. This study aimed to determine whether nutritional conditions, and insulin, regulate Wnt pathway activity in liver. An adenoviral TRE-Luciferase reporter was used as a readout of Wnt/β-catenin pathway activity, in vivo in mouse liver and in vitro in primary hepatocytes. Refeeding enhanced TRE-Luciferase activity and expression of Wnt target genes in mice liver, revealing a nutritional regulation of the Wnt/β-catenin pathway. This effect was inhibited in liver specific insulin receptor KO (iLIRKO) mice and upon wortmannin or rapamycin treatment. Overexpression or inhibition of SCD1 expression regulated Wnt/β-catenin activity in primary hepatocytes. Similarly, palmitoleate added exogenously or produced by SCD1-mediated desaturation of palmitate, induced Wnt signaling activity. Interestingly, this effect was abolished in the absence of Porcupine, suggesting that both SCD1 and Porcupine are key mediators of insulin-induced Wnt/β-catenin activity in hepatocytes. Altogether, our findings suggest that insulin and lipogenesis act as potential novel physiological inducers of hepatic Wnt/β-catenin pathway.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>32198362</pmid><doi>10.1038/s41598-020-61869-4</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0002-8260-1218</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2045-2322
ispartof Scientific reports, 2020-03, Vol.10 (1), p.5186-5186, Article 5186
issn 2045-2322
2045-2322
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7083857
source MEDLINE; DOAJ Directory of Open Access Journals; Springer Nature OA Free Journals; Nature Free; EZB-FREE-00999 freely available EZB journals; PubMed Central; Free Full-Text Journals in Chemistry
subjects 13
13/89
13/95
38
631/443/319/1557
631/80/86/2367
64
64/60
Acyltransferase
Acyltransferases - metabolism
Animals
beta Catenin - drug effects
beta Catenin - metabolism
Cellular Biology
Desaturase
Fatty Acids, Monounsaturated - pharmacology
Hepatocytes
Hepatocytes - metabolism
Homeostasis
Humanities and Social Sciences
Insulin
Insulin - metabolism
Life Sciences
Lipogenesis
Lipogenesis - drug effects
Liver
Liver - metabolism
Liver - pathology
Male
Membrane Proteins - metabolism
Mice
Mice, Inbred C57BL
multidisciplinary
Nutrition
Palmitic acid
Rapamycin
Science
Science (multidisciplinary)
Signal transduction
Stearoyl-CoA desaturase
Stearoyl-CoA Desaturase - genetics
Stearoyl-CoA Desaturase - metabolism
Sterol Regulatory Element Binding Protein 1 - metabolism
Transcription
Wnt protein
Wnt Signaling Pathway - drug effects
Wnt Signaling Pathway - physiology
Wortmannin
β-Catenin
title Insulin activates hepatic Wnt/β-catenin signaling through stearoyl-CoA desaturase 1 and Porcupine
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T10%3A50%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Insulin%20activates%20hepatic%20Wnt/%CE%B2-catenin%20signaling%20through%20stearoyl-CoA%20desaturase%201%20and%20Porcupine&rft.jtitle=Scientific%20reports&rft.au=Cabrae,%20R%C3%A9gine&rft.date=2020-03-20&rft.volume=10&rft.issue=1&rft.spage=5186&rft.epage=5186&rft.pages=5186-5186&rft.artnum=5186&rft.issn=2045-2322&rft.eissn=2045-2322&rft_id=info:doi/10.1038/s41598-020-61869-4&rft_dat=%3Cproquest_pubme%3E2380032588%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2380032588&rft_id=info:pmid/32198362&rfr_iscdi=true