Maximising recombination across macadamia populations to generate linkage maps for genome anchoring

The Proteaceae genus Macadamia has a recent history of domestication as a commercial nut crop. We aimed to establish the first sequence-based haploid-correlated reference genetic linkage maps for this primarily outcrossing perennial tree crop, with marker density suitable for genome anchoring. Four...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Scientific reports 2020-03, Vol.10 (1), p.5048-5048, Article 5048
Hauptverfasser: Langdon, Kirsty S., King, Graham J., Baten, Abdul, Mauleon, Ramil, Bundock, Peter C., Topp, Bruce L., Nock, Catherine J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 5048
container_issue 1
container_start_page 5048
container_title Scientific reports
container_volume 10
creator Langdon, Kirsty S.
King, Graham J.
Baten, Abdul
Mauleon, Ramil
Bundock, Peter C.
Topp, Bruce L.
Nock, Catherine J.
description The Proteaceae genus Macadamia has a recent history of domestication as a commercial nut crop. We aimed to establish the first sequence-based haploid-correlated reference genetic linkage maps for this primarily outcrossing perennial tree crop, with marker density suitable for genome anchoring. Four first generation populations were used to maximise the segregation patterns available within full-sib, biparental and self-pollinated progeny. This allowed us to combine segregation data from overlapping subsets of >4,000 informative sequence-tagged markers to increase the effective coverage of the karyotype represented by the recombinant crossover events detected. All maps had 14 linkage groups, corresponding to the Macadamia haploid chromosome number, and enabled the anchoring and orientation of sequence scaffolds to construct a pseudo-chromosomal genome assembly for macadamia. Comparison of individual maps indicated a high level of congruence, with minor discrepancies satisfactorily resolved within the integrated maps. The combined set of maps significantly improved marker density and the proportion (70%) of the genome sequence assembly anchored. Overall, increasing our understanding of the genetic landscape and genome for this nut crop represents a substantial advance in macadamia genetics and genomics. The set of maps, large number of sequence-based markers and the reconstructed genome provide a toolkit to underpin future breeding that should help to extend the macadamia industry as well as provide resources for the long term conservation of natural populations in eastern Australia of this unique genus.
doi_str_mv 10.1038/s41598-020-61708-6
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7081209</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2381624145</sourcerecordid><originalsourceid>FETCH-LOGICAL-c532t-d9f28e7bab24dad0767a2b5abe0f4611051b04655e4a557ad2860bf862f316f13</originalsourceid><addsrcrecordid>eNp9kUtv1TAQha2qqK1K_0AXyBKbbgL2-BFnUwlVvKQiNrC2Jolz65LYqZ1U8O_xvbcthQXe2NJ8c8ZzDiHnnL3hTJi3WXLVmIoBqzSvman0ATkBJlUFAuDw2fuYnOV8y8pR0EjeHJFjAbwRkpkT0n3Bn37y2YcNTa6LU-sDLj4Gil2KOdMJO-xx8kjnOK_jrpbpEunGBZdwcXT04QduXCHnTIeYtpU4OYqhu4mpCL8kLwYcszt7uE_J9w_vv119qq6_fvx89e666pSApeqbAYyrW2xB9tizWtcIrcLWsUFqzpniLZNaKSdRqRp7MJq1g9EwCK4HLk7J5V53XtvJ9Z0LS8LRzslPmH7ZiN7-XQn-xm7ivS32cWBNEbh4EEjxbnV5scWZzo0jBhfXbEEYrkFyqQr6-h_0Nq4plPUKVTdKMgBTKNhTOy-TG54-w5ndxmj3MdoSo93FaHVpevV8jaeWx9AKIPZAnrf2uvRn9n9kfwOJxaoM</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2379540228</pqid></control><display><type>article</type><title>Maximising recombination across macadamia populations to generate linkage maps for genome anchoring</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Springer Nature OA Free Journals</source><source>Nature Free</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Langdon, Kirsty S. ; King, Graham J. ; Baten, Abdul ; Mauleon, Ramil ; Bundock, Peter C. ; Topp, Bruce L. ; Nock, Catherine J.</creator><creatorcontrib>Langdon, Kirsty S. ; King, Graham J. ; Baten, Abdul ; Mauleon, Ramil ; Bundock, Peter C. ; Topp, Bruce L. ; Nock, Catherine J.</creatorcontrib><description>The Proteaceae genus Macadamia has a recent history of domestication as a commercial nut crop. We aimed to establish the first sequence-based haploid-correlated reference genetic linkage maps for this primarily outcrossing perennial tree crop, with marker density suitable for genome anchoring. Four first generation populations were used to maximise the segregation patterns available within full-sib, biparental and self-pollinated progeny. This allowed us to combine segregation data from overlapping subsets of &gt;4,000 informative sequence-tagged markers to increase the effective coverage of the karyotype represented by the recombinant crossover events detected. All maps had 14 linkage groups, corresponding to the Macadamia haploid chromosome number, and enabled the anchoring and orientation of sequence scaffolds to construct a pseudo-chromosomal genome assembly for macadamia. Comparison of individual maps indicated a high level of congruence, with minor discrepancies satisfactorily resolved within the integrated maps. The combined set of maps significantly improved marker density and the proportion (70%) of the genome sequence assembly anchored. Overall, increasing our understanding of the genetic landscape and genome for this nut crop represents a substantial advance in macadamia genetics and genomics. The set of maps, large number of sequence-based markers and the reconstructed genome provide a toolkit to underpin future breeding that should help to extend the macadamia industry as well as provide resources for the long term conservation of natural populations in eastern Australia of this unique genus.</description><identifier>ISSN: 2045-2322</identifier><identifier>EISSN: 2045-2322</identifier><identifier>DOI: 10.1038/s41598-020-61708-6</identifier><identifier>PMID: 32193408</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>45 ; 45/22 ; 45/23 ; 631/449 ; 631/449/2491 ; Chromosome Mapping - methods ; Chromosome number ; Chromosomes - genetics ; Conservation of Natural Resources ; Crops ; Domestication ; Gene mapping ; Genetic crosses ; Genetics, Population - methods ; Genome, Plant - genetics ; Genomes ; Genomics ; Haploidy ; Humanities and Social Sciences ; Humans ; Karyotypes ; Macadamia ; Macadamia - genetics ; Macadamia - physiology ; multidisciplinary ; Nucleotide sequence ; Nuts ; Plant Breeding - methods ; Pollination ; Recombination ; Recombination, Genetic - genetics ; Science ; Science (multidisciplinary)</subject><ispartof>Scientific reports, 2020-03, Vol.10 (1), p.5048-5048, Article 5048</ispartof><rights>The Author(s) 2020</rights><rights>This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c532t-d9f28e7bab24dad0767a2b5abe0f4611051b04655e4a557ad2860bf862f316f13</citedby><cites>FETCH-LOGICAL-c532t-d9f28e7bab24dad0767a2b5abe0f4611051b04655e4a557ad2860bf862f316f13</cites><orcidid>0000-0001-5609-4681 ; 0000-0002-5975-6051 ; 0000-0003-0696-7741</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7081209/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7081209/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,27924,27925,41120,42189,51576,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32193408$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Langdon, Kirsty S.</creatorcontrib><creatorcontrib>King, Graham J.</creatorcontrib><creatorcontrib>Baten, Abdul</creatorcontrib><creatorcontrib>Mauleon, Ramil</creatorcontrib><creatorcontrib>Bundock, Peter C.</creatorcontrib><creatorcontrib>Topp, Bruce L.</creatorcontrib><creatorcontrib>Nock, Catherine J.</creatorcontrib><title>Maximising recombination across macadamia populations to generate linkage maps for genome anchoring</title><title>Scientific reports</title><addtitle>Sci Rep</addtitle><addtitle>Sci Rep</addtitle><description>The Proteaceae genus Macadamia has a recent history of domestication as a commercial nut crop. We aimed to establish the first sequence-based haploid-correlated reference genetic linkage maps for this primarily outcrossing perennial tree crop, with marker density suitable for genome anchoring. Four first generation populations were used to maximise the segregation patterns available within full-sib, biparental and self-pollinated progeny. This allowed us to combine segregation data from overlapping subsets of &gt;4,000 informative sequence-tagged markers to increase the effective coverage of the karyotype represented by the recombinant crossover events detected. All maps had 14 linkage groups, corresponding to the Macadamia haploid chromosome number, and enabled the anchoring and orientation of sequence scaffolds to construct a pseudo-chromosomal genome assembly for macadamia. Comparison of individual maps indicated a high level of congruence, with minor discrepancies satisfactorily resolved within the integrated maps. The combined set of maps significantly improved marker density and the proportion (70%) of the genome sequence assembly anchored. Overall, increasing our understanding of the genetic landscape and genome for this nut crop represents a substantial advance in macadamia genetics and genomics. The set of maps, large number of sequence-based markers and the reconstructed genome provide a toolkit to underpin future breeding that should help to extend the macadamia industry as well as provide resources for the long term conservation of natural populations in eastern Australia of this unique genus.</description><subject>45</subject><subject>45/22</subject><subject>45/23</subject><subject>631/449</subject><subject>631/449/2491</subject><subject>Chromosome Mapping - methods</subject><subject>Chromosome number</subject><subject>Chromosomes - genetics</subject><subject>Conservation of Natural Resources</subject><subject>Crops</subject><subject>Domestication</subject><subject>Gene mapping</subject><subject>Genetic crosses</subject><subject>Genetics, Population - methods</subject><subject>Genome, Plant - genetics</subject><subject>Genomes</subject><subject>Genomics</subject><subject>Haploidy</subject><subject>Humanities and Social Sciences</subject><subject>Humans</subject><subject>Karyotypes</subject><subject>Macadamia</subject><subject>Macadamia - genetics</subject><subject>Macadamia - physiology</subject><subject>multidisciplinary</subject><subject>Nucleotide sequence</subject><subject>Nuts</subject><subject>Plant Breeding - methods</subject><subject>Pollination</subject><subject>Recombination</subject><subject>Recombination, Genetic - genetics</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><issn>2045-2322</issn><issn>2045-2322</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kUtv1TAQha2qqK1K_0AXyBKbbgL2-BFnUwlVvKQiNrC2Jolz65LYqZ1U8O_xvbcthQXe2NJ8c8ZzDiHnnL3hTJi3WXLVmIoBqzSvman0ATkBJlUFAuDw2fuYnOV8y8pR0EjeHJFjAbwRkpkT0n3Bn37y2YcNTa6LU-sDLj4Gil2KOdMJO-xx8kjnOK_jrpbpEunGBZdwcXT04QduXCHnTIeYtpU4OYqhu4mpCL8kLwYcszt7uE_J9w_vv119qq6_fvx89e666pSApeqbAYyrW2xB9tizWtcIrcLWsUFqzpniLZNaKSdRqRp7MJq1g9EwCK4HLk7J5V53XtvJ9Z0LS8LRzslPmH7ZiN7-XQn-xm7ivS32cWBNEbh4EEjxbnV5scWZzo0jBhfXbEEYrkFyqQr6-h_0Nq4plPUKVTdKMgBTKNhTOy-TG54-w5ndxmj3MdoSo93FaHVpevV8jaeWx9AKIPZAnrf2uvRn9n9kfwOJxaoM</recordid><startdate>20200319</startdate><enddate>20200319</enddate><creator>Langdon, Kirsty S.</creator><creator>King, Graham J.</creator><creator>Baten, Abdul</creator><creator>Mauleon, Ramil</creator><creator>Bundock, Peter C.</creator><creator>Topp, Bruce L.</creator><creator>Nock, Catherine J.</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-5609-4681</orcidid><orcidid>https://orcid.org/0000-0002-5975-6051</orcidid><orcidid>https://orcid.org/0000-0003-0696-7741</orcidid></search><sort><creationdate>20200319</creationdate><title>Maximising recombination across macadamia populations to generate linkage maps for genome anchoring</title><author>Langdon, Kirsty S. ; King, Graham J. ; Baten, Abdul ; Mauleon, Ramil ; Bundock, Peter C. ; Topp, Bruce L. ; Nock, Catherine J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c532t-d9f28e7bab24dad0767a2b5abe0f4611051b04655e4a557ad2860bf862f316f13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>45</topic><topic>45/22</topic><topic>45/23</topic><topic>631/449</topic><topic>631/449/2491</topic><topic>Chromosome Mapping - methods</topic><topic>Chromosome number</topic><topic>Chromosomes - genetics</topic><topic>Conservation of Natural Resources</topic><topic>Crops</topic><topic>Domestication</topic><topic>Gene mapping</topic><topic>Genetic crosses</topic><topic>Genetics, Population - methods</topic><topic>Genome, Plant - genetics</topic><topic>Genomes</topic><topic>Genomics</topic><topic>Haploidy</topic><topic>Humanities and Social Sciences</topic><topic>Humans</topic><topic>Karyotypes</topic><topic>Macadamia</topic><topic>Macadamia - genetics</topic><topic>Macadamia - physiology</topic><topic>multidisciplinary</topic><topic>Nucleotide sequence</topic><topic>Nuts</topic><topic>Plant Breeding - methods</topic><topic>Pollination</topic><topic>Recombination</topic><topic>Recombination, Genetic - genetics</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Langdon, Kirsty S.</creatorcontrib><creatorcontrib>King, Graham J.</creatorcontrib><creatorcontrib>Baten, Abdul</creatorcontrib><creatorcontrib>Mauleon, Ramil</creatorcontrib><creatorcontrib>Bundock, Peter C.</creatorcontrib><creatorcontrib>Topp, Bruce L.</creatorcontrib><creatorcontrib>Nock, Catherine J.</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Scientific reports</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Langdon, Kirsty S.</au><au>King, Graham J.</au><au>Baten, Abdul</au><au>Mauleon, Ramil</au><au>Bundock, Peter C.</au><au>Topp, Bruce L.</au><au>Nock, Catherine J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Maximising recombination across macadamia populations to generate linkage maps for genome anchoring</atitle><jtitle>Scientific reports</jtitle><stitle>Sci Rep</stitle><addtitle>Sci Rep</addtitle><date>2020-03-19</date><risdate>2020</risdate><volume>10</volume><issue>1</issue><spage>5048</spage><epage>5048</epage><pages>5048-5048</pages><artnum>5048</artnum><issn>2045-2322</issn><eissn>2045-2322</eissn><abstract>The Proteaceae genus Macadamia has a recent history of domestication as a commercial nut crop. We aimed to establish the first sequence-based haploid-correlated reference genetic linkage maps for this primarily outcrossing perennial tree crop, with marker density suitable for genome anchoring. Four first generation populations were used to maximise the segregation patterns available within full-sib, biparental and self-pollinated progeny. This allowed us to combine segregation data from overlapping subsets of &gt;4,000 informative sequence-tagged markers to increase the effective coverage of the karyotype represented by the recombinant crossover events detected. All maps had 14 linkage groups, corresponding to the Macadamia haploid chromosome number, and enabled the anchoring and orientation of sequence scaffolds to construct a pseudo-chromosomal genome assembly for macadamia. Comparison of individual maps indicated a high level of congruence, with minor discrepancies satisfactorily resolved within the integrated maps. The combined set of maps significantly improved marker density and the proportion (70%) of the genome sequence assembly anchored. Overall, increasing our understanding of the genetic landscape and genome for this nut crop represents a substantial advance in macadamia genetics and genomics. The set of maps, large number of sequence-based markers and the reconstructed genome provide a toolkit to underpin future breeding that should help to extend the macadamia industry as well as provide resources for the long term conservation of natural populations in eastern Australia of this unique genus.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>32193408</pmid><doi>10.1038/s41598-020-61708-6</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0001-5609-4681</orcidid><orcidid>https://orcid.org/0000-0002-5975-6051</orcidid><orcidid>https://orcid.org/0000-0003-0696-7741</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2045-2322
ispartof Scientific reports, 2020-03, Vol.10 (1), p.5048-5048, Article 5048
issn 2045-2322
2045-2322
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7081209
source MEDLINE; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Springer Nature OA Free Journals; Nature Free; PubMed Central; Free Full-Text Journals in Chemistry
subjects 45
45/22
45/23
631/449
631/449/2491
Chromosome Mapping - methods
Chromosome number
Chromosomes - genetics
Conservation of Natural Resources
Crops
Domestication
Gene mapping
Genetic crosses
Genetics, Population - methods
Genome, Plant - genetics
Genomes
Genomics
Haploidy
Humanities and Social Sciences
Humans
Karyotypes
Macadamia
Macadamia - genetics
Macadamia - physiology
multidisciplinary
Nucleotide sequence
Nuts
Plant Breeding - methods
Pollination
Recombination
Recombination, Genetic - genetics
Science
Science (multidisciplinary)
title Maximising recombination across macadamia populations to generate linkage maps for genome anchoring
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T16%3A41%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Maximising%20recombination%20across%20macadamia%20populations%20to%20generate%20linkage%20maps%20for%20genome%20anchoring&rft.jtitle=Scientific%20reports&rft.au=Langdon,%20Kirsty%20S.&rft.date=2020-03-19&rft.volume=10&rft.issue=1&rft.spage=5048&rft.epage=5048&rft.pages=5048-5048&rft.artnum=5048&rft.issn=2045-2322&rft.eissn=2045-2322&rft_id=info:doi/10.1038/s41598-020-61708-6&rft_dat=%3Cproquest_pubme%3E2381624145%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2379540228&rft_id=info:pmid/32193408&rfr_iscdi=true