Maximising recombination across macadamia populations to generate linkage maps for genome anchoring
The Proteaceae genus Macadamia has a recent history of domestication as a commercial nut crop. We aimed to establish the first sequence-based haploid-correlated reference genetic linkage maps for this primarily outcrossing perennial tree crop, with marker density suitable for genome anchoring. Four...
Gespeichert in:
Veröffentlicht in: | Scientific reports 2020-03, Vol.10 (1), p.5048-5048, Article 5048 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 5048 |
---|---|
container_issue | 1 |
container_start_page | 5048 |
container_title | Scientific reports |
container_volume | 10 |
creator | Langdon, Kirsty S. King, Graham J. Baten, Abdul Mauleon, Ramil Bundock, Peter C. Topp, Bruce L. Nock, Catherine J. |
description | The Proteaceae genus
Macadamia
has a recent history of domestication as a commercial nut crop. We aimed to establish the first sequence-based haploid-correlated reference genetic linkage maps for this primarily outcrossing perennial tree crop, with marker density suitable for genome anchoring. Four first generation populations were used to maximise the segregation patterns available within full-sib, biparental and self-pollinated progeny. This allowed us to combine segregation data from overlapping subsets of >4,000 informative sequence-tagged markers to increase the effective coverage of the karyotype represented by the recombinant crossover events detected. All maps had 14 linkage groups, corresponding to the
Macadamia
haploid chromosome number, and enabled the anchoring and orientation of sequence scaffolds to construct a pseudo-chromosomal genome assembly for macadamia. Comparison of individual maps indicated a high level of congruence, with minor discrepancies satisfactorily resolved within the integrated maps. The combined set of maps significantly improved marker density and the proportion (70%) of the genome sequence assembly anchored. Overall, increasing our understanding of the genetic landscape and genome for this nut crop represents a substantial advance in macadamia genetics and genomics. The set of maps, large number of sequence-based markers and the reconstructed genome provide a toolkit to underpin future breeding that should help to extend the macadamia industry as well as provide resources for the long term conservation of natural populations in eastern Australia of this unique genus. |
doi_str_mv | 10.1038/s41598-020-61708-6 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7081209</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2381624145</sourcerecordid><originalsourceid>FETCH-LOGICAL-c532t-d9f28e7bab24dad0767a2b5abe0f4611051b04655e4a557ad2860bf862f316f13</originalsourceid><addsrcrecordid>eNp9kUtv1TAQha2qqK1K_0AXyBKbbgL2-BFnUwlVvKQiNrC2Jolz65LYqZ1U8O_xvbcthQXe2NJ8c8ZzDiHnnL3hTJi3WXLVmIoBqzSvman0ATkBJlUFAuDw2fuYnOV8y8pR0EjeHJFjAbwRkpkT0n3Bn37y2YcNTa6LU-sDLj4Gil2KOdMJO-xx8kjnOK_jrpbpEunGBZdwcXT04QduXCHnTIeYtpU4OYqhu4mpCL8kLwYcszt7uE_J9w_vv119qq6_fvx89e666pSApeqbAYyrW2xB9tizWtcIrcLWsUFqzpniLZNaKSdRqRp7MJq1g9EwCK4HLk7J5V53XtvJ9Z0LS8LRzslPmH7ZiN7-XQn-xm7ivS32cWBNEbh4EEjxbnV5scWZzo0jBhfXbEEYrkFyqQr6-h_0Nq4plPUKVTdKMgBTKNhTOy-TG54-w5ndxmj3MdoSo93FaHVpevV8jaeWx9AKIPZAnrf2uvRn9n9kfwOJxaoM</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2379540228</pqid></control><display><type>article</type><title>Maximising recombination across macadamia populations to generate linkage maps for genome anchoring</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Springer Nature OA Free Journals</source><source>Nature Free</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Langdon, Kirsty S. ; King, Graham J. ; Baten, Abdul ; Mauleon, Ramil ; Bundock, Peter C. ; Topp, Bruce L. ; Nock, Catherine J.</creator><creatorcontrib>Langdon, Kirsty S. ; King, Graham J. ; Baten, Abdul ; Mauleon, Ramil ; Bundock, Peter C. ; Topp, Bruce L. ; Nock, Catherine J.</creatorcontrib><description>The Proteaceae genus
Macadamia
has a recent history of domestication as a commercial nut crop. We aimed to establish the first sequence-based haploid-correlated reference genetic linkage maps for this primarily outcrossing perennial tree crop, with marker density suitable for genome anchoring. Four first generation populations were used to maximise the segregation patterns available within full-sib, biparental and self-pollinated progeny. This allowed us to combine segregation data from overlapping subsets of >4,000 informative sequence-tagged markers to increase the effective coverage of the karyotype represented by the recombinant crossover events detected. All maps had 14 linkage groups, corresponding to the
Macadamia
haploid chromosome number, and enabled the anchoring and orientation of sequence scaffolds to construct a pseudo-chromosomal genome assembly for macadamia. Comparison of individual maps indicated a high level of congruence, with minor discrepancies satisfactorily resolved within the integrated maps. The combined set of maps significantly improved marker density and the proportion (70%) of the genome sequence assembly anchored. Overall, increasing our understanding of the genetic landscape and genome for this nut crop represents a substantial advance in macadamia genetics and genomics. The set of maps, large number of sequence-based markers and the reconstructed genome provide a toolkit to underpin future breeding that should help to extend the macadamia industry as well as provide resources for the long term conservation of natural populations in eastern Australia of this unique genus.</description><identifier>ISSN: 2045-2322</identifier><identifier>EISSN: 2045-2322</identifier><identifier>DOI: 10.1038/s41598-020-61708-6</identifier><identifier>PMID: 32193408</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>45 ; 45/22 ; 45/23 ; 631/449 ; 631/449/2491 ; Chromosome Mapping - methods ; Chromosome number ; Chromosomes - genetics ; Conservation of Natural Resources ; Crops ; Domestication ; Gene mapping ; Genetic crosses ; Genetics, Population - methods ; Genome, Plant - genetics ; Genomes ; Genomics ; Haploidy ; Humanities and Social Sciences ; Humans ; Karyotypes ; Macadamia ; Macadamia - genetics ; Macadamia - physiology ; multidisciplinary ; Nucleotide sequence ; Nuts ; Plant Breeding - methods ; Pollination ; Recombination ; Recombination, Genetic - genetics ; Science ; Science (multidisciplinary)</subject><ispartof>Scientific reports, 2020-03, Vol.10 (1), p.5048-5048, Article 5048</ispartof><rights>The Author(s) 2020</rights><rights>This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c532t-d9f28e7bab24dad0767a2b5abe0f4611051b04655e4a557ad2860bf862f316f13</citedby><cites>FETCH-LOGICAL-c532t-d9f28e7bab24dad0767a2b5abe0f4611051b04655e4a557ad2860bf862f316f13</cites><orcidid>0000-0001-5609-4681 ; 0000-0002-5975-6051 ; 0000-0003-0696-7741</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7081209/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7081209/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,27924,27925,41120,42189,51576,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32193408$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Langdon, Kirsty S.</creatorcontrib><creatorcontrib>King, Graham J.</creatorcontrib><creatorcontrib>Baten, Abdul</creatorcontrib><creatorcontrib>Mauleon, Ramil</creatorcontrib><creatorcontrib>Bundock, Peter C.</creatorcontrib><creatorcontrib>Topp, Bruce L.</creatorcontrib><creatorcontrib>Nock, Catherine J.</creatorcontrib><title>Maximising recombination across macadamia populations to generate linkage maps for genome anchoring</title><title>Scientific reports</title><addtitle>Sci Rep</addtitle><addtitle>Sci Rep</addtitle><description>The Proteaceae genus
Macadamia
has a recent history of domestication as a commercial nut crop. We aimed to establish the first sequence-based haploid-correlated reference genetic linkage maps for this primarily outcrossing perennial tree crop, with marker density suitable for genome anchoring. Four first generation populations were used to maximise the segregation patterns available within full-sib, biparental and self-pollinated progeny. This allowed us to combine segregation data from overlapping subsets of >4,000 informative sequence-tagged markers to increase the effective coverage of the karyotype represented by the recombinant crossover events detected. All maps had 14 linkage groups, corresponding to the
Macadamia
haploid chromosome number, and enabled the anchoring and orientation of sequence scaffolds to construct a pseudo-chromosomal genome assembly for macadamia. Comparison of individual maps indicated a high level of congruence, with minor discrepancies satisfactorily resolved within the integrated maps. The combined set of maps significantly improved marker density and the proportion (70%) of the genome sequence assembly anchored. Overall, increasing our understanding of the genetic landscape and genome for this nut crop represents a substantial advance in macadamia genetics and genomics. The set of maps, large number of sequence-based markers and the reconstructed genome provide a toolkit to underpin future breeding that should help to extend the macadamia industry as well as provide resources for the long term conservation of natural populations in eastern Australia of this unique genus.</description><subject>45</subject><subject>45/22</subject><subject>45/23</subject><subject>631/449</subject><subject>631/449/2491</subject><subject>Chromosome Mapping - methods</subject><subject>Chromosome number</subject><subject>Chromosomes - genetics</subject><subject>Conservation of Natural Resources</subject><subject>Crops</subject><subject>Domestication</subject><subject>Gene mapping</subject><subject>Genetic crosses</subject><subject>Genetics, Population - methods</subject><subject>Genome, Plant - genetics</subject><subject>Genomes</subject><subject>Genomics</subject><subject>Haploidy</subject><subject>Humanities and Social Sciences</subject><subject>Humans</subject><subject>Karyotypes</subject><subject>Macadamia</subject><subject>Macadamia - genetics</subject><subject>Macadamia - physiology</subject><subject>multidisciplinary</subject><subject>Nucleotide sequence</subject><subject>Nuts</subject><subject>Plant Breeding - methods</subject><subject>Pollination</subject><subject>Recombination</subject><subject>Recombination, Genetic - genetics</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><issn>2045-2322</issn><issn>2045-2322</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kUtv1TAQha2qqK1K_0AXyBKbbgL2-BFnUwlVvKQiNrC2Jolz65LYqZ1U8O_xvbcthQXe2NJ8c8ZzDiHnnL3hTJi3WXLVmIoBqzSvman0ATkBJlUFAuDw2fuYnOV8y8pR0EjeHJFjAbwRkpkT0n3Bn37y2YcNTa6LU-sDLj4Gil2KOdMJO-xx8kjnOK_jrpbpEunGBZdwcXT04QduXCHnTIeYtpU4OYqhu4mpCL8kLwYcszt7uE_J9w_vv119qq6_fvx89e666pSApeqbAYyrW2xB9tizWtcIrcLWsUFqzpniLZNaKSdRqRp7MJq1g9EwCK4HLk7J5V53XtvJ9Z0LS8LRzslPmH7ZiN7-XQn-xm7ivS32cWBNEbh4EEjxbnV5scWZzo0jBhfXbEEYrkFyqQr6-h_0Nq4plPUKVTdKMgBTKNhTOy-TG54-w5ndxmj3MdoSo93FaHVpevV8jaeWx9AKIPZAnrf2uvRn9n9kfwOJxaoM</recordid><startdate>20200319</startdate><enddate>20200319</enddate><creator>Langdon, Kirsty S.</creator><creator>King, Graham J.</creator><creator>Baten, Abdul</creator><creator>Mauleon, Ramil</creator><creator>Bundock, Peter C.</creator><creator>Topp, Bruce L.</creator><creator>Nock, Catherine J.</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-5609-4681</orcidid><orcidid>https://orcid.org/0000-0002-5975-6051</orcidid><orcidid>https://orcid.org/0000-0003-0696-7741</orcidid></search><sort><creationdate>20200319</creationdate><title>Maximising recombination across macadamia populations to generate linkage maps for genome anchoring</title><author>Langdon, Kirsty S. ; King, Graham J. ; Baten, Abdul ; Mauleon, Ramil ; Bundock, Peter C. ; Topp, Bruce L. ; Nock, Catherine J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c532t-d9f28e7bab24dad0767a2b5abe0f4611051b04655e4a557ad2860bf862f316f13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>45</topic><topic>45/22</topic><topic>45/23</topic><topic>631/449</topic><topic>631/449/2491</topic><topic>Chromosome Mapping - methods</topic><topic>Chromosome number</topic><topic>Chromosomes - genetics</topic><topic>Conservation of Natural Resources</topic><topic>Crops</topic><topic>Domestication</topic><topic>Gene mapping</topic><topic>Genetic crosses</topic><topic>Genetics, Population - methods</topic><topic>Genome, Plant - genetics</topic><topic>Genomes</topic><topic>Genomics</topic><topic>Haploidy</topic><topic>Humanities and Social Sciences</topic><topic>Humans</topic><topic>Karyotypes</topic><topic>Macadamia</topic><topic>Macadamia - genetics</topic><topic>Macadamia - physiology</topic><topic>multidisciplinary</topic><topic>Nucleotide sequence</topic><topic>Nuts</topic><topic>Plant Breeding - methods</topic><topic>Pollination</topic><topic>Recombination</topic><topic>Recombination, Genetic - genetics</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Langdon, Kirsty S.</creatorcontrib><creatorcontrib>King, Graham J.</creatorcontrib><creatorcontrib>Baten, Abdul</creatorcontrib><creatorcontrib>Mauleon, Ramil</creatorcontrib><creatorcontrib>Bundock, Peter C.</creatorcontrib><creatorcontrib>Topp, Bruce L.</creatorcontrib><creatorcontrib>Nock, Catherine J.</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Scientific reports</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Langdon, Kirsty S.</au><au>King, Graham J.</au><au>Baten, Abdul</au><au>Mauleon, Ramil</au><au>Bundock, Peter C.</au><au>Topp, Bruce L.</au><au>Nock, Catherine J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Maximising recombination across macadamia populations to generate linkage maps for genome anchoring</atitle><jtitle>Scientific reports</jtitle><stitle>Sci Rep</stitle><addtitle>Sci Rep</addtitle><date>2020-03-19</date><risdate>2020</risdate><volume>10</volume><issue>1</issue><spage>5048</spage><epage>5048</epage><pages>5048-5048</pages><artnum>5048</artnum><issn>2045-2322</issn><eissn>2045-2322</eissn><abstract>The Proteaceae genus
Macadamia
has a recent history of domestication as a commercial nut crop. We aimed to establish the first sequence-based haploid-correlated reference genetic linkage maps for this primarily outcrossing perennial tree crop, with marker density suitable for genome anchoring. Four first generation populations were used to maximise the segregation patterns available within full-sib, biparental and self-pollinated progeny. This allowed us to combine segregation data from overlapping subsets of >4,000 informative sequence-tagged markers to increase the effective coverage of the karyotype represented by the recombinant crossover events detected. All maps had 14 linkage groups, corresponding to the
Macadamia
haploid chromosome number, and enabled the anchoring and orientation of sequence scaffolds to construct a pseudo-chromosomal genome assembly for macadamia. Comparison of individual maps indicated a high level of congruence, with minor discrepancies satisfactorily resolved within the integrated maps. The combined set of maps significantly improved marker density and the proportion (70%) of the genome sequence assembly anchored. Overall, increasing our understanding of the genetic landscape and genome for this nut crop represents a substantial advance in macadamia genetics and genomics. The set of maps, large number of sequence-based markers and the reconstructed genome provide a toolkit to underpin future breeding that should help to extend the macadamia industry as well as provide resources for the long term conservation of natural populations in eastern Australia of this unique genus.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>32193408</pmid><doi>10.1038/s41598-020-61708-6</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0001-5609-4681</orcidid><orcidid>https://orcid.org/0000-0002-5975-6051</orcidid><orcidid>https://orcid.org/0000-0003-0696-7741</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2045-2322 |
ispartof | Scientific reports, 2020-03, Vol.10 (1), p.5048-5048, Article 5048 |
issn | 2045-2322 2045-2322 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7081209 |
source | MEDLINE; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Springer Nature OA Free Journals; Nature Free; PubMed Central; Free Full-Text Journals in Chemistry |
subjects | 45 45/22 45/23 631/449 631/449/2491 Chromosome Mapping - methods Chromosome number Chromosomes - genetics Conservation of Natural Resources Crops Domestication Gene mapping Genetic crosses Genetics, Population - methods Genome, Plant - genetics Genomes Genomics Haploidy Humanities and Social Sciences Humans Karyotypes Macadamia Macadamia - genetics Macadamia - physiology multidisciplinary Nucleotide sequence Nuts Plant Breeding - methods Pollination Recombination Recombination, Genetic - genetics Science Science (multidisciplinary) |
title | Maximising recombination across macadamia populations to generate linkage maps for genome anchoring |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T16%3A41%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Maximising%20recombination%20across%20macadamia%20populations%20to%20generate%20linkage%20maps%20for%20genome%20anchoring&rft.jtitle=Scientific%20reports&rft.au=Langdon,%20Kirsty%20S.&rft.date=2020-03-19&rft.volume=10&rft.issue=1&rft.spage=5048&rft.epage=5048&rft.pages=5048-5048&rft.artnum=5048&rft.issn=2045-2322&rft.eissn=2045-2322&rft_id=info:doi/10.1038/s41598-020-61708-6&rft_dat=%3Cproquest_pubme%3E2381624145%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2379540228&rft_id=info:pmid/32193408&rfr_iscdi=true |