Mass spectrometry for monitoring protease reactions

More than 560 genes are annotated as proteases in the human genome. About half of the genes are not or are only marginally characterized. Over the past decade, mass spectrometry has become the basis for proteomics, especially for protein identification, performed in a high-throughput manner. This de...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Analytical and bioanalytical chemistry 2008-11, Vol.392 (5), p.783-792, Article 783
Hauptverfasser: Schlüter, H, Hildebrand, D, Gallin, C, Schulz, A, Thiemann, J, Trusch, M
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 792
container_issue 5
container_start_page 783
container_title Analytical and bioanalytical chemistry
container_volume 392
creator Schlüter, H
Hildebrand, D
Gallin, C
Schulz, A
Thiemann, J
Trusch, M
description More than 560 genes are annotated as proteases in the human genome. About half of the genes are not or are only marginally characterized. Over the past decade, mass spectrometry has become the basis for proteomics, especially for protein identification, performed in a high-throughput manner. This development was also very fruitful for exploring the complex systems associated with protease functions, as briefly reviewed here. Mass spectrometry is an ideal tool for monitoring protease reactions, as will be highlighted in this review.
doi_str_mv 10.1007/s00216-008-2213-7
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7080141</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>753651947</sourcerecordid><originalsourceid>FETCH-LOGICAL-c591t-132d2653230fda4ff257f857fb6be815dbf3516060744d87ac70041beb138b523</originalsourceid><addsrcrecordid>eNqFkk1P3DAQhi1UVOiWH9BLmxPtJXTG37kgIdQPJBAH4Gw5ib0N2sSpna3Ev6-jrCi9LJYsj-VnXo1nXkI-IJwhgPqaACjKEkCXlCIr1QE5Ron5JgW8eY45PSLvUnoEQKFRviVHqIXmKNQxYTc2pSKNrpli6N0UnwofYtGHoZtC7IZ1McYwOZtcEZ1tpi4M6T059HaT3MnuXJGH79_uL3-W17c_ri4vrstGVDiVyGibC2GUgW8t954K5XXetaydRtHWngmUIEFx3mplGwXAsXY1Ml0LylbkfNEdt3Xv2sYNU7QbM8aut_HJBNuZ_1-G7pdZhz9GgQbkmAU-7wRi-L11aTJ9lxq32djBhW0ySjApsOIqk6d7SVnJSlABr4JcU5jhV0EmOFQqV7AiX_aCmLsj81Iyo7igTQwpReefe4FgZkeYxREmO8LMjjDzzz6-bOK_jJ0FMkAXII3zvF00j2EbhzzYvaqfliRvg7Hr2CXzcEcBWbaY0lRT9hdA5cks</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1744666676</pqid></control><display><type>article</type><title>Mass spectrometry for monitoring protease reactions</title><source>MEDLINE</source><source>Springer Nature - Complete Springer Journals</source><creator>Schlüter, H ; Hildebrand, D ; Gallin, C ; Schulz, A ; Thiemann, J ; Trusch, M</creator><creatorcontrib>Schlüter, H ; Hildebrand, D ; Gallin, C ; Schulz, A ; Thiemann, J ; Trusch, M</creatorcontrib><description>More than 560 genes are annotated as proteases in the human genome. About half of the genes are not or are only marginally characterized. Over the past decade, mass spectrometry has become the basis for proteomics, especially for protein identification, performed in a high-throughput manner. This development was also very fruitful for exploring the complex systems associated with protease functions, as briefly reviewed here. Mass spectrometry is an ideal tool for monitoring protease reactions, as will be highlighted in this review.</description><identifier>ISSN: 1618-2642</identifier><identifier>EISSN: 1618-2650</identifier><identifier>DOI: 10.1007/s00216-008-2213-7</identifier><identifier>PMID: 18584157</identifier><language>eng</language><publisher>Berlin/Heidelberg: Berlin/Heidelberg : Springer-Verlag</publisher><subject>Analytical Chemistry ; Angiotensin II - analysis ; Angiotensin II - genetics ; Angiotensin II - metabolism ; Animals ; Base Sequence ; Bioanalytical methods ; Biochemistry ; Characterization and Evaluation of Materials ; Chemistry ; Chemistry and Materials Science ; Combinatorial Chemistry Techniques - methods ; Complex systems ; enzymes ; Food Science ; Genes ; Genome, Human - genetics ; Genomes ; Humans ; Laboratory Medicine ; Mass spectrometry ; Mass Spectrometry - methods ; Mathematical analysis ; Monitoring ; Monitoring/Environmental Analysis ; Peptide Hydrolases - analysis ; Peptide Hydrolases - genetics ; Peptide Hydrolases - metabolism ; Protease ; proteinases ; proteomics ; Review</subject><ispartof>Analytical and bioanalytical chemistry, 2008-11, Vol.392 (5), p.783-792, Article 783</ispartof><rights>Springer-Verlag 2008</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c591t-132d2653230fda4ff257f857fb6be815dbf3516060744d87ac70041beb138b523</citedby><cites>FETCH-LOGICAL-c591t-132d2653230fda4ff257f857fb6be815dbf3516060744d87ac70041beb138b523</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00216-008-2213-7$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00216-008-2213-7$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,314,776,780,881,27903,27904,41467,42536,51298</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/18584157$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Schlüter, H</creatorcontrib><creatorcontrib>Hildebrand, D</creatorcontrib><creatorcontrib>Gallin, C</creatorcontrib><creatorcontrib>Schulz, A</creatorcontrib><creatorcontrib>Thiemann, J</creatorcontrib><creatorcontrib>Trusch, M</creatorcontrib><title>Mass spectrometry for monitoring protease reactions</title><title>Analytical and bioanalytical chemistry</title><addtitle>Anal Bioanal Chem</addtitle><addtitle>Anal Bioanal Chem</addtitle><description>More than 560 genes are annotated as proteases in the human genome. About half of the genes are not or are only marginally characterized. Over the past decade, mass spectrometry has become the basis for proteomics, especially for protein identification, performed in a high-throughput manner. This development was also very fruitful for exploring the complex systems associated with protease functions, as briefly reviewed here. Mass spectrometry is an ideal tool for monitoring protease reactions, as will be highlighted in this review.</description><subject>Analytical Chemistry</subject><subject>Angiotensin II - analysis</subject><subject>Angiotensin II - genetics</subject><subject>Angiotensin II - metabolism</subject><subject>Animals</subject><subject>Base Sequence</subject><subject>Bioanalytical methods</subject><subject>Biochemistry</subject><subject>Characterization and Evaluation of Materials</subject><subject>Chemistry</subject><subject>Chemistry and Materials Science</subject><subject>Combinatorial Chemistry Techniques - methods</subject><subject>Complex systems</subject><subject>enzymes</subject><subject>Food Science</subject><subject>Genes</subject><subject>Genome, Human - genetics</subject><subject>Genomes</subject><subject>Humans</subject><subject>Laboratory Medicine</subject><subject>Mass spectrometry</subject><subject>Mass Spectrometry - methods</subject><subject>Mathematical analysis</subject><subject>Monitoring</subject><subject>Monitoring/Environmental Analysis</subject><subject>Peptide Hydrolases - analysis</subject><subject>Peptide Hydrolases - genetics</subject><subject>Peptide Hydrolases - metabolism</subject><subject>Protease</subject><subject>proteinases</subject><subject>proteomics</subject><subject>Review</subject><issn>1618-2642</issn><issn>1618-2650</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkk1P3DAQhi1UVOiWH9BLmxPtJXTG37kgIdQPJBAH4Gw5ib0N2sSpna3Ev6-jrCi9LJYsj-VnXo1nXkI-IJwhgPqaACjKEkCXlCIr1QE5Ron5JgW8eY45PSLvUnoEQKFRviVHqIXmKNQxYTc2pSKNrpli6N0UnwofYtGHoZtC7IZ1McYwOZtcEZ1tpi4M6T059HaT3MnuXJGH79_uL3-W17c_ri4vrstGVDiVyGibC2GUgW8t954K5XXetaydRtHWngmUIEFx3mplGwXAsXY1Ml0LylbkfNEdt3Xv2sYNU7QbM8aut_HJBNuZ_1-G7pdZhz9GgQbkmAU-7wRi-L11aTJ9lxq32djBhW0ySjApsOIqk6d7SVnJSlABr4JcU5jhV0EmOFQqV7AiX_aCmLsj81Iyo7igTQwpReefe4FgZkeYxREmO8LMjjDzzz6-bOK_jJ0FMkAXII3zvF00j2EbhzzYvaqfliRvg7Hr2CXzcEcBWbaY0lRT9hdA5cks</recordid><startdate>20081101</startdate><enddate>20081101</enddate><creator>Schlüter, H</creator><creator>Hildebrand, D</creator><creator>Gallin, C</creator><creator>Schulz, A</creator><creator>Thiemann, J</creator><creator>Trusch, M</creator><general>Berlin/Heidelberg : Springer-Verlag</general><general>Springer-Verlag</general><scope>FBQ</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><scope>7S9</scope><scope>L.6</scope><scope>7X8</scope><scope>7QH</scope><scope>7UA</scope><scope>C1K</scope><scope>5PM</scope></search><sort><creationdate>20081101</creationdate><title>Mass spectrometry for monitoring protease reactions</title><author>Schlüter, H ; Hildebrand, D ; Gallin, C ; Schulz, A ; Thiemann, J ; Trusch, M</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c591t-132d2653230fda4ff257f857fb6be815dbf3516060744d87ac70041beb138b523</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Analytical Chemistry</topic><topic>Angiotensin II - analysis</topic><topic>Angiotensin II - genetics</topic><topic>Angiotensin II - metabolism</topic><topic>Animals</topic><topic>Base Sequence</topic><topic>Bioanalytical methods</topic><topic>Biochemistry</topic><topic>Characterization and Evaluation of Materials</topic><topic>Chemistry</topic><topic>Chemistry and Materials Science</topic><topic>Combinatorial Chemistry Techniques - methods</topic><topic>Complex systems</topic><topic>enzymes</topic><topic>Food Science</topic><topic>Genes</topic><topic>Genome, Human - genetics</topic><topic>Genomes</topic><topic>Humans</topic><topic>Laboratory Medicine</topic><topic>Mass spectrometry</topic><topic>Mass Spectrometry - methods</topic><topic>Mathematical analysis</topic><topic>Monitoring</topic><topic>Monitoring/Environmental Analysis</topic><topic>Peptide Hydrolases - analysis</topic><topic>Peptide Hydrolases - genetics</topic><topic>Peptide Hydrolases - metabolism</topic><topic>Protease</topic><topic>proteinases</topic><topic>proteomics</topic><topic>Review</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Schlüter, H</creatorcontrib><creatorcontrib>Hildebrand, D</creatorcontrib><creatorcontrib>Gallin, C</creatorcontrib><creatorcontrib>Schulz, A</creatorcontrib><creatorcontrib>Thiemann, J</creatorcontrib><creatorcontrib>Trusch, M</creatorcontrib><collection>AGRIS</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><collection>MEDLINE - Academic</collection><collection>Aqualine</collection><collection>Water Resources Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Analytical and bioanalytical chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Schlüter, H</au><au>Hildebrand, D</au><au>Gallin, C</au><au>Schulz, A</au><au>Thiemann, J</au><au>Trusch, M</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mass spectrometry for monitoring protease reactions</atitle><jtitle>Analytical and bioanalytical chemistry</jtitle><stitle>Anal Bioanal Chem</stitle><addtitle>Anal Bioanal Chem</addtitle><date>2008-11-01</date><risdate>2008</risdate><volume>392</volume><issue>5</issue><spage>783</spage><epage>792</epage><pages>783-792</pages><artnum>783</artnum><issn>1618-2642</issn><eissn>1618-2650</eissn><abstract>More than 560 genes are annotated as proteases in the human genome. About half of the genes are not or are only marginally characterized. Over the past decade, mass spectrometry has become the basis for proteomics, especially for protein identification, performed in a high-throughput manner. This development was also very fruitful for exploring the complex systems associated with protease functions, as briefly reviewed here. Mass spectrometry is an ideal tool for monitoring protease reactions, as will be highlighted in this review.</abstract><cop>Berlin/Heidelberg</cop><pub>Berlin/Heidelberg : Springer-Verlag</pub><pmid>18584157</pmid><doi>10.1007/s00216-008-2213-7</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1618-2642
ispartof Analytical and bioanalytical chemistry, 2008-11, Vol.392 (5), p.783-792, Article 783
issn 1618-2642
1618-2650
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7080141
source MEDLINE; Springer Nature - Complete Springer Journals
subjects Analytical Chemistry
Angiotensin II - analysis
Angiotensin II - genetics
Angiotensin II - metabolism
Animals
Base Sequence
Bioanalytical methods
Biochemistry
Characterization and Evaluation of Materials
Chemistry
Chemistry and Materials Science
Combinatorial Chemistry Techniques - methods
Complex systems
enzymes
Food Science
Genes
Genome, Human - genetics
Genomes
Humans
Laboratory Medicine
Mass spectrometry
Mass Spectrometry - methods
Mathematical analysis
Monitoring
Monitoring/Environmental Analysis
Peptide Hydrolases - analysis
Peptide Hydrolases - genetics
Peptide Hydrolases - metabolism
Protease
proteinases
proteomics
Review
title Mass spectrometry for monitoring protease reactions
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T02%3A47%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mass%20spectrometry%20for%20monitoring%20protease%20reactions&rft.jtitle=Analytical%20and%20bioanalytical%20chemistry&rft.au=Schl%C3%BCter,%20H&rft.date=2008-11-01&rft.volume=392&rft.issue=5&rft.spage=783&rft.epage=792&rft.pages=783-792&rft.artnum=783&rft.issn=1618-2642&rft.eissn=1618-2650&rft_id=info:doi/10.1007/s00216-008-2213-7&rft_dat=%3Cproquest_pubme%3E753651947%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1744666676&rft_id=info:pmid/18584157&rfr_iscdi=true