Mass spectrometry for monitoring protease reactions
More than 560 genes are annotated as proteases in the human genome. About half of the genes are not or are only marginally characterized. Over the past decade, mass spectrometry has become the basis for proteomics, especially for protein identification, performed in a high-throughput manner. This de...
Gespeichert in:
Veröffentlicht in: | Analytical and bioanalytical chemistry 2008-11, Vol.392 (5), p.783-792, Article 783 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 792 |
---|---|
container_issue | 5 |
container_start_page | 783 |
container_title | Analytical and bioanalytical chemistry |
container_volume | 392 |
creator | Schlüter, H Hildebrand, D Gallin, C Schulz, A Thiemann, J Trusch, M |
description | More than 560 genes are annotated as proteases in the human genome. About half of the genes are not or are only marginally characterized. Over the past decade, mass spectrometry has become the basis for proteomics, especially for protein identification, performed in a high-throughput manner. This development was also very fruitful for exploring the complex systems associated with protease functions, as briefly reviewed here. Mass spectrometry is an ideal tool for monitoring protease reactions, as will be highlighted in this review. |
doi_str_mv | 10.1007/s00216-008-2213-7 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7080141</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>753651947</sourcerecordid><originalsourceid>FETCH-LOGICAL-c591t-132d2653230fda4ff257f857fb6be815dbf3516060744d87ac70041beb138b523</originalsourceid><addsrcrecordid>eNqFkk1P3DAQhi1UVOiWH9BLmxPtJXTG37kgIdQPJBAH4Gw5ib0N2sSpna3Ev6-jrCi9LJYsj-VnXo1nXkI-IJwhgPqaACjKEkCXlCIr1QE5Ron5JgW8eY45PSLvUnoEQKFRviVHqIXmKNQxYTc2pSKNrpli6N0UnwofYtGHoZtC7IZ1McYwOZtcEZ1tpi4M6T059HaT3MnuXJGH79_uL3-W17c_ri4vrstGVDiVyGibC2GUgW8t954K5XXetaydRtHWngmUIEFx3mplGwXAsXY1Ml0LylbkfNEdt3Xv2sYNU7QbM8aut_HJBNuZ_1-G7pdZhz9GgQbkmAU-7wRi-L11aTJ9lxq32djBhW0ySjApsOIqk6d7SVnJSlABr4JcU5jhV0EmOFQqV7AiX_aCmLsj81Iyo7igTQwpReefe4FgZkeYxREmO8LMjjDzzz6-bOK_jJ0FMkAXII3zvF00j2EbhzzYvaqfliRvg7Hr2CXzcEcBWbaY0lRT9hdA5cks</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1744666676</pqid></control><display><type>article</type><title>Mass spectrometry for monitoring protease reactions</title><source>MEDLINE</source><source>Springer Nature - Complete Springer Journals</source><creator>Schlüter, H ; Hildebrand, D ; Gallin, C ; Schulz, A ; Thiemann, J ; Trusch, M</creator><creatorcontrib>Schlüter, H ; Hildebrand, D ; Gallin, C ; Schulz, A ; Thiemann, J ; Trusch, M</creatorcontrib><description>More than 560 genes are annotated as proteases in the human genome. About half of the genes are not or are only marginally characterized. Over the past decade, mass spectrometry has become the basis for proteomics, especially for protein identification, performed in a high-throughput manner. This development was also very fruitful for exploring the complex systems associated with protease functions, as briefly reviewed here. Mass spectrometry is an ideal tool for monitoring protease reactions, as will be highlighted in this review.</description><identifier>ISSN: 1618-2642</identifier><identifier>EISSN: 1618-2650</identifier><identifier>DOI: 10.1007/s00216-008-2213-7</identifier><identifier>PMID: 18584157</identifier><language>eng</language><publisher>Berlin/Heidelberg: Berlin/Heidelberg : Springer-Verlag</publisher><subject>Analytical Chemistry ; Angiotensin II - analysis ; Angiotensin II - genetics ; Angiotensin II - metabolism ; Animals ; Base Sequence ; Bioanalytical methods ; Biochemistry ; Characterization and Evaluation of Materials ; Chemistry ; Chemistry and Materials Science ; Combinatorial Chemistry Techniques - methods ; Complex systems ; enzymes ; Food Science ; Genes ; Genome, Human - genetics ; Genomes ; Humans ; Laboratory Medicine ; Mass spectrometry ; Mass Spectrometry - methods ; Mathematical analysis ; Monitoring ; Monitoring/Environmental Analysis ; Peptide Hydrolases - analysis ; Peptide Hydrolases - genetics ; Peptide Hydrolases - metabolism ; Protease ; proteinases ; proteomics ; Review</subject><ispartof>Analytical and bioanalytical chemistry, 2008-11, Vol.392 (5), p.783-792, Article 783</ispartof><rights>Springer-Verlag 2008</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c591t-132d2653230fda4ff257f857fb6be815dbf3516060744d87ac70041beb138b523</citedby><cites>FETCH-LOGICAL-c591t-132d2653230fda4ff257f857fb6be815dbf3516060744d87ac70041beb138b523</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00216-008-2213-7$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00216-008-2213-7$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,314,776,780,881,27903,27904,41467,42536,51298</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/18584157$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Schlüter, H</creatorcontrib><creatorcontrib>Hildebrand, D</creatorcontrib><creatorcontrib>Gallin, C</creatorcontrib><creatorcontrib>Schulz, A</creatorcontrib><creatorcontrib>Thiemann, J</creatorcontrib><creatorcontrib>Trusch, M</creatorcontrib><title>Mass spectrometry for monitoring protease reactions</title><title>Analytical and bioanalytical chemistry</title><addtitle>Anal Bioanal Chem</addtitle><addtitle>Anal Bioanal Chem</addtitle><description>More than 560 genes are annotated as proteases in the human genome. About half of the genes are not or are only marginally characterized. Over the past decade, mass spectrometry has become the basis for proteomics, especially for protein identification, performed in a high-throughput manner. This development was also very fruitful for exploring the complex systems associated with protease functions, as briefly reviewed here. Mass spectrometry is an ideal tool for monitoring protease reactions, as will be highlighted in this review.</description><subject>Analytical Chemistry</subject><subject>Angiotensin II - analysis</subject><subject>Angiotensin II - genetics</subject><subject>Angiotensin II - metabolism</subject><subject>Animals</subject><subject>Base Sequence</subject><subject>Bioanalytical methods</subject><subject>Biochemistry</subject><subject>Characterization and Evaluation of Materials</subject><subject>Chemistry</subject><subject>Chemistry and Materials Science</subject><subject>Combinatorial Chemistry Techniques - methods</subject><subject>Complex systems</subject><subject>enzymes</subject><subject>Food Science</subject><subject>Genes</subject><subject>Genome, Human - genetics</subject><subject>Genomes</subject><subject>Humans</subject><subject>Laboratory Medicine</subject><subject>Mass spectrometry</subject><subject>Mass Spectrometry - methods</subject><subject>Mathematical analysis</subject><subject>Monitoring</subject><subject>Monitoring/Environmental Analysis</subject><subject>Peptide Hydrolases - analysis</subject><subject>Peptide Hydrolases - genetics</subject><subject>Peptide Hydrolases - metabolism</subject><subject>Protease</subject><subject>proteinases</subject><subject>proteomics</subject><subject>Review</subject><issn>1618-2642</issn><issn>1618-2650</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkk1P3DAQhi1UVOiWH9BLmxPtJXTG37kgIdQPJBAH4Gw5ib0N2sSpna3Ev6-jrCi9LJYsj-VnXo1nXkI-IJwhgPqaACjKEkCXlCIr1QE5Ron5JgW8eY45PSLvUnoEQKFRviVHqIXmKNQxYTc2pSKNrpli6N0UnwofYtGHoZtC7IZ1McYwOZtcEZ1tpi4M6T059HaT3MnuXJGH79_uL3-W17c_ri4vrstGVDiVyGibC2GUgW8t954K5XXetaydRtHWngmUIEFx3mplGwXAsXY1Ml0LylbkfNEdt3Xv2sYNU7QbM8aut_HJBNuZ_1-G7pdZhz9GgQbkmAU-7wRi-L11aTJ9lxq32djBhW0ySjApsOIqk6d7SVnJSlABr4JcU5jhV0EmOFQqV7AiX_aCmLsj81Iyo7igTQwpReefe4FgZkeYxREmO8LMjjDzzz6-bOK_jJ0FMkAXII3zvF00j2EbhzzYvaqfliRvg7Hr2CXzcEcBWbaY0lRT9hdA5cks</recordid><startdate>20081101</startdate><enddate>20081101</enddate><creator>Schlüter, H</creator><creator>Hildebrand, D</creator><creator>Gallin, C</creator><creator>Schulz, A</creator><creator>Thiemann, J</creator><creator>Trusch, M</creator><general>Berlin/Heidelberg : Springer-Verlag</general><general>Springer-Verlag</general><scope>FBQ</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><scope>7S9</scope><scope>L.6</scope><scope>7X8</scope><scope>7QH</scope><scope>7UA</scope><scope>C1K</scope><scope>5PM</scope></search><sort><creationdate>20081101</creationdate><title>Mass spectrometry for monitoring protease reactions</title><author>Schlüter, H ; Hildebrand, D ; Gallin, C ; Schulz, A ; Thiemann, J ; Trusch, M</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c591t-132d2653230fda4ff257f857fb6be815dbf3516060744d87ac70041beb138b523</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Analytical Chemistry</topic><topic>Angiotensin II - analysis</topic><topic>Angiotensin II - genetics</topic><topic>Angiotensin II - metabolism</topic><topic>Animals</topic><topic>Base Sequence</topic><topic>Bioanalytical methods</topic><topic>Biochemistry</topic><topic>Characterization and Evaluation of Materials</topic><topic>Chemistry</topic><topic>Chemistry and Materials Science</topic><topic>Combinatorial Chemistry Techniques - methods</topic><topic>Complex systems</topic><topic>enzymes</topic><topic>Food Science</topic><topic>Genes</topic><topic>Genome, Human - genetics</topic><topic>Genomes</topic><topic>Humans</topic><topic>Laboratory Medicine</topic><topic>Mass spectrometry</topic><topic>Mass Spectrometry - methods</topic><topic>Mathematical analysis</topic><topic>Monitoring</topic><topic>Monitoring/Environmental Analysis</topic><topic>Peptide Hydrolases - analysis</topic><topic>Peptide Hydrolases - genetics</topic><topic>Peptide Hydrolases - metabolism</topic><topic>Protease</topic><topic>proteinases</topic><topic>proteomics</topic><topic>Review</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Schlüter, H</creatorcontrib><creatorcontrib>Hildebrand, D</creatorcontrib><creatorcontrib>Gallin, C</creatorcontrib><creatorcontrib>Schulz, A</creatorcontrib><creatorcontrib>Thiemann, J</creatorcontrib><creatorcontrib>Trusch, M</creatorcontrib><collection>AGRIS</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><collection>MEDLINE - Academic</collection><collection>Aqualine</collection><collection>Water Resources Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Analytical and bioanalytical chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Schlüter, H</au><au>Hildebrand, D</au><au>Gallin, C</au><au>Schulz, A</au><au>Thiemann, J</au><au>Trusch, M</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mass spectrometry for monitoring protease reactions</atitle><jtitle>Analytical and bioanalytical chemistry</jtitle><stitle>Anal Bioanal Chem</stitle><addtitle>Anal Bioanal Chem</addtitle><date>2008-11-01</date><risdate>2008</risdate><volume>392</volume><issue>5</issue><spage>783</spage><epage>792</epage><pages>783-792</pages><artnum>783</artnum><issn>1618-2642</issn><eissn>1618-2650</eissn><abstract>More than 560 genes are annotated as proteases in the human genome. About half of the genes are not or are only marginally characterized. Over the past decade, mass spectrometry has become the basis for proteomics, especially for protein identification, performed in a high-throughput manner. This development was also very fruitful for exploring the complex systems associated with protease functions, as briefly reviewed here. Mass spectrometry is an ideal tool for monitoring protease reactions, as will be highlighted in this review.</abstract><cop>Berlin/Heidelberg</cop><pub>Berlin/Heidelberg : Springer-Verlag</pub><pmid>18584157</pmid><doi>10.1007/s00216-008-2213-7</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1618-2642 |
ispartof | Analytical and bioanalytical chemistry, 2008-11, Vol.392 (5), p.783-792, Article 783 |
issn | 1618-2642 1618-2650 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7080141 |
source | MEDLINE; Springer Nature - Complete Springer Journals |
subjects | Analytical Chemistry Angiotensin II - analysis Angiotensin II - genetics Angiotensin II - metabolism Animals Base Sequence Bioanalytical methods Biochemistry Characterization and Evaluation of Materials Chemistry Chemistry and Materials Science Combinatorial Chemistry Techniques - methods Complex systems enzymes Food Science Genes Genome, Human - genetics Genomes Humans Laboratory Medicine Mass spectrometry Mass Spectrometry - methods Mathematical analysis Monitoring Monitoring/Environmental Analysis Peptide Hydrolases - analysis Peptide Hydrolases - genetics Peptide Hydrolases - metabolism Protease proteinases proteomics Review |
title | Mass spectrometry for monitoring protease reactions |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T02%3A47%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mass%20spectrometry%20for%20monitoring%20protease%20reactions&rft.jtitle=Analytical%20and%20bioanalytical%20chemistry&rft.au=Schl%C3%BCter,%20H&rft.date=2008-11-01&rft.volume=392&rft.issue=5&rft.spage=783&rft.epage=792&rft.pages=783-792&rft.artnum=783&rft.issn=1618-2642&rft.eissn=1618-2650&rft_id=info:doi/10.1007/s00216-008-2213-7&rft_dat=%3Cproquest_pubme%3E753651947%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1744666676&rft_id=info:pmid/18584157&rfr_iscdi=true |