Insight into the Mechanism of Phenylacetate Decarboxylase (PhdB), a Toluene‐Producing Glycyl Radical Enzyme
We recently reported the discovery of phenylacetate decarboxylase (PhdB), representing one of only ten glycyl‐radical‐enzyme reaction types known, and a promising biotechnological tool for first‐time biochemical synthesis of toluene from renewable resources. Here, we used experimental and computatio...
Gespeichert in:
Veröffentlicht in: | Chembiochem : a European journal of chemical biology 2020-03, Vol.21 (5), p.663-671 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 671 |
---|---|
container_issue | 5 |
container_start_page | 663 |
container_title | Chembiochem : a European journal of chemical biology |
container_volume | 21 |
creator | Rodrigues, Andria V. Tantillo, Dean J. Mukhopadhyay, Aindrila Keasling, Jay D. Beller, Harry R. |
description | We recently reported the discovery of phenylacetate decarboxylase (PhdB), representing one of only ten glycyl‐radical‐enzyme reaction types known, and a promising biotechnological tool for first‐time biochemical synthesis of toluene from renewable resources. Here, we used experimental and computational data to evaluate the plausibility of three candidate PhdB mechanisms, involving either attack at the phenylacetate methylene carbon or carboxyl group [via H‐atom ion from COOH or single‐electron oxidation of COO− (Kolbe‐type decarboxylation)]. In vitro experimental data included assays with F‐labeled phenylacetate, kinetic studies, and tests with site‐directed PhdB mutants; computational data involved estimation of reaction energetics using density functional theory (DFT). The DFT results indicated that all three mechanisms are thermodynamically challenging (beyond the range of many known enzymes in terms of endergonicity or activation energy barrier), reflecting the formidable demands on PhdB for catalysis of this reaction. Evidence that PhdB was able to bind α,α‐difluorophenylacetate but was unable to catalyze its decarboxylation supported the enzyme's ion of a methylene H atom. Diminished activity of H327A and Y691F mutants was consistent with proposed proton donor roles for His327 and Tyr691. Collectively, these and other data most strongly support PhdB attack at the methylene carbon.
Three candidate mechanisms for the novel glycyl radical enzyme (GRE) phenylacetate decarboxylase (PhdB) were evaluated using a combination of in vitro experimental data and computational data involving estimation of reaction energetics. The data best support a methylene carbon attack (green arrows) that differs substantially from the reported mechanism for p‐hydroxyphenylacetate decarboxylase. |
doi_str_mv | 10.1002/cbic.201900560 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7079210</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2369204797</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5320-91ceb7b34e595e5478ab979c9522302ba5689384d53df1d1e77498a9b1844e9a3</originalsourceid><addsrcrecordid>eNqFkctu1DAUhiMEoqWwZYks2BSJGXyN4w0SHUoZqYgRKmvLcc5MXDl2iR0grHgEnpEnIaMZhsuGlS2fz599zl8UDwmeE4zpc1s7O6eYKIxFiW8Vx4QzNZMlY7f3e06pPCrupXSNMVYlI3eLI0YEoYyz46JbhuQ2bUYu5IhyC-gt2NYElzoU12jVQhi9sZBNBvQKrOnr-GU6SYBOV21z9vQZMugq-gEC_Pj2fdXHZrAubNCFH-3o0XvTOGs8Og9fxw7uF3fWxid4sF9Pig-vz68Wb2aX7y6Wi5eXMysYxTNFLNSyZhyEEiC4rEytpLJKUMowrY0oK8Uq3gjWrElDQEquKqNqUnEOyrCT4sXOezPUHTQWQu6N1ze960w_6mic_rsSXKs38ZOWWCpK8CR4vBPElJ1O1uVpKjaGADZrIiTjRE7Q6f6VPn4cIGXduWTBexMgDklTWikhJVFqQp_8g17HoQ_TDDRlpaKYS7UVzneU7WNKPawPPyZYb-PW27j1Ie7pwqM_-zzgv_KdALUDPjsP4390enG2XPyW_wT_hLbz</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2369204797</pqid></control><display><type>article</type><title>Insight into the Mechanism of Phenylacetate Decarboxylase (PhdB), a Toluene‐Producing Glycyl Radical Enzyme</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><creator>Rodrigues, Andria V. ; Tantillo, Dean J. ; Mukhopadhyay, Aindrila ; Keasling, Jay D. ; Beller, Harry R.</creator><creatorcontrib>Rodrigues, Andria V. ; Tantillo, Dean J. ; Mukhopadhyay, Aindrila ; Keasling, Jay D. ; Beller, Harry R. ; Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States)</creatorcontrib><description>We recently reported the discovery of phenylacetate decarboxylase (PhdB), representing one of only ten glycyl‐radical‐enzyme reaction types known, and a promising biotechnological tool for first‐time biochemical synthesis of toluene from renewable resources. Here, we used experimental and computational data to evaluate the plausibility of three candidate PhdB mechanisms, involving either attack at the phenylacetate methylene carbon or carboxyl group [via H‐atom ion from COOH or single‐electron oxidation of COO− (Kolbe‐type decarboxylation)]. In vitro experimental data included assays with F‐labeled phenylacetate, kinetic studies, and tests with site‐directed PhdB mutants; computational data involved estimation of reaction energetics using density functional theory (DFT). The DFT results indicated that all three mechanisms are thermodynamically challenging (beyond the range of many known enzymes in terms of endergonicity or activation energy barrier), reflecting the formidable demands on PhdB for catalysis of this reaction. Evidence that PhdB was able to bind α,α‐difluorophenylacetate but was unable to catalyze its decarboxylation supported the enzyme's ion of a methylene H atom. Diminished activity of H327A and Y691F mutants was consistent with proposed proton donor roles for His327 and Tyr691. Collectively, these and other data most strongly support PhdB attack at the methylene carbon.
Three candidate mechanisms for the novel glycyl radical enzyme (GRE) phenylacetate decarboxylase (PhdB) were evaluated using a combination of in vitro experimental data and computational data involving estimation of reaction energetics. The data best support a methylene carbon attack (green arrows) that differs substantially from the reported mechanism for p‐hydroxyphenylacetate decarboxylase.</description><identifier>ISSN: 1439-4227</identifier><identifier>EISSN: 1439-7633</identifier><identifier>DOI: 10.1002/cbic.201900560</identifier><identifier>PMID: 31512343</identifier><language>eng</language><publisher>Germany: Wiley Subscription Services, Inc</publisher><subject>Bacteria - enzymology ; Bacterial Proteins - chemistry ; Bacterial Proteins - metabolism ; BASIC BIOLOGICAL SCIENCES ; Carbon ; Carboxy-Lyases - chemistry ; Carboxy-Lyases - metabolism ; Carboxyl group ; Catalysis ; Computer applications ; Decarboxylation ; Density functional theory ; Enzymes ; glycyl radical enzyme ; INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY ; Kinetics ; Kolbe decarboxylation ; Methylene ; Mutants ; Oxidation ; phenylacetate decarboxylase ; Phenylacetates ; radical reactions ; reaction mechanisms ; Renewable resources ; Sustainable yield ; Thermodynamics ; Toluene ; Toluene - metabolism</subject><ispartof>Chembiochem : a European journal of chemical biology, 2020-03, Vol.21 (5), p.663-671</ispartof><rights>2019 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA.</rights><rights>2019. This article is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5320-91ceb7b34e595e5478ab979c9522302ba5689384d53df1d1e77498a9b1844e9a3</citedby><cites>FETCH-LOGICAL-c5320-91ceb7b34e595e5478ab979c9522302ba5689384d53df1d1e77498a9b1844e9a3</cites><orcidid>0000-0002-6513-7425 ; 0000-0002-2992-8844 ; 0000-0003-4170-6088 ; 0000-0001-9637-3650 ; 0000000265137425 ; 0000000196373650 ; 0000000229928844 ; 0000000341706088</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fcbic.201900560$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fcbic.201900560$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>230,314,776,780,881,1411,27903,27904,45553,45554</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31512343$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/1573417$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Rodrigues, Andria V.</creatorcontrib><creatorcontrib>Tantillo, Dean J.</creatorcontrib><creatorcontrib>Mukhopadhyay, Aindrila</creatorcontrib><creatorcontrib>Keasling, Jay D.</creatorcontrib><creatorcontrib>Beller, Harry R.</creatorcontrib><creatorcontrib>Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States)</creatorcontrib><title>Insight into the Mechanism of Phenylacetate Decarboxylase (PhdB), a Toluene‐Producing Glycyl Radical Enzyme</title><title>Chembiochem : a European journal of chemical biology</title><addtitle>Chembiochem</addtitle><description>We recently reported the discovery of phenylacetate decarboxylase (PhdB), representing one of only ten glycyl‐radical‐enzyme reaction types known, and a promising biotechnological tool for first‐time biochemical synthesis of toluene from renewable resources. Here, we used experimental and computational data to evaluate the plausibility of three candidate PhdB mechanisms, involving either attack at the phenylacetate methylene carbon or carboxyl group [via H‐atom ion from COOH or single‐electron oxidation of COO− (Kolbe‐type decarboxylation)]. In vitro experimental data included assays with F‐labeled phenylacetate, kinetic studies, and tests with site‐directed PhdB mutants; computational data involved estimation of reaction energetics using density functional theory (DFT). The DFT results indicated that all three mechanisms are thermodynamically challenging (beyond the range of many known enzymes in terms of endergonicity or activation energy barrier), reflecting the formidable demands on PhdB for catalysis of this reaction. Evidence that PhdB was able to bind α,α‐difluorophenylacetate but was unable to catalyze its decarboxylation supported the enzyme's ion of a methylene H atom. Diminished activity of H327A and Y691F mutants was consistent with proposed proton donor roles for His327 and Tyr691. Collectively, these and other data most strongly support PhdB attack at the methylene carbon.
Three candidate mechanisms for the novel glycyl radical enzyme (GRE) phenylacetate decarboxylase (PhdB) were evaluated using a combination of in vitro experimental data and computational data involving estimation of reaction energetics. The data best support a methylene carbon attack (green arrows) that differs substantially from the reported mechanism for p‐hydroxyphenylacetate decarboxylase.</description><subject>Bacteria - enzymology</subject><subject>Bacterial Proteins - chemistry</subject><subject>Bacterial Proteins - metabolism</subject><subject>BASIC BIOLOGICAL SCIENCES</subject><subject>Carbon</subject><subject>Carboxy-Lyases - chemistry</subject><subject>Carboxy-Lyases - metabolism</subject><subject>Carboxyl group</subject><subject>Catalysis</subject><subject>Computer applications</subject><subject>Decarboxylation</subject><subject>Density functional theory</subject><subject>Enzymes</subject><subject>glycyl radical enzyme</subject><subject>INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY</subject><subject>Kinetics</subject><subject>Kolbe decarboxylation</subject><subject>Methylene</subject><subject>Mutants</subject><subject>Oxidation</subject><subject>phenylacetate decarboxylase</subject><subject>Phenylacetates</subject><subject>radical reactions</subject><subject>reaction mechanisms</subject><subject>Renewable resources</subject><subject>Sustainable yield</subject><subject>Thermodynamics</subject><subject>Toluene</subject><subject>Toluene - metabolism</subject><issn>1439-4227</issn><issn>1439-7633</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>EIF</sourceid><recordid>eNqFkctu1DAUhiMEoqWwZYks2BSJGXyN4w0SHUoZqYgRKmvLcc5MXDl2iR0grHgEnpEnIaMZhsuGlS2fz599zl8UDwmeE4zpc1s7O6eYKIxFiW8Vx4QzNZMlY7f3e06pPCrupXSNMVYlI3eLI0YEoYyz46JbhuQ2bUYu5IhyC-gt2NYElzoU12jVQhi9sZBNBvQKrOnr-GU6SYBOV21z9vQZMugq-gEC_Pj2fdXHZrAubNCFH-3o0XvTOGs8Og9fxw7uF3fWxid4sF9Pig-vz68Wb2aX7y6Wi5eXMysYxTNFLNSyZhyEEiC4rEytpLJKUMowrY0oK8Uq3gjWrElDQEquKqNqUnEOyrCT4sXOezPUHTQWQu6N1ze960w_6mic_rsSXKs38ZOWWCpK8CR4vBPElJ1O1uVpKjaGADZrIiTjRE7Q6f6VPn4cIGXduWTBexMgDklTWikhJVFqQp_8g17HoQ_TDDRlpaKYS7UVzneU7WNKPawPPyZYb-PW27j1Ie7pwqM_-zzgv_KdALUDPjsP4390enG2XPyW_wT_hLbz</recordid><startdate>20200302</startdate><enddate>20200302</enddate><creator>Rodrigues, Andria V.</creator><creator>Tantillo, Dean J.</creator><creator>Mukhopadhyay, Aindrila</creator><creator>Keasling, Jay D.</creator><creator>Beller, Harry R.</creator><general>Wiley Subscription Services, Inc</general><general>ChemPubSoc Europe</general><general>John Wiley and Sons Inc</general><scope>24P</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QL</scope><scope>7QO</scope><scope>7TM</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>K9.</scope><scope>M7N</scope><scope>P64</scope><scope>7X8</scope><scope>OTOTI</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-6513-7425</orcidid><orcidid>https://orcid.org/0000-0002-2992-8844</orcidid><orcidid>https://orcid.org/0000-0003-4170-6088</orcidid><orcidid>https://orcid.org/0000-0001-9637-3650</orcidid><orcidid>https://orcid.org/0000000265137425</orcidid><orcidid>https://orcid.org/0000000196373650</orcidid><orcidid>https://orcid.org/0000000229928844</orcidid><orcidid>https://orcid.org/0000000341706088</orcidid></search><sort><creationdate>20200302</creationdate><title>Insight into the Mechanism of Phenylacetate Decarboxylase (PhdB), a Toluene‐Producing Glycyl Radical Enzyme</title><author>Rodrigues, Andria V. ; Tantillo, Dean J. ; Mukhopadhyay, Aindrila ; Keasling, Jay D. ; Beller, Harry R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5320-91ceb7b34e595e5478ab979c9522302ba5689384d53df1d1e77498a9b1844e9a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Bacteria - enzymology</topic><topic>Bacterial Proteins - chemistry</topic><topic>Bacterial Proteins - metabolism</topic><topic>BASIC BIOLOGICAL SCIENCES</topic><topic>Carbon</topic><topic>Carboxy-Lyases - chemistry</topic><topic>Carboxy-Lyases - metabolism</topic><topic>Carboxyl group</topic><topic>Catalysis</topic><topic>Computer applications</topic><topic>Decarboxylation</topic><topic>Density functional theory</topic><topic>Enzymes</topic><topic>glycyl radical enzyme</topic><topic>INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY</topic><topic>Kinetics</topic><topic>Kolbe decarboxylation</topic><topic>Methylene</topic><topic>Mutants</topic><topic>Oxidation</topic><topic>phenylacetate decarboxylase</topic><topic>Phenylacetates</topic><topic>radical reactions</topic><topic>reaction mechanisms</topic><topic>Renewable resources</topic><topic>Sustainable yield</topic><topic>Thermodynamics</topic><topic>Toluene</topic><topic>Toluene - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rodrigues, Andria V.</creatorcontrib><creatorcontrib>Tantillo, Dean J.</creatorcontrib><creatorcontrib>Mukhopadhyay, Aindrila</creatorcontrib><creatorcontrib>Keasling, Jay D.</creatorcontrib><creatorcontrib>Beller, Harry R.</creatorcontrib><creatorcontrib>Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States)</creatorcontrib><collection>Wiley Online Library Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Chembiochem : a European journal of chemical biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rodrigues, Andria V.</au><au>Tantillo, Dean J.</au><au>Mukhopadhyay, Aindrila</au><au>Keasling, Jay D.</au><au>Beller, Harry R.</au><aucorp>Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Insight into the Mechanism of Phenylacetate Decarboxylase (PhdB), a Toluene‐Producing Glycyl Radical Enzyme</atitle><jtitle>Chembiochem : a European journal of chemical biology</jtitle><addtitle>Chembiochem</addtitle><date>2020-03-02</date><risdate>2020</risdate><volume>21</volume><issue>5</issue><spage>663</spage><epage>671</epage><pages>663-671</pages><issn>1439-4227</issn><eissn>1439-7633</eissn><abstract>We recently reported the discovery of phenylacetate decarboxylase (PhdB), representing one of only ten glycyl‐radical‐enzyme reaction types known, and a promising biotechnological tool for first‐time biochemical synthesis of toluene from renewable resources. Here, we used experimental and computational data to evaluate the plausibility of three candidate PhdB mechanisms, involving either attack at the phenylacetate methylene carbon or carboxyl group [via H‐atom ion from COOH or single‐electron oxidation of COO− (Kolbe‐type decarboxylation)]. In vitro experimental data included assays with F‐labeled phenylacetate, kinetic studies, and tests with site‐directed PhdB mutants; computational data involved estimation of reaction energetics using density functional theory (DFT). The DFT results indicated that all three mechanisms are thermodynamically challenging (beyond the range of many known enzymes in terms of endergonicity or activation energy barrier), reflecting the formidable demands on PhdB for catalysis of this reaction. Evidence that PhdB was able to bind α,α‐difluorophenylacetate but was unable to catalyze its decarboxylation supported the enzyme's ion of a methylene H atom. Diminished activity of H327A and Y691F mutants was consistent with proposed proton donor roles for His327 and Tyr691. Collectively, these and other data most strongly support PhdB attack at the methylene carbon.
Three candidate mechanisms for the novel glycyl radical enzyme (GRE) phenylacetate decarboxylase (PhdB) were evaluated using a combination of in vitro experimental data and computational data involving estimation of reaction energetics. The data best support a methylene carbon attack (green arrows) that differs substantially from the reported mechanism for p‐hydroxyphenylacetate decarboxylase.</abstract><cop>Germany</cop><pub>Wiley Subscription Services, Inc</pub><pmid>31512343</pmid><doi>10.1002/cbic.201900560</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-6513-7425</orcidid><orcidid>https://orcid.org/0000-0002-2992-8844</orcidid><orcidid>https://orcid.org/0000-0003-4170-6088</orcidid><orcidid>https://orcid.org/0000-0001-9637-3650</orcidid><orcidid>https://orcid.org/0000000265137425</orcidid><orcidid>https://orcid.org/0000000196373650</orcidid><orcidid>https://orcid.org/0000000229928844</orcidid><orcidid>https://orcid.org/0000000341706088</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1439-4227 |
ispartof | Chembiochem : a European journal of chemical biology, 2020-03, Vol.21 (5), p.663-671 |
issn | 1439-4227 1439-7633 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7079210 |
source | MEDLINE; Wiley Online Library Journals Frontfile Complete |
subjects | Bacteria - enzymology Bacterial Proteins - chemistry Bacterial Proteins - metabolism BASIC BIOLOGICAL SCIENCES Carbon Carboxy-Lyases - chemistry Carboxy-Lyases - metabolism Carboxyl group Catalysis Computer applications Decarboxylation Density functional theory Enzymes glycyl radical enzyme INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY Kinetics Kolbe decarboxylation Methylene Mutants Oxidation phenylacetate decarboxylase Phenylacetates radical reactions reaction mechanisms Renewable resources Sustainable yield Thermodynamics Toluene Toluene - metabolism |
title | Insight into the Mechanism of Phenylacetate Decarboxylase (PhdB), a Toluene‐Producing Glycyl Radical Enzyme |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T19%3A49%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Insight%20into%20the%20Mechanism%20of%20Phenylacetate%20Decarboxylase%20(PhdB),%20a%20Toluene%E2%80%90Producing%20Glycyl%20Radical%20Enzyme&rft.jtitle=Chembiochem%20:%20a%20European%20journal%20of%20chemical%20biology&rft.au=Rodrigues,%20Andria%20V.&rft.aucorp=Lawrence%20Berkeley%20National%20Laboratory%20(LBNL),%20Berkeley,%20CA%20(United%20States)&rft.date=2020-03-02&rft.volume=21&rft.issue=5&rft.spage=663&rft.epage=671&rft.pages=663-671&rft.issn=1439-4227&rft.eissn=1439-7633&rft_id=info:doi/10.1002/cbic.201900560&rft_dat=%3Cproquest_pubme%3E2369204797%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2369204797&rft_id=info:pmid/31512343&rfr_iscdi=true |