Patient-derived explants (PDEs) as a powerful preclinical platform for anti-cancer drug and biomarker discovery

Preclinical models that can accurately predict outcomes in the clinic are much sought after in the field of cancer drug discovery and development. Existing models such as organoids and patient-derived xenografts have many advantages, but they suffer from the drawback of not contextually preserving h...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:British journal of cancer 2020-03, Vol.122 (6), p.735-744
Hauptverfasser: Powley, Ian R., Patel, Meeta, Miles, Gareth, Pringle, Howard, Howells, Lynne, Thomas, Anne, Kettleborough, Catherine, Bryans, Justin, Hammonds, Tim, MacFarlane, Marion, Pritchard, Catrin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 744
container_issue 6
container_start_page 735
container_title British journal of cancer
container_volume 122
creator Powley, Ian R.
Patel, Meeta
Miles, Gareth
Pringle, Howard
Howells, Lynne
Thomas, Anne
Kettleborough, Catherine
Bryans, Justin
Hammonds, Tim
MacFarlane, Marion
Pritchard, Catrin
description Preclinical models that can accurately predict outcomes in the clinic are much sought after in the field of cancer drug discovery and development. Existing models such as organoids and patient-derived xenografts have many advantages, but they suffer from the drawback of not contextually preserving human tumour architecture. This is a particular problem for the preclinical testing of immunotherapies, as these agents require an intact tumour human-specific microenvironment for them to be effective. In this review, we explore the potential of patient-derived explants (PDEs) for fulfilling this need. PDEs involve the ex vivo culture of fragments of freshly resected human tumours that retain the histological features of original tumours. PDE methodology for anti-cancer drug testing has been in existence for many years, but the platform has not been widely adopted in translational research facilities, despite strong evidence for its clinical predictivity. By modifying PDE endpoint analysis to include the spatial profiling of key biomarkers by using multispectral imaging, we argue that PDEs offer many advantages, including the ability to correlate drug responses with tumour pathology, tumour heterogeneity and changes in the tumour microenvironment. As such, PDEs are a powerful model of choice for cancer drug and biomarker discovery programmes.
doi_str_mv 10.1038/s41416-019-0672-6
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7078311</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2377947258</sourcerecordid><originalsourceid>FETCH-LOGICAL-c536t-a3bc697c41f1bb540b08ec579d86e64360146a7774b0702b8b18013086a6367d3</originalsourceid><addsrcrecordid>eNqNkU9v1DAQxS0EokvhA3BBlriAkGEcJ7ZzQUJLC0iV6AHOlu04i0s2XuxkS799Z5WywAGJi_-M3xu_0Y-QpxxecxD6Tal5zSUD3jKQqmLyHlnxRlSM60rdJysAUAzaCk7Io1Ku8NqCVg_JieC6RS-sSLq0UwzjxLqQ4z50NPzcDXacCn1x-f6svKS2UEt36Trkfh7oLgc_xDF6i-fBTn3KW4oLRUtk3o4-ZNrleYOFjrqYtjZ_P5Ri8Wkf8s1j8qC3QwlP7vZT8vX87Mv6I7v4_OHT-t0F842QE7PCedkqX_OeO9fU4EAH36i20zLIWkjgtbRKqdqBgsppxzVwAVpaKaTqxCl5u_TdzW4bOo8jZjuYXY6Y6MYkG83fL2P8ZjZpbxQoLTjHBs_vGuT0Yw5lMldpziNmNpVQqq1V1WhU8UXlcyolh_74AwdzYGQWRgYZmQMjI9Hz7M9oR8cvKCh4tQiug0t98cjHh6MMKTageVNJPMEhqP5_9TpOyDuN6zSPE1qrxVpQPm5C_j3jv-PfAn1bveI</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2377947258</pqid></control><display><type>article</type><title>Patient-derived explants (PDEs) as a powerful preclinical platform for anti-cancer drug and biomarker discovery</title><source>MEDLINE</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Web of Science - Science Citation Index Expanded - 2020&lt;img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" /&gt;</source><source>PubMed Central</source><creator>Powley, Ian R. ; Patel, Meeta ; Miles, Gareth ; Pringle, Howard ; Howells, Lynne ; Thomas, Anne ; Kettleborough, Catherine ; Bryans, Justin ; Hammonds, Tim ; MacFarlane, Marion ; Pritchard, Catrin</creator><creatorcontrib>Powley, Ian R. ; Patel, Meeta ; Miles, Gareth ; Pringle, Howard ; Howells, Lynne ; Thomas, Anne ; Kettleborough, Catherine ; Bryans, Justin ; Hammonds, Tim ; MacFarlane, Marion ; Pritchard, Catrin</creatorcontrib><description>Preclinical models that can accurately predict outcomes in the clinic are much sought after in the field of cancer drug discovery and development. Existing models such as organoids and patient-derived xenografts have many advantages, but they suffer from the drawback of not contextually preserving human tumour architecture. This is a particular problem for the preclinical testing of immunotherapies, as these agents require an intact tumour human-specific microenvironment for them to be effective. In this review, we explore the potential of patient-derived explants (PDEs) for fulfilling this need. PDEs involve the ex vivo culture of fragments of freshly resected human tumours that retain the histological features of original tumours. PDE methodology for anti-cancer drug testing has been in existence for many years, but the platform has not been widely adopted in translational research facilities, despite strong evidence for its clinical predictivity. By modifying PDE endpoint analysis to include the spatial profiling of key biomarkers by using multispectral imaging, we argue that PDEs offer many advantages, including the ability to correlate drug responses with tumour pathology, tumour heterogeneity and changes in the tumour microenvironment. As such, PDEs are a powerful model of choice for cancer drug and biomarker discovery programmes.</description><identifier>ISSN: 0007-0920</identifier><identifier>EISSN: 1532-1827</identifier><identifier>DOI: 10.1038/s41416-019-0672-6</identifier><identifier>PMID: 31894140</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>631/67/70 ; 692/4028/67/70 ; Animals ; Antineoplastic Agents - pharmacology ; Biomarkers ; Biomedical and Life Sciences ; Biomedicine ; Cancer ; Cancer Research ; Disease Models, Animal ; Drug Discovery - methods ; Drug Resistance ; Drug Screening Assays, Antitumor - methods ; Epidemiology ; Explants ; Humans ; Immunotherapy ; Life Sciences &amp; Biomedicine ; Mice ; Molecular Medicine ; Neoplasms - drug therapy ; Neoplasms - metabolism ; Neoplasms - pathology ; Oncology ; Organoids ; Precision Medicine - methods ; Proteomics - methods ; Review ; Review Article ; Science &amp; Technology ; Tissue Culture Techniques ; Tumor microenvironment ; Tumors ; Xenografts</subject><ispartof>British journal of cancer, 2020-03, Vol.122 (6), p.735-744</ispartof><rights>The Author(s) 2020</rights><rights>This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>142</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000508152600001</woscitedreferencesoriginalsourcerecordid><citedby>FETCH-LOGICAL-c536t-a3bc697c41f1bb540b08ec579d86e64360146a7774b0702b8b18013086a6367d3</citedby><cites>FETCH-LOGICAL-c536t-a3bc697c41f1bb540b08ec579d86e64360146a7774b0702b8b18013086a6367d3</cites><orcidid>0000-0003-1998-3134 ; 0000-0002-5737-4025</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7078311/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7078311/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,315,729,782,786,887,27931,27932,28255,53798,53800</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31894140$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Powley, Ian R.</creatorcontrib><creatorcontrib>Patel, Meeta</creatorcontrib><creatorcontrib>Miles, Gareth</creatorcontrib><creatorcontrib>Pringle, Howard</creatorcontrib><creatorcontrib>Howells, Lynne</creatorcontrib><creatorcontrib>Thomas, Anne</creatorcontrib><creatorcontrib>Kettleborough, Catherine</creatorcontrib><creatorcontrib>Bryans, Justin</creatorcontrib><creatorcontrib>Hammonds, Tim</creatorcontrib><creatorcontrib>MacFarlane, Marion</creatorcontrib><creatorcontrib>Pritchard, Catrin</creatorcontrib><title>Patient-derived explants (PDEs) as a powerful preclinical platform for anti-cancer drug and biomarker discovery</title><title>British journal of cancer</title><addtitle>Br J Cancer</addtitle><addtitle>BRIT J CANCER</addtitle><addtitle>Br J Cancer</addtitle><description>Preclinical models that can accurately predict outcomes in the clinic are much sought after in the field of cancer drug discovery and development. Existing models such as organoids and patient-derived xenografts have many advantages, but they suffer from the drawback of not contextually preserving human tumour architecture. This is a particular problem for the preclinical testing of immunotherapies, as these agents require an intact tumour human-specific microenvironment for them to be effective. In this review, we explore the potential of patient-derived explants (PDEs) for fulfilling this need. PDEs involve the ex vivo culture of fragments of freshly resected human tumours that retain the histological features of original tumours. PDE methodology for anti-cancer drug testing has been in existence for many years, but the platform has not been widely adopted in translational research facilities, despite strong evidence for its clinical predictivity. By modifying PDE endpoint analysis to include the spatial profiling of key biomarkers by using multispectral imaging, we argue that PDEs offer many advantages, including the ability to correlate drug responses with tumour pathology, tumour heterogeneity and changes in the tumour microenvironment. As such, PDEs are a powerful model of choice for cancer drug and biomarker discovery programmes.</description><subject>631/67/70</subject><subject>692/4028/67/70</subject><subject>Animals</subject><subject>Antineoplastic Agents - pharmacology</subject><subject>Biomarkers</subject><subject>Biomedical and Life Sciences</subject><subject>Biomedicine</subject><subject>Cancer</subject><subject>Cancer Research</subject><subject>Disease Models, Animal</subject><subject>Drug Discovery - methods</subject><subject>Drug Resistance</subject><subject>Drug Screening Assays, Antitumor - methods</subject><subject>Epidemiology</subject><subject>Explants</subject><subject>Humans</subject><subject>Immunotherapy</subject><subject>Life Sciences &amp; Biomedicine</subject><subject>Mice</subject><subject>Molecular Medicine</subject><subject>Neoplasms - drug therapy</subject><subject>Neoplasms - metabolism</subject><subject>Neoplasms - pathology</subject><subject>Oncology</subject><subject>Organoids</subject><subject>Precision Medicine - methods</subject><subject>Proteomics - methods</subject><subject>Review</subject><subject>Review Article</subject><subject>Science &amp; Technology</subject><subject>Tissue Culture Techniques</subject><subject>Tumor microenvironment</subject><subject>Tumors</subject><subject>Xenografts</subject><issn>0007-0920</issn><issn>1532-1827</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>AOWDO</sourceid><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNqNkU9v1DAQxS0EokvhA3BBlriAkGEcJ7ZzQUJLC0iV6AHOlu04i0s2XuxkS799Z5WywAGJi_-M3xu_0Y-QpxxecxD6Tal5zSUD3jKQqmLyHlnxRlSM60rdJysAUAzaCk7Io1Ku8NqCVg_JieC6RS-sSLq0UwzjxLqQ4z50NPzcDXacCn1x-f6svKS2UEt36Trkfh7oLgc_xDF6i-fBTn3KW4oLRUtk3o4-ZNrleYOFjrqYtjZ_P5Ri8Wkf8s1j8qC3QwlP7vZT8vX87Mv6I7v4_OHT-t0F842QE7PCedkqX_OeO9fU4EAH36i20zLIWkjgtbRKqdqBgsppxzVwAVpaKaTqxCl5u_TdzW4bOo8jZjuYXY6Y6MYkG83fL2P8ZjZpbxQoLTjHBs_vGuT0Yw5lMldpziNmNpVQqq1V1WhU8UXlcyolh_74AwdzYGQWRgYZmQMjI9Hz7M9oR8cvKCh4tQiug0t98cjHh6MMKTageVNJPMEhqP5_9TpOyDuN6zSPE1qrxVpQPm5C_j3jv-PfAn1bveI</recordid><startdate>20200317</startdate><enddate>20200317</enddate><creator>Powley, Ian R.</creator><creator>Patel, Meeta</creator><creator>Miles, Gareth</creator><creator>Pringle, Howard</creator><creator>Howells, Lynne</creator><creator>Thomas, Anne</creator><creator>Kettleborough, Catherine</creator><creator>Bryans, Justin</creator><creator>Hammonds, Tim</creator><creator>MacFarlane, Marion</creator><creator>Pritchard, Catrin</creator><general>Nature Publishing Group UK</general><general>Springer Nature</general><general>Nature Publishing Group</general><scope>C6C</scope><scope>AOWDO</scope><scope>BLEPL</scope><scope>DTL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7RV</scope><scope>7TO</scope><scope>7U9</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AN0</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB0</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>NAPCQ</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-1998-3134</orcidid><orcidid>https://orcid.org/0000-0002-5737-4025</orcidid></search><sort><creationdate>20200317</creationdate><title>Patient-derived explants (PDEs) as a powerful preclinical platform for anti-cancer drug and biomarker discovery</title><author>Powley, Ian R. ; Patel, Meeta ; Miles, Gareth ; Pringle, Howard ; Howells, Lynne ; Thomas, Anne ; Kettleborough, Catherine ; Bryans, Justin ; Hammonds, Tim ; MacFarlane, Marion ; Pritchard, Catrin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c536t-a3bc697c41f1bb540b08ec579d86e64360146a7774b0702b8b18013086a6367d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>631/67/70</topic><topic>692/4028/67/70</topic><topic>Animals</topic><topic>Antineoplastic Agents - pharmacology</topic><topic>Biomarkers</topic><topic>Biomedical and Life Sciences</topic><topic>Biomedicine</topic><topic>Cancer</topic><topic>Cancer Research</topic><topic>Disease Models, Animal</topic><topic>Drug Discovery - methods</topic><topic>Drug Resistance</topic><topic>Drug Screening Assays, Antitumor - methods</topic><topic>Epidemiology</topic><topic>Explants</topic><topic>Humans</topic><topic>Immunotherapy</topic><topic>Life Sciences &amp; Biomedicine</topic><topic>Mice</topic><topic>Molecular Medicine</topic><topic>Neoplasms - drug therapy</topic><topic>Neoplasms - metabolism</topic><topic>Neoplasms - pathology</topic><topic>Oncology</topic><topic>Organoids</topic><topic>Precision Medicine - methods</topic><topic>Proteomics - methods</topic><topic>Review</topic><topic>Review Article</topic><topic>Science &amp; Technology</topic><topic>Tissue Culture Techniques</topic><topic>Tumor microenvironment</topic><topic>Tumors</topic><topic>Xenografts</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Powley, Ian R.</creatorcontrib><creatorcontrib>Patel, Meeta</creatorcontrib><creatorcontrib>Miles, Gareth</creatorcontrib><creatorcontrib>Pringle, Howard</creatorcontrib><creatorcontrib>Howells, Lynne</creatorcontrib><creatorcontrib>Thomas, Anne</creatorcontrib><creatorcontrib>Kettleborough, Catherine</creatorcontrib><creatorcontrib>Bryans, Justin</creatorcontrib><creatorcontrib>Hammonds, Tim</creatorcontrib><creatorcontrib>MacFarlane, Marion</creatorcontrib><creatorcontrib>Pritchard, Catrin</creatorcontrib><collection>Springer Nature OA/Free Journals</collection><collection>Web of Science - Science Citation Index Expanded - 2020</collection><collection>Web of Science Core Collection</collection><collection>Science Citation Index Expanded</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Nursing &amp; Allied Health Database</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>British Nursing Database</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>British journal of cancer</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Powley, Ian R.</au><au>Patel, Meeta</au><au>Miles, Gareth</au><au>Pringle, Howard</au><au>Howells, Lynne</au><au>Thomas, Anne</au><au>Kettleborough, Catherine</au><au>Bryans, Justin</au><au>Hammonds, Tim</au><au>MacFarlane, Marion</au><au>Pritchard, Catrin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Patient-derived explants (PDEs) as a powerful preclinical platform for anti-cancer drug and biomarker discovery</atitle><jtitle>British journal of cancer</jtitle><stitle>Br J Cancer</stitle><stitle>BRIT J CANCER</stitle><addtitle>Br J Cancer</addtitle><date>2020-03-17</date><risdate>2020</risdate><volume>122</volume><issue>6</issue><spage>735</spage><epage>744</epage><pages>735-744</pages><issn>0007-0920</issn><eissn>1532-1827</eissn><abstract>Preclinical models that can accurately predict outcomes in the clinic are much sought after in the field of cancer drug discovery and development. Existing models such as organoids and patient-derived xenografts have many advantages, but they suffer from the drawback of not contextually preserving human tumour architecture. This is a particular problem for the preclinical testing of immunotherapies, as these agents require an intact tumour human-specific microenvironment for them to be effective. In this review, we explore the potential of patient-derived explants (PDEs) for fulfilling this need. PDEs involve the ex vivo culture of fragments of freshly resected human tumours that retain the histological features of original tumours. PDE methodology for anti-cancer drug testing has been in existence for many years, but the platform has not been widely adopted in translational research facilities, despite strong evidence for its clinical predictivity. By modifying PDE endpoint analysis to include the spatial profiling of key biomarkers by using multispectral imaging, we argue that PDEs offer many advantages, including the ability to correlate drug responses with tumour pathology, tumour heterogeneity and changes in the tumour microenvironment. As such, PDEs are a powerful model of choice for cancer drug and biomarker discovery programmes.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>31894140</pmid><doi>10.1038/s41416-019-0672-6</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0003-1998-3134</orcidid><orcidid>https://orcid.org/0000-0002-5737-4025</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0007-0920
ispartof British journal of cancer, 2020-03, Vol.122 (6), p.735-744
issn 0007-0920
1532-1827
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7078311
source MEDLINE; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Web of Science - Science Citation Index Expanded - 2020<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" />; PubMed Central
subjects 631/67/70
692/4028/67/70
Animals
Antineoplastic Agents - pharmacology
Biomarkers
Biomedical and Life Sciences
Biomedicine
Cancer
Cancer Research
Disease Models, Animal
Drug Discovery - methods
Drug Resistance
Drug Screening Assays, Antitumor - methods
Epidemiology
Explants
Humans
Immunotherapy
Life Sciences & Biomedicine
Mice
Molecular Medicine
Neoplasms - drug therapy
Neoplasms - metabolism
Neoplasms - pathology
Oncology
Organoids
Precision Medicine - methods
Proteomics - methods
Review
Review Article
Science & Technology
Tissue Culture Techniques
Tumor microenvironment
Tumors
Xenografts
title Patient-derived explants (PDEs) as a powerful preclinical platform for anti-cancer drug and biomarker discovery
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-05T23%3A08%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Patient-derived%20explants%20(PDEs)%20as%20a%20powerful%20preclinical%20platform%20for%20anti-cancer%20drug%20and%20biomarker%20discovery&rft.jtitle=British%20journal%20of%20cancer&rft.au=Powley,%20Ian%20R.&rft.date=2020-03-17&rft.volume=122&rft.issue=6&rft.spage=735&rft.epage=744&rft.pages=735-744&rft.issn=0007-0920&rft.eissn=1532-1827&rft_id=info:doi/10.1038/s41416-019-0672-6&rft_dat=%3Cproquest_pubme%3E2377947258%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2377947258&rft_id=info:pmid/31894140&rfr_iscdi=true