Methionine sulfoxide reductase B from Corynebacterium diphtheriae catalyzes sulfoxide reduction via an intramolecular disulfide cascade

Corynebacterium diphtheriae is a human pathogen that causes diphtheria. In response to immune system-induced oxidative stress, C. diphtheriae expresses antioxidant enzymes, among which are methionine sulfoxide reductase (Msr) enzymes, which are critical for bacterial survival in the face of oxidativ...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of biological chemistry 2020-03, Vol.295 (11), p.3664-3677
Hauptverfasser: Tossounian, Maria-Armineh, Khanh Truong, Anh-Co, Buts, Lieven, Wahni, Khadija, Mourenza, Álvaro, Leermakers, Martine, Vertommen, Didier, Mateos, Luis Mariano, Volkov, Alexander N., Messens, Joris
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3677
container_issue 11
container_start_page 3664
container_title The Journal of biological chemistry
container_volume 295
creator Tossounian, Maria-Armineh
Khanh Truong, Anh-Co
Buts, Lieven
Wahni, Khadija
Mourenza, Álvaro
Leermakers, Martine
Vertommen, Didier
Mateos, Luis Mariano
Volkov, Alexander N.
Messens, Joris
description Corynebacterium diphtheriae is a human pathogen that causes diphtheria. In response to immune system-induced oxidative stress, C. diphtheriae expresses antioxidant enzymes, among which are methionine sulfoxide reductase (Msr) enzymes, which are critical for bacterial survival in the face of oxidative stress. Although some aspects of the catalytic mechanism of the Msr enzymes have been reported, several details still await full elucidation. Here, we solved the solution structure of C. diphtheriae MsrB (Cd-MsrB) and unraveled its catalytic and oxidation-protection mechanisms. Cd-MsrB catalyzes methionine sulfoxide reduction involving three redox-active cysteines. Using NMR heteronuclear single-quantum coherence spectra, kinetics, biochemical assays, and MS analyses, we show that the conserved nucleophilic residue Cys-122 is S-sulfenylated after substrate reduction, which is then resolved by a conserved cysteine, Cys-66, or by the nonconserved residue Cys-127. We noted that the overall structural changes during the disulfide cascade expose the Cys-122–Cys-66 disulfide to recycling through thioredoxin. In the presence of hydrogen peroxide, Cd-MsrB formed reversible intra- and intermolecular disulfides without losing its Cys-coordinated Zn2+, and only the nonconserved Cys-127 reacted with the low-molecular-weight (LMW) thiol mycothiol, protecting it from overoxidation. In summary, our structure-function analyses reveal critical details of the Cd-MsrB catalytic mechanism, including a major structural rearrangement that primes the Cys-122–Cys-66 disulfide for thioredoxin reduction and a reversible protection against excessive oxidation of the catalytic cysteines in Cd-MsrB through intra- and intermolecular disulfide formation and S-mycothiolation.
doi_str_mv 10.1074/jbc.RA119.012438
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7076214</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0021925817486339</els_id><sourcerecordid>2348220814</sourcerecordid><originalsourceid>FETCH-LOGICAL-c447t-da84fdd836e01ee65b2495b81d25b984f5c39de412880f037edda39c8202b7ea3</originalsourceid><addsrcrecordid>eNp1kU2LFDEQhoMo7rh69yQ5eukxXz2deBDWwY-FXQRR8Baqk2onS3dnTLoHxz_g3zazs7sosrkkpJ56UuQl5DlnS84a9eqqdcvPZ5ybJeNCSf2ALDjTspI1__aQLBgTvDKi1ifkSc5XrCxl-GNyIrkp10YtyO9LnDYhjmFEmue-iz-DR5rQz26CjPQt7VIc6Dqm_YgtuAlTmAfqw3YzbcoZkDqYoN__wvyfoHjpLgCFkYZxSjDEHt3cQyr9B_ZAOsgOPD4ljzroMz672U_J1_fvvqw_VhefPpyvzy4qp1QzVR606rzXcoWMI67qVihTt5p7Ubem1GonjUfFhdasY7JB70EapwUTbYMgT8mbo3c7twN6h4e5ertNYYC0txGC_bcyho39Hne2Yc1KcFUEL28EKf6YMU92CNlh38OIcc5WSKWFYPoaZUfUpZhzwu7uGc7sIT9b8rPX-dljfqXlxd_j3TXcBlaA10cAyyftAiabXcDRoQ8J3WR9DPfb_wASBq_P</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2348220814</pqid></control><display><type>article</type><title>Methionine sulfoxide reductase B from Corynebacterium diphtheriae catalyzes sulfoxide reduction via an intramolecular disulfide cascade</title><source>MEDLINE</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><creator>Tossounian, Maria-Armineh ; Khanh Truong, Anh-Co ; Buts, Lieven ; Wahni, Khadija ; Mourenza, Álvaro ; Leermakers, Martine ; Vertommen, Didier ; Mateos, Luis Mariano ; Volkov, Alexander N. ; Messens, Joris</creator><creatorcontrib>Tossounian, Maria-Armineh ; Khanh Truong, Anh-Co ; Buts, Lieven ; Wahni, Khadija ; Mourenza, Álvaro ; Leermakers, Martine ; Vertommen, Didier ; Mateos, Luis Mariano ; Volkov, Alexander N. ; Messens, Joris</creatorcontrib><description>Corynebacterium diphtheriae is a human pathogen that causes diphtheria. In response to immune system-induced oxidative stress, C. diphtheriae expresses antioxidant enzymes, among which are methionine sulfoxide reductase (Msr) enzymes, which are critical for bacterial survival in the face of oxidative stress. Although some aspects of the catalytic mechanism of the Msr enzymes have been reported, several details still await full elucidation. Here, we solved the solution structure of C. diphtheriae MsrB (Cd-MsrB) and unraveled its catalytic and oxidation-protection mechanisms. Cd-MsrB catalyzes methionine sulfoxide reduction involving three redox-active cysteines. Using NMR heteronuclear single-quantum coherence spectra, kinetics, biochemical assays, and MS analyses, we show that the conserved nucleophilic residue Cys-122 is S-sulfenylated after substrate reduction, which is then resolved by a conserved cysteine, Cys-66, or by the nonconserved residue Cys-127. We noted that the overall structural changes during the disulfide cascade expose the Cys-122–Cys-66 disulfide to recycling through thioredoxin. In the presence of hydrogen peroxide, Cd-MsrB formed reversible intra- and intermolecular disulfides without losing its Cys-coordinated Zn2+, and only the nonconserved Cys-127 reacted with the low-molecular-weight (LMW) thiol mycothiol, protecting it from overoxidation. In summary, our structure-function analyses reveal critical details of the Cd-MsrB catalytic mechanism, including a major structural rearrangement that primes the Cys-122–Cys-66 disulfide for thioredoxin reduction and a reversible protection against excessive oxidation of the catalytic cysteines in Cd-MsrB through intra- and intermolecular disulfide formation and S-mycothiolation.</description><identifier>ISSN: 0021-9258</identifier><identifier>EISSN: 1083-351X</identifier><identifier>DOI: 10.1074/jbc.RA119.012438</identifier><identifier>PMID: 31992594</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Biocatalysis ; biochemistry ; Catalytic Domain ; Conserved Sequence ; Corynebacterium diphtheriae - enzymology ; Cysteine - metabolism ; Disulfides - metabolism ; enzyme mechanism ; enzyme structure ; Enzymology ; Glycopeptides - metabolism ; hydrogen peroxide ; Inositol - metabolism ; kinetics ; Magnetic Resonance Spectroscopy ; methionine sulfoxide ; Methionine Sulfoxide Reductases - chemistry ; Methionine Sulfoxide Reductases - metabolism ; Models, Molecular ; nuclear magnetic resonance (NMR) ; Oxidation-Reduction ; redox regulation ; Safrole - analogs &amp; derivatives ; Safrole - metabolism ; Substrate Specificity ; Sulfenic Acids - metabolism ; Thioredoxin-Disulfide Reductase - metabolism ; Thioredoxins - metabolism ; Zinc - metabolism</subject><ispartof>The Journal of biological chemistry, 2020-03, Vol.295 (11), p.3664-3677</ispartof><rights>2020 © 2020 Tossounian et al.</rights><rights>2020 Tossounian et al.</rights><rights>2020 Tossounian et al. 2020 Tossounian et al.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c447t-da84fdd836e01ee65b2495b81d25b984f5c39de412880f037edda39c8202b7ea3</citedby><cites>FETCH-LOGICAL-c447t-da84fdd836e01ee65b2495b81d25b984f5c39de412880f037edda39c8202b7ea3</cites><orcidid>0000-0003-3679-7376 ; 0000-0002-2128-8264</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7076214/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7076214/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31992594$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Tossounian, Maria-Armineh</creatorcontrib><creatorcontrib>Khanh Truong, Anh-Co</creatorcontrib><creatorcontrib>Buts, Lieven</creatorcontrib><creatorcontrib>Wahni, Khadija</creatorcontrib><creatorcontrib>Mourenza, Álvaro</creatorcontrib><creatorcontrib>Leermakers, Martine</creatorcontrib><creatorcontrib>Vertommen, Didier</creatorcontrib><creatorcontrib>Mateos, Luis Mariano</creatorcontrib><creatorcontrib>Volkov, Alexander N.</creatorcontrib><creatorcontrib>Messens, Joris</creatorcontrib><title>Methionine sulfoxide reductase B from Corynebacterium diphtheriae catalyzes sulfoxide reduction via an intramolecular disulfide cascade</title><title>The Journal of biological chemistry</title><addtitle>J Biol Chem</addtitle><description>Corynebacterium diphtheriae is a human pathogen that causes diphtheria. In response to immune system-induced oxidative stress, C. diphtheriae expresses antioxidant enzymes, among which are methionine sulfoxide reductase (Msr) enzymes, which are critical for bacterial survival in the face of oxidative stress. Although some aspects of the catalytic mechanism of the Msr enzymes have been reported, several details still await full elucidation. Here, we solved the solution structure of C. diphtheriae MsrB (Cd-MsrB) and unraveled its catalytic and oxidation-protection mechanisms. Cd-MsrB catalyzes methionine sulfoxide reduction involving three redox-active cysteines. Using NMR heteronuclear single-quantum coherence spectra, kinetics, biochemical assays, and MS analyses, we show that the conserved nucleophilic residue Cys-122 is S-sulfenylated after substrate reduction, which is then resolved by a conserved cysteine, Cys-66, or by the nonconserved residue Cys-127. We noted that the overall structural changes during the disulfide cascade expose the Cys-122–Cys-66 disulfide to recycling through thioredoxin. In the presence of hydrogen peroxide, Cd-MsrB formed reversible intra- and intermolecular disulfides without losing its Cys-coordinated Zn2+, and only the nonconserved Cys-127 reacted with the low-molecular-weight (LMW) thiol mycothiol, protecting it from overoxidation. In summary, our structure-function analyses reveal critical details of the Cd-MsrB catalytic mechanism, including a major structural rearrangement that primes the Cys-122–Cys-66 disulfide for thioredoxin reduction and a reversible protection against excessive oxidation of the catalytic cysteines in Cd-MsrB through intra- and intermolecular disulfide formation and S-mycothiolation.</description><subject>Biocatalysis</subject><subject>biochemistry</subject><subject>Catalytic Domain</subject><subject>Conserved Sequence</subject><subject>Corynebacterium diphtheriae - enzymology</subject><subject>Cysteine - metabolism</subject><subject>Disulfides - metabolism</subject><subject>enzyme mechanism</subject><subject>enzyme structure</subject><subject>Enzymology</subject><subject>Glycopeptides - metabolism</subject><subject>hydrogen peroxide</subject><subject>Inositol - metabolism</subject><subject>kinetics</subject><subject>Magnetic Resonance Spectroscopy</subject><subject>methionine sulfoxide</subject><subject>Methionine Sulfoxide Reductases - chemistry</subject><subject>Methionine Sulfoxide Reductases - metabolism</subject><subject>Models, Molecular</subject><subject>nuclear magnetic resonance (NMR)</subject><subject>Oxidation-Reduction</subject><subject>redox regulation</subject><subject>Safrole - analogs &amp; derivatives</subject><subject>Safrole - metabolism</subject><subject>Substrate Specificity</subject><subject>Sulfenic Acids - metabolism</subject><subject>Thioredoxin-Disulfide Reductase - metabolism</subject><subject>Thioredoxins - metabolism</subject><subject>Zinc - metabolism</subject><issn>0021-9258</issn><issn>1083-351X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp1kU2LFDEQhoMo7rh69yQ5eukxXz2deBDWwY-FXQRR8Baqk2onS3dnTLoHxz_g3zazs7sosrkkpJ56UuQl5DlnS84a9eqqdcvPZ5ybJeNCSf2ALDjTspI1__aQLBgTvDKi1ifkSc5XrCxl-GNyIrkp10YtyO9LnDYhjmFEmue-iz-DR5rQz26CjPQt7VIc6Dqm_YgtuAlTmAfqw3YzbcoZkDqYoN__wvyfoHjpLgCFkYZxSjDEHt3cQyr9B_ZAOsgOPD4ljzroMz672U_J1_fvvqw_VhefPpyvzy4qp1QzVR606rzXcoWMI67qVihTt5p7Ubem1GonjUfFhdasY7JB70EapwUTbYMgT8mbo3c7twN6h4e5ertNYYC0txGC_bcyho39Hne2Yc1KcFUEL28EKf6YMU92CNlh38OIcc5WSKWFYPoaZUfUpZhzwu7uGc7sIT9b8rPX-dljfqXlxd_j3TXcBlaA10cAyyftAiabXcDRoQ8J3WR9DPfb_wASBq_P</recordid><startdate>20200313</startdate><enddate>20200313</enddate><creator>Tossounian, Maria-Armineh</creator><creator>Khanh Truong, Anh-Co</creator><creator>Buts, Lieven</creator><creator>Wahni, Khadija</creator><creator>Mourenza, Álvaro</creator><creator>Leermakers, Martine</creator><creator>Vertommen, Didier</creator><creator>Mateos, Luis Mariano</creator><creator>Volkov, Alexander N.</creator><creator>Messens, Joris</creator><general>Elsevier Inc</general><general>American Society for Biochemistry and Molecular Biology</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-3679-7376</orcidid><orcidid>https://orcid.org/0000-0002-2128-8264</orcidid></search><sort><creationdate>20200313</creationdate><title>Methionine sulfoxide reductase B from Corynebacterium diphtheriae catalyzes sulfoxide reduction via an intramolecular disulfide cascade</title><author>Tossounian, Maria-Armineh ; Khanh Truong, Anh-Co ; Buts, Lieven ; Wahni, Khadija ; Mourenza, Álvaro ; Leermakers, Martine ; Vertommen, Didier ; Mateos, Luis Mariano ; Volkov, Alexander N. ; Messens, Joris</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c447t-da84fdd836e01ee65b2495b81d25b984f5c39de412880f037edda39c8202b7ea3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Biocatalysis</topic><topic>biochemistry</topic><topic>Catalytic Domain</topic><topic>Conserved Sequence</topic><topic>Corynebacterium diphtheriae - enzymology</topic><topic>Cysteine - metabolism</topic><topic>Disulfides - metabolism</topic><topic>enzyme mechanism</topic><topic>enzyme structure</topic><topic>Enzymology</topic><topic>Glycopeptides - metabolism</topic><topic>hydrogen peroxide</topic><topic>Inositol - metabolism</topic><topic>kinetics</topic><topic>Magnetic Resonance Spectroscopy</topic><topic>methionine sulfoxide</topic><topic>Methionine Sulfoxide Reductases - chemistry</topic><topic>Methionine Sulfoxide Reductases - metabolism</topic><topic>Models, Molecular</topic><topic>nuclear magnetic resonance (NMR)</topic><topic>Oxidation-Reduction</topic><topic>redox regulation</topic><topic>Safrole - analogs &amp; derivatives</topic><topic>Safrole - metabolism</topic><topic>Substrate Specificity</topic><topic>Sulfenic Acids - metabolism</topic><topic>Thioredoxin-Disulfide Reductase - metabolism</topic><topic>Thioredoxins - metabolism</topic><topic>Zinc - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tossounian, Maria-Armineh</creatorcontrib><creatorcontrib>Khanh Truong, Anh-Co</creatorcontrib><creatorcontrib>Buts, Lieven</creatorcontrib><creatorcontrib>Wahni, Khadija</creatorcontrib><creatorcontrib>Mourenza, Álvaro</creatorcontrib><creatorcontrib>Leermakers, Martine</creatorcontrib><creatorcontrib>Vertommen, Didier</creatorcontrib><creatorcontrib>Mateos, Luis Mariano</creatorcontrib><creatorcontrib>Volkov, Alexander N.</creatorcontrib><creatorcontrib>Messens, Joris</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>The Journal of biological chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tossounian, Maria-Armineh</au><au>Khanh Truong, Anh-Co</au><au>Buts, Lieven</au><au>Wahni, Khadija</au><au>Mourenza, Álvaro</au><au>Leermakers, Martine</au><au>Vertommen, Didier</au><au>Mateos, Luis Mariano</au><au>Volkov, Alexander N.</au><au>Messens, Joris</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Methionine sulfoxide reductase B from Corynebacterium diphtheriae catalyzes sulfoxide reduction via an intramolecular disulfide cascade</atitle><jtitle>The Journal of biological chemistry</jtitle><addtitle>J Biol Chem</addtitle><date>2020-03-13</date><risdate>2020</risdate><volume>295</volume><issue>11</issue><spage>3664</spage><epage>3677</epage><pages>3664-3677</pages><issn>0021-9258</issn><eissn>1083-351X</eissn><abstract>Corynebacterium diphtheriae is a human pathogen that causes diphtheria. In response to immune system-induced oxidative stress, C. diphtheriae expresses antioxidant enzymes, among which are methionine sulfoxide reductase (Msr) enzymes, which are critical for bacterial survival in the face of oxidative stress. Although some aspects of the catalytic mechanism of the Msr enzymes have been reported, several details still await full elucidation. Here, we solved the solution structure of C. diphtheriae MsrB (Cd-MsrB) and unraveled its catalytic and oxidation-protection mechanisms. Cd-MsrB catalyzes methionine sulfoxide reduction involving three redox-active cysteines. Using NMR heteronuclear single-quantum coherence spectra, kinetics, biochemical assays, and MS analyses, we show that the conserved nucleophilic residue Cys-122 is S-sulfenylated after substrate reduction, which is then resolved by a conserved cysteine, Cys-66, or by the nonconserved residue Cys-127. We noted that the overall structural changes during the disulfide cascade expose the Cys-122–Cys-66 disulfide to recycling through thioredoxin. In the presence of hydrogen peroxide, Cd-MsrB formed reversible intra- and intermolecular disulfides without losing its Cys-coordinated Zn2+, and only the nonconserved Cys-127 reacted with the low-molecular-weight (LMW) thiol mycothiol, protecting it from overoxidation. In summary, our structure-function analyses reveal critical details of the Cd-MsrB catalytic mechanism, including a major structural rearrangement that primes the Cys-122–Cys-66 disulfide for thioredoxin reduction and a reversible protection against excessive oxidation of the catalytic cysteines in Cd-MsrB through intra- and intermolecular disulfide formation and S-mycothiolation.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>31992594</pmid><doi>10.1074/jbc.RA119.012438</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0003-3679-7376</orcidid><orcidid>https://orcid.org/0000-0002-2128-8264</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0021-9258
ispartof The Journal of biological chemistry, 2020-03, Vol.295 (11), p.3664-3677
issn 0021-9258
1083-351X
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7076214
source MEDLINE; EZB-FREE-00999 freely available EZB journals; PubMed Central; Alma/SFX Local Collection
subjects Biocatalysis
biochemistry
Catalytic Domain
Conserved Sequence
Corynebacterium diphtheriae - enzymology
Cysteine - metabolism
Disulfides - metabolism
enzyme mechanism
enzyme structure
Enzymology
Glycopeptides - metabolism
hydrogen peroxide
Inositol - metabolism
kinetics
Magnetic Resonance Spectroscopy
methionine sulfoxide
Methionine Sulfoxide Reductases - chemistry
Methionine Sulfoxide Reductases - metabolism
Models, Molecular
nuclear magnetic resonance (NMR)
Oxidation-Reduction
redox regulation
Safrole - analogs & derivatives
Safrole - metabolism
Substrate Specificity
Sulfenic Acids - metabolism
Thioredoxin-Disulfide Reductase - metabolism
Thioredoxins - metabolism
Zinc - metabolism
title Methionine sulfoxide reductase B from Corynebacterium diphtheriae catalyzes sulfoxide reduction via an intramolecular disulfide cascade
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T04%3A14%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Methionine%20sulfoxide%20reductase%20B%20from%20Corynebacterium%20diphtheriae%20catalyzes%20sulfoxide%20reduction%20via%20an%20intramolecular%20disulfide%20cascade&rft.jtitle=The%20Journal%20of%20biological%20chemistry&rft.au=Tossounian,%20Maria-Armineh&rft.date=2020-03-13&rft.volume=295&rft.issue=11&rft.spage=3664&rft.epage=3677&rft.pages=3664-3677&rft.issn=0021-9258&rft.eissn=1083-351X&rft_id=info:doi/10.1074/jbc.RA119.012438&rft_dat=%3Cproquest_pubme%3E2348220814%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2348220814&rft_id=info:pmid/31992594&rft_els_id=S0021925817486339&rfr_iscdi=true