Structural and evolutionary analyses of the Plasmodium falciparum chloroquine resistance transporter

Mutations in the Plasmodium falciparum chloroquine resistance transporter (PfCRT) confer resistance to several antimalarial drugs such as chloroquine (CQ) or piperaquine (PPQ), a partner molecule in current artemisinin-based combination therapies. As a member of the Drug/Metabolite Transporter (DMT)...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Scientific reports 2020-03, Vol.10 (1), p.4842, Article 4842
Hauptverfasser: Coppée, Romain, Sabbagh, Audrey, Clain, Jérôme
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 1
container_start_page 4842
container_title Scientific reports
container_volume 10
creator Coppée, Romain
Sabbagh, Audrey
Clain, Jérôme
description Mutations in the Plasmodium falciparum chloroquine resistance transporter (PfCRT) confer resistance to several antimalarial drugs such as chloroquine (CQ) or piperaquine (PPQ), a partner molecule in current artemisinin-based combination therapies. As a member of the Drug/Metabolite Transporter (DMT) superfamily, the vacuolar transporter PfCRT may translocate substrate molecule(s) across the membrane of the digestive vacuole (DV), a lysosome-like organelle. However, the physiological substrate(s), the transport mechanism and the functional regions of PfCRT remain to be fully characterized. Here, we hypothesized that identification of evolutionary conserved sites in a tertiary structural context could help locate putative functional regions of PfCRT. Hence, site-specific substitution rates were estimated over Plasmodium evolution at each amino acid sites, and the PfCRT tertiary structure was predicted in both inward-facing (open-to-vacuole) and occluded states through homology modeling using DMT template structures sharing
doi_str_mv 10.1038/s41598-020-61181-1
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7076037</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2377673047</sourcerecordid><originalsourceid>FETCH-LOGICAL-c511t-a3e324ec7bb458e02037504d9b379a3e9930f279a476f923dcd1e6935b3eb56c3</originalsourceid><addsrcrecordid>eNp9UV1LwzAUDaK4MfcHfJCCz9V8NM3yIsjwCwQF9Tmk6e3W0TUzSQf792Z2zvliXnLJPfece3IQOif4imA2ufYZ4XKSYorTnJAJSckRGlKc8ZQySo8P6gEae7_A8XAqMyJP0YBRIqSQfIjKt-A6Ezqnm0S3ZQJr23Shtq12m_igm40Hn9gqCXNIXhvtl7asu2VS6cbUK-1iaeaNdfazq1tIHPjaB90aSILTrV9ZF8CdoZOI9zDe3SP0cX_3Pn1Mn18enqa3z6nhhIRUM2A0AyOKIuMTiNaY4DgrZcGEjE0pGa5oLDORV5Ky0pQEcsl4waDguWEjdNPzrrpiCaWBNi7RqJWrl9GOsrpWfzttPVczu1YCizyKRYLLHcHWEPigFrZz8Re8okyIXDCcbVG0RxlnvXdQ7RUIVttwVB-Oig7UdziKxKGLw932Iz9RRADrAT622hm4X-1_aL8AEQydWw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2377673047</pqid></control><display><type>article</type><title>Structural and evolutionary analyses of the Plasmodium falciparum chloroquine resistance transporter</title><source>SpringerOpen</source><source>MEDLINE</source><source>Nature Free</source><source>Full-Text Journals in Chemistry (Open access)</source><source>DOAJ Directory of Open Access Journals</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>EZB Electronic Journals Library</source><creator>Coppée, Romain ; Sabbagh, Audrey ; Clain, Jérôme</creator><creatorcontrib>Coppée, Romain ; Sabbagh, Audrey ; Clain, Jérôme</creatorcontrib><description>Mutations in the Plasmodium falciparum chloroquine resistance transporter (PfCRT) confer resistance to several antimalarial drugs such as chloroquine (CQ) or piperaquine (PPQ), a partner molecule in current artemisinin-based combination therapies. As a member of the Drug/Metabolite Transporter (DMT) superfamily, the vacuolar transporter PfCRT may translocate substrate molecule(s) across the membrane of the digestive vacuole (DV), a lysosome-like organelle. However, the physiological substrate(s), the transport mechanism and the functional regions of PfCRT remain to be fully characterized. Here, we hypothesized that identification of evolutionary conserved sites in a tertiary structural context could help locate putative functional regions of PfCRT. Hence, site-specific substitution rates were estimated over Plasmodium evolution at each amino acid sites, and the PfCRT tertiary structure was predicted in both inward-facing (open-to-vacuole) and occluded states through homology modeling using DMT template structures sharing &lt;15% sequence identity with PfCRT. We found that the vacuolar-half and membrane-spanning domain (and especially the transmembrane helix 9) of PfCRT were more conserved, supporting that its physiological substrate is expelled out of the parasite DV. In the PfCRT occluded state, some evolutionary conserved sites, including positions related to drug resistance mutations, participate in a putative binding pocket located at the core of the PfCRT membrane-spanning domain. Through structural comparison with experimentally-characterized DMT transporters, we identified several conserved PfCRT amino acid sites located in this pocket as robust candidates for mediating substrate transport. Finally, in silico mutagenesis revealed that drug resistance mutations caused drastic changes in the electrostatic potential of the transporter vacuolar entry and pocket, facilitating the escape of protonated CQ and PPQ from the parasite DV.</description><identifier>ISSN: 2045-2322</identifier><identifier>EISSN: 2045-2322</identifier><identifier>DOI: 10.1038/s41598-020-61181-1</identifier><identifier>PMID: 32179795</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>631/114/2410 ; 631/114/2411 ; 631/114/663 ; 631/114/739 ; 631/181/735 ; Amino acid substitution ; Amino acids ; Amino Acids - metabolism ; Antimalarials - pharmacology ; Artemisinin ; Chloroquine ; Chloroquine - pharmacology ; Drug resistance ; Drug Resistance - genetics ; Electrostatic properties ; Evolution, Molecular ; Evolutionary conservation ; Homology ; Humanities and Social Sciences ; Membrane Transport Proteins - chemistry ; Membrane Transport Proteins - genetics ; Metabolites ; multidisciplinary ; Mutagenesis ; Mutation ; Parasites ; Parasitic Sensitivity Tests ; Phylogeny ; Physiology ; Plasmodium falciparum ; Plasmodium falciparum - cytology ; Plasmodium falciparum - drug effects ; Plasmodium falciparum - genetics ; Plasmodium falciparum - metabolism ; Protein structure ; Protozoan Proteins - chemistry ; Protozoan Proteins - genetics ; Quinolines - pharmacology ; Science ; Science (multidisciplinary) ; Substrates ; Tertiary structure ; Vacuoles</subject><ispartof>Scientific reports, 2020-03, Vol.10 (1), p.4842, Article 4842</ispartof><rights>The Author(s) 2020</rights><rights>This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c511t-a3e324ec7bb458e02037504d9b379a3e9930f279a476f923dcd1e6935b3eb56c3</citedby><cites>FETCH-LOGICAL-c511t-a3e324ec7bb458e02037504d9b379a3e9930f279a476f923dcd1e6935b3eb56c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7076037/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7076037/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,27903,27904,41099,42168,51554,53769,53771</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32179795$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Coppée, Romain</creatorcontrib><creatorcontrib>Sabbagh, Audrey</creatorcontrib><creatorcontrib>Clain, Jérôme</creatorcontrib><title>Structural and evolutionary analyses of the Plasmodium falciparum chloroquine resistance transporter</title><title>Scientific reports</title><addtitle>Sci Rep</addtitle><addtitle>Sci Rep</addtitle><description>Mutations in the Plasmodium falciparum chloroquine resistance transporter (PfCRT) confer resistance to several antimalarial drugs such as chloroquine (CQ) or piperaquine (PPQ), a partner molecule in current artemisinin-based combination therapies. As a member of the Drug/Metabolite Transporter (DMT) superfamily, the vacuolar transporter PfCRT may translocate substrate molecule(s) across the membrane of the digestive vacuole (DV), a lysosome-like organelle. However, the physiological substrate(s), the transport mechanism and the functional regions of PfCRT remain to be fully characterized. Here, we hypothesized that identification of evolutionary conserved sites in a tertiary structural context could help locate putative functional regions of PfCRT. Hence, site-specific substitution rates were estimated over Plasmodium evolution at each amino acid sites, and the PfCRT tertiary structure was predicted in both inward-facing (open-to-vacuole) and occluded states through homology modeling using DMT template structures sharing &lt;15% sequence identity with PfCRT. We found that the vacuolar-half and membrane-spanning domain (and especially the transmembrane helix 9) of PfCRT were more conserved, supporting that its physiological substrate is expelled out of the parasite DV. In the PfCRT occluded state, some evolutionary conserved sites, including positions related to drug resistance mutations, participate in a putative binding pocket located at the core of the PfCRT membrane-spanning domain. Through structural comparison with experimentally-characterized DMT transporters, we identified several conserved PfCRT amino acid sites located in this pocket as robust candidates for mediating substrate transport. Finally, in silico mutagenesis revealed that drug resistance mutations caused drastic changes in the electrostatic potential of the transporter vacuolar entry and pocket, facilitating the escape of protonated CQ and PPQ from the parasite DV.</description><subject>631/114/2410</subject><subject>631/114/2411</subject><subject>631/114/663</subject><subject>631/114/739</subject><subject>631/181/735</subject><subject>Amino acid substitution</subject><subject>Amino acids</subject><subject>Amino Acids - metabolism</subject><subject>Antimalarials - pharmacology</subject><subject>Artemisinin</subject><subject>Chloroquine</subject><subject>Chloroquine - pharmacology</subject><subject>Drug resistance</subject><subject>Drug Resistance - genetics</subject><subject>Electrostatic properties</subject><subject>Evolution, Molecular</subject><subject>Evolutionary conservation</subject><subject>Homology</subject><subject>Humanities and Social Sciences</subject><subject>Membrane Transport Proteins - chemistry</subject><subject>Membrane Transport Proteins - genetics</subject><subject>Metabolites</subject><subject>multidisciplinary</subject><subject>Mutagenesis</subject><subject>Mutation</subject><subject>Parasites</subject><subject>Parasitic Sensitivity Tests</subject><subject>Phylogeny</subject><subject>Physiology</subject><subject>Plasmodium falciparum</subject><subject>Plasmodium falciparum - cytology</subject><subject>Plasmodium falciparum - drug effects</subject><subject>Plasmodium falciparum - genetics</subject><subject>Plasmodium falciparum - metabolism</subject><subject>Protein structure</subject><subject>Protozoan Proteins - chemistry</subject><subject>Protozoan Proteins - genetics</subject><subject>Quinolines - pharmacology</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>Substrates</subject><subject>Tertiary structure</subject><subject>Vacuoles</subject><issn>2045-2322</issn><issn>2045-2322</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><recordid>eNp9UV1LwzAUDaK4MfcHfJCCz9V8NM3yIsjwCwQF9Tmk6e3W0TUzSQf792Z2zvliXnLJPfece3IQOif4imA2ufYZ4XKSYorTnJAJSckRGlKc8ZQySo8P6gEae7_A8XAqMyJP0YBRIqSQfIjKt-A6Ezqnm0S3ZQJr23Shtq12m_igm40Hn9gqCXNIXhvtl7asu2VS6cbUK-1iaeaNdfazq1tIHPjaB90aSILTrV9ZF8CdoZOI9zDe3SP0cX_3Pn1Mn18enqa3z6nhhIRUM2A0AyOKIuMTiNaY4DgrZcGEjE0pGa5oLDORV5Ky0pQEcsl4waDguWEjdNPzrrpiCaWBNi7RqJWrl9GOsrpWfzttPVczu1YCizyKRYLLHcHWEPigFrZz8Re8okyIXDCcbVG0RxlnvXdQ7RUIVttwVB-Oig7UdziKxKGLw932Iz9RRADrAT622hm4X-1_aL8AEQydWw</recordid><startdate>20200316</startdate><enddate>20200316</enddate><creator>Coppée, Romain</creator><creator>Sabbagh, Audrey</creator><creator>Clain, Jérôme</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>5PM</scope></search><sort><creationdate>20200316</creationdate><title>Structural and evolutionary analyses of the Plasmodium falciparum chloroquine resistance transporter</title><author>Coppée, Romain ; Sabbagh, Audrey ; Clain, Jérôme</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c511t-a3e324ec7bb458e02037504d9b379a3e9930f279a476f923dcd1e6935b3eb56c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>631/114/2410</topic><topic>631/114/2411</topic><topic>631/114/663</topic><topic>631/114/739</topic><topic>631/181/735</topic><topic>Amino acid substitution</topic><topic>Amino acids</topic><topic>Amino Acids - metabolism</topic><topic>Antimalarials - pharmacology</topic><topic>Artemisinin</topic><topic>Chloroquine</topic><topic>Chloroquine - pharmacology</topic><topic>Drug resistance</topic><topic>Drug Resistance - genetics</topic><topic>Electrostatic properties</topic><topic>Evolution, Molecular</topic><topic>Evolutionary conservation</topic><topic>Homology</topic><topic>Humanities and Social Sciences</topic><topic>Membrane Transport Proteins - chemistry</topic><topic>Membrane Transport Proteins - genetics</topic><topic>Metabolites</topic><topic>multidisciplinary</topic><topic>Mutagenesis</topic><topic>Mutation</topic><topic>Parasites</topic><topic>Parasitic Sensitivity Tests</topic><topic>Phylogeny</topic><topic>Physiology</topic><topic>Plasmodium falciparum</topic><topic>Plasmodium falciparum - cytology</topic><topic>Plasmodium falciparum - drug effects</topic><topic>Plasmodium falciparum - genetics</topic><topic>Plasmodium falciparum - metabolism</topic><topic>Protein structure</topic><topic>Protozoan Proteins - chemistry</topic><topic>Protozoan Proteins - genetics</topic><topic>Quinolines - pharmacology</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>Substrates</topic><topic>Tertiary structure</topic><topic>Vacuoles</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Coppée, Romain</creatorcontrib><creatorcontrib>Sabbagh, Audrey</creatorcontrib><creatorcontrib>Clain, Jérôme</creatorcontrib><collection>SpringerOpen</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Biological Sciences</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Scientific reports</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Coppée, Romain</au><au>Sabbagh, Audrey</au><au>Clain, Jérôme</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Structural and evolutionary analyses of the Plasmodium falciparum chloroquine resistance transporter</atitle><jtitle>Scientific reports</jtitle><stitle>Sci Rep</stitle><addtitle>Sci Rep</addtitle><date>2020-03-16</date><risdate>2020</risdate><volume>10</volume><issue>1</issue><spage>4842</spage><pages>4842-</pages><artnum>4842</artnum><issn>2045-2322</issn><eissn>2045-2322</eissn><abstract>Mutations in the Plasmodium falciparum chloroquine resistance transporter (PfCRT) confer resistance to several antimalarial drugs such as chloroquine (CQ) or piperaquine (PPQ), a partner molecule in current artemisinin-based combination therapies. As a member of the Drug/Metabolite Transporter (DMT) superfamily, the vacuolar transporter PfCRT may translocate substrate molecule(s) across the membrane of the digestive vacuole (DV), a lysosome-like organelle. However, the physiological substrate(s), the transport mechanism and the functional regions of PfCRT remain to be fully characterized. Here, we hypothesized that identification of evolutionary conserved sites in a tertiary structural context could help locate putative functional regions of PfCRT. Hence, site-specific substitution rates were estimated over Plasmodium evolution at each amino acid sites, and the PfCRT tertiary structure was predicted in both inward-facing (open-to-vacuole) and occluded states through homology modeling using DMT template structures sharing &lt;15% sequence identity with PfCRT. We found that the vacuolar-half and membrane-spanning domain (and especially the transmembrane helix 9) of PfCRT were more conserved, supporting that its physiological substrate is expelled out of the parasite DV. In the PfCRT occluded state, some evolutionary conserved sites, including positions related to drug resistance mutations, participate in a putative binding pocket located at the core of the PfCRT membrane-spanning domain. Through structural comparison with experimentally-characterized DMT transporters, we identified several conserved PfCRT amino acid sites located in this pocket as robust candidates for mediating substrate transport. Finally, in silico mutagenesis revealed that drug resistance mutations caused drastic changes in the electrostatic potential of the transporter vacuolar entry and pocket, facilitating the escape of protonated CQ and PPQ from the parasite DV.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>32179795</pmid><doi>10.1038/s41598-020-61181-1</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2045-2322
ispartof Scientific reports, 2020-03, Vol.10 (1), p.4842, Article 4842
issn 2045-2322
2045-2322
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7076037
source SpringerOpen; MEDLINE; Nature Free; Full-Text Journals in Chemistry (Open access); DOAJ Directory of Open Access Journals; PubMed Central; Alma/SFX Local Collection; EZB Electronic Journals Library
subjects 631/114/2410
631/114/2411
631/114/663
631/114/739
631/181/735
Amino acid substitution
Amino acids
Amino Acids - metabolism
Antimalarials - pharmacology
Artemisinin
Chloroquine
Chloroquine - pharmacology
Drug resistance
Drug Resistance - genetics
Electrostatic properties
Evolution, Molecular
Evolutionary conservation
Homology
Humanities and Social Sciences
Membrane Transport Proteins - chemistry
Membrane Transport Proteins - genetics
Metabolites
multidisciplinary
Mutagenesis
Mutation
Parasites
Parasitic Sensitivity Tests
Phylogeny
Physiology
Plasmodium falciparum
Plasmodium falciparum - cytology
Plasmodium falciparum - drug effects
Plasmodium falciparum - genetics
Plasmodium falciparum - metabolism
Protein structure
Protozoan Proteins - chemistry
Protozoan Proteins - genetics
Quinolines - pharmacology
Science
Science (multidisciplinary)
Substrates
Tertiary structure
Vacuoles
title Structural and evolutionary analyses of the Plasmodium falciparum chloroquine resistance transporter
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T21%3A56%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Structural%20and%20evolutionary%20analyses%20of%20the%20Plasmodium%20falciparum%20chloroquine%20resistance%20transporter&rft.jtitle=Scientific%20reports&rft.au=Copp%C3%A9e,%20Romain&rft.date=2020-03-16&rft.volume=10&rft.issue=1&rft.spage=4842&rft.pages=4842-&rft.artnum=4842&rft.issn=2045-2322&rft.eissn=2045-2322&rft_id=info:doi/10.1038/s41598-020-61181-1&rft_dat=%3Cproquest_pubme%3E2377673047%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2377673047&rft_id=info:pmid/32179795&rfr_iscdi=true