Network-based drug repurposing for novel coronavirus 2019-nCoV/SARS-CoV-2

Human coronaviruses (HCoVs), including severe acute respiratory syndrome coronavirus (SARS-CoV) and 2019 novel coronavirus (2019-nCoV, also known as SARS-CoV-2), lead global epidemics with high morbidity and mortality. However, there are currently no effective drugs targeting 2019-nCoV/SARS-CoV-2. D...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Cell discovery 2020-03, Vol.6 (1), p.14, Article 14
Hauptverfasser: Zhou, Yadi, Hou, Yuan, Shen, Jiayu, Huang, Yin, Martin, William, Cheng, Feixiong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 1
container_start_page 14
container_title Cell discovery
container_volume 6
creator Zhou, Yadi
Hou, Yuan
Shen, Jiayu
Huang, Yin
Martin, William
Cheng, Feixiong
description Human coronaviruses (HCoVs), including severe acute respiratory syndrome coronavirus (SARS-CoV) and 2019 novel coronavirus (2019-nCoV, also known as SARS-CoV-2), lead global epidemics with high morbidity and mortality. However, there are currently no effective drugs targeting 2019-nCoV/SARS-CoV-2. Drug repurposing, representing as an effective drug discovery strategy from existing drugs, could shorten the time and reduce the cost compared to de novo drug discovery. In this study, we present an integrative, antiviral drug repurposing methodology implementing a systems pharmacology-based network medicine platform, quantifying the interplay between the HCoV–host interactome and drug targets in the human protein–protein interaction network. Phylogenetic analyses of 15 HCoV whole genomes reveal that 2019-nCoV/SARS-CoV-2 shares the highest nucleotide sequence identity with SARS-CoV (79.7%). Specifically, the envelope and nucleocapsid proteins of 2019-nCoV/SARS-CoV-2 are two evolutionarily conserved regions, having the sequence identities of 96% and 89.6%, respectively, compared to SARS-CoV. Using network proximity analyses of drug targets and HCoV–host interactions in the human interactome, we prioritize 16 potential anti-HCoV repurposable drugs (e.g., melatonin, mercaptopurine, and sirolimus) that are further validated by enrichment analyses of drug-gene signatures and HCoV-induced transcriptomics data in human cell lines. We further identify three potential drug combinations (e.g., sirolimus plus dactinomycin, mercaptopurine plus melatonin, and toremifene plus emodin) captured by the “ Complementary Exposure ” pattern: the targets of the drugs both hit the HCoV–host subnetwork, but target separate neighborhoods in the human interactome network. In summary, this study offers powerful network-based methodologies for rapid identification of candidate repurposable drugs and potential drug combinations targeting 2019-nCoV/SARS-CoV-2.
doi_str_mv 10.1038/s41421-020-0153-3
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7073332</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2377289788</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4793-5603f8a4081d1aa717300ffc2acbced64e1b837c83a70b356c35d89a1a6fb4c63</originalsourceid><addsrcrecordid>eNp1kU1LAzEQhoMoKrU_wIsseI5OMrub7EUoxS8oCla9hmw2W1fbTU26Ff-9KevnwdMMzDPvvMxLyCGDEwYoT0PKUs4ocKDAMqS4RfY5ZDnNilxu_-r3yDCEZ4BIcSlltkv2kLMiLSTsk-sbu3pz_oWWOtgqqXw3S7xddn7pQtPOktr5pHVrO0-M867V68Z3IeHACtqO3ePpdHQ3pbGh_IDs1Hoe7PCzDsjDxfn9-IpObi-vx6MJNakokGY5YC11CpJVTGvBBALUteHalMZWeWpZKVEYiVpAiVluMKtkoZnO6zI1OQ7IWa-77MqFrYxtV17P1dI3C-3fldON-jtpmyc1c2slQCAijwLHnwLevXY2rNSz63wbPSuOQnBZCCkjxXrKeBeCt_X3BQZqE4DqA1AxALUJQGHcOfpt7Xvj690R4D0Q4qidWf9z-n_VD5xhj6w</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2377289788</pqid></control><display><type>article</type><title>Network-based drug repurposing for novel coronavirus 2019-nCoV/SARS-CoV-2</title><source>Nature Free</source><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Springer Nature OA Free Journals</source><creator>Zhou, Yadi ; Hou, Yuan ; Shen, Jiayu ; Huang, Yin ; Martin, William ; Cheng, Feixiong</creator><creatorcontrib>Zhou, Yadi ; Hou, Yuan ; Shen, Jiayu ; Huang, Yin ; Martin, William ; Cheng, Feixiong</creatorcontrib><description>Human coronaviruses (HCoVs), including severe acute respiratory syndrome coronavirus (SARS-CoV) and 2019 novel coronavirus (2019-nCoV, also known as SARS-CoV-2), lead global epidemics with high morbidity and mortality. However, there are currently no effective drugs targeting 2019-nCoV/SARS-CoV-2. Drug repurposing, representing as an effective drug discovery strategy from existing drugs, could shorten the time and reduce the cost compared to de novo drug discovery. In this study, we present an integrative, antiviral drug repurposing methodology implementing a systems pharmacology-based network medicine platform, quantifying the interplay between the HCoV–host interactome and drug targets in the human protein–protein interaction network. Phylogenetic analyses of 15 HCoV whole genomes reveal that 2019-nCoV/SARS-CoV-2 shares the highest nucleotide sequence identity with SARS-CoV (79.7%). Specifically, the envelope and nucleocapsid proteins of 2019-nCoV/SARS-CoV-2 are two evolutionarily conserved regions, having the sequence identities of 96% and 89.6%, respectively, compared to SARS-CoV. Using network proximity analyses of drug targets and HCoV–host interactions in the human interactome, we prioritize 16 potential anti-HCoV repurposable drugs (e.g., melatonin, mercaptopurine, and sirolimus) that are further validated by enrichment analyses of drug-gene signatures and HCoV-induced transcriptomics data in human cell lines. We further identify three potential drug combinations (e.g., sirolimus plus dactinomycin, mercaptopurine plus melatonin, and toremifene plus emodin) captured by the “ Complementary Exposure ” pattern: the targets of the drugs both hit the HCoV–host subnetwork, but target separate neighborhoods in the human interactome network. In summary, this study offers powerful network-based methodologies for rapid identification of candidate repurposable drugs and potential drug combinations targeting 2019-nCoV/SARS-CoV-2.</description><identifier>ISSN: 2056-5968</identifier><identifier>EISSN: 2056-5968</identifier><identifier>DOI: 10.1038/s41421-020-0153-3</identifier><identifier>PMID: 32194980</identifier><language>eng</language><publisher>Singapore: Springer Singapore</publisher><subject>6-Mercaptopurine ; 631/1647/2067 ; 631/1647/2217/748 ; 631/1647/48 ; Antiviral agents ; Biomedical and Life Sciences ; Cell Biology ; Cell Culture ; Cell Cycle Analysis ; Cell lines ; Cell Physiology ; Conserved sequence ; Coronaviridae ; Coronaviruses ; COVID-19 ; Dactinomycin ; Drug delivery ; Drug development ; Drug discovery ; Drugs ; Emodin ; Genomes ; Life Sciences ; Melatonin ; Morbidity ; Nucleocapsids ; Nucleotide sequence ; Phylogeny ; Rapamycin ; Severe acute respiratory syndrome ; Severe acute respiratory syndrome coronavirus 2 ; Stem Cells ; Therapeutic targets ; Toremifene</subject><ispartof>Cell discovery, 2020-03, Vol.6 (1), p.14, Article 14</ispartof><rights>The Author(s) 2020</rights><rights>The Author(s) 2020.</rights><rights>This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4793-5603f8a4081d1aa717300ffc2acbced64e1b837c83a70b356c35d89a1a6fb4c63</citedby><cites>FETCH-LOGICAL-c4793-5603f8a4081d1aa717300ffc2acbced64e1b837c83a70b356c35d89a1a6fb4c63</cites><orcidid>0000-0003-0616-0462</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7073332/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7073332/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,27901,27902,41096,42165,51551,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32194980$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhou, Yadi</creatorcontrib><creatorcontrib>Hou, Yuan</creatorcontrib><creatorcontrib>Shen, Jiayu</creatorcontrib><creatorcontrib>Huang, Yin</creatorcontrib><creatorcontrib>Martin, William</creatorcontrib><creatorcontrib>Cheng, Feixiong</creatorcontrib><title>Network-based drug repurposing for novel coronavirus 2019-nCoV/SARS-CoV-2</title><title>Cell discovery</title><addtitle>Cell Discov</addtitle><addtitle>Cell Discov</addtitle><description>Human coronaviruses (HCoVs), including severe acute respiratory syndrome coronavirus (SARS-CoV) and 2019 novel coronavirus (2019-nCoV, also known as SARS-CoV-2), lead global epidemics with high morbidity and mortality. However, there are currently no effective drugs targeting 2019-nCoV/SARS-CoV-2. Drug repurposing, representing as an effective drug discovery strategy from existing drugs, could shorten the time and reduce the cost compared to de novo drug discovery. In this study, we present an integrative, antiviral drug repurposing methodology implementing a systems pharmacology-based network medicine platform, quantifying the interplay between the HCoV–host interactome and drug targets in the human protein–protein interaction network. Phylogenetic analyses of 15 HCoV whole genomes reveal that 2019-nCoV/SARS-CoV-2 shares the highest nucleotide sequence identity with SARS-CoV (79.7%). Specifically, the envelope and nucleocapsid proteins of 2019-nCoV/SARS-CoV-2 are two evolutionarily conserved regions, having the sequence identities of 96% and 89.6%, respectively, compared to SARS-CoV. Using network proximity analyses of drug targets and HCoV–host interactions in the human interactome, we prioritize 16 potential anti-HCoV repurposable drugs (e.g., melatonin, mercaptopurine, and sirolimus) that are further validated by enrichment analyses of drug-gene signatures and HCoV-induced transcriptomics data in human cell lines. We further identify three potential drug combinations (e.g., sirolimus plus dactinomycin, mercaptopurine plus melatonin, and toremifene plus emodin) captured by the “ Complementary Exposure ” pattern: the targets of the drugs both hit the HCoV–host subnetwork, but target separate neighborhoods in the human interactome network. In summary, this study offers powerful network-based methodologies for rapid identification of candidate repurposable drugs and potential drug combinations targeting 2019-nCoV/SARS-CoV-2.</description><subject>6-Mercaptopurine</subject><subject>631/1647/2067</subject><subject>631/1647/2217/748</subject><subject>631/1647/48</subject><subject>Antiviral agents</subject><subject>Biomedical and Life Sciences</subject><subject>Cell Biology</subject><subject>Cell Culture</subject><subject>Cell Cycle Analysis</subject><subject>Cell lines</subject><subject>Cell Physiology</subject><subject>Conserved sequence</subject><subject>Coronaviridae</subject><subject>Coronaviruses</subject><subject>COVID-19</subject><subject>Dactinomycin</subject><subject>Drug delivery</subject><subject>Drug development</subject><subject>Drug discovery</subject><subject>Drugs</subject><subject>Emodin</subject><subject>Genomes</subject><subject>Life Sciences</subject><subject>Melatonin</subject><subject>Morbidity</subject><subject>Nucleocapsids</subject><subject>Nucleotide sequence</subject><subject>Phylogeny</subject><subject>Rapamycin</subject><subject>Severe acute respiratory syndrome</subject><subject>Severe acute respiratory syndrome coronavirus 2</subject><subject>Stem Cells</subject><subject>Therapeutic targets</subject><subject>Toremifene</subject><issn>2056-5968</issn><issn>2056-5968</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>BENPR</sourceid><recordid>eNp1kU1LAzEQhoMoKrU_wIsseI5OMrub7EUoxS8oCla9hmw2W1fbTU26Ff-9KevnwdMMzDPvvMxLyCGDEwYoT0PKUs4ocKDAMqS4RfY5ZDnNilxu_-r3yDCEZ4BIcSlltkv2kLMiLSTsk-sbu3pz_oWWOtgqqXw3S7xddn7pQtPOktr5pHVrO0-M867V68Z3IeHACtqO3ePpdHQ3pbGh_IDs1Hoe7PCzDsjDxfn9-IpObi-vx6MJNakokGY5YC11CpJVTGvBBALUteHalMZWeWpZKVEYiVpAiVluMKtkoZnO6zI1OQ7IWa-77MqFrYxtV17P1dI3C-3fldON-jtpmyc1c2slQCAijwLHnwLevXY2rNSz63wbPSuOQnBZCCkjxXrKeBeCt_X3BQZqE4DqA1AxALUJQGHcOfpt7Xvj690R4D0Q4qidWf9z-n_VD5xhj6w</recordid><startdate>20200316</startdate><enddate>20200316</enddate><creator>Zhou, Yadi</creator><creator>Hou, Yuan</creator><creator>Shen, Jiayu</creator><creator>Huang, Yin</creator><creator>Martin, William</creator><creator>Cheng, Feixiong</creator><general>Springer Singapore</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>COVID</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-0616-0462</orcidid></search><sort><creationdate>20200316</creationdate><title>Network-based drug repurposing for novel coronavirus 2019-nCoV/SARS-CoV-2</title><author>Zhou, Yadi ; Hou, Yuan ; Shen, Jiayu ; Huang, Yin ; Martin, William ; Cheng, Feixiong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4793-5603f8a4081d1aa717300ffc2acbced64e1b837c83a70b356c35d89a1a6fb4c63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>6-Mercaptopurine</topic><topic>631/1647/2067</topic><topic>631/1647/2217/748</topic><topic>631/1647/48</topic><topic>Antiviral agents</topic><topic>Biomedical and Life Sciences</topic><topic>Cell Biology</topic><topic>Cell Culture</topic><topic>Cell Cycle Analysis</topic><topic>Cell lines</topic><topic>Cell Physiology</topic><topic>Conserved sequence</topic><topic>Coronaviridae</topic><topic>Coronaviruses</topic><topic>COVID-19</topic><topic>Dactinomycin</topic><topic>Drug delivery</topic><topic>Drug development</topic><topic>Drug discovery</topic><topic>Drugs</topic><topic>Emodin</topic><topic>Genomes</topic><topic>Life Sciences</topic><topic>Melatonin</topic><topic>Morbidity</topic><topic>Nucleocapsids</topic><topic>Nucleotide sequence</topic><topic>Phylogeny</topic><topic>Rapamycin</topic><topic>Severe acute respiratory syndrome</topic><topic>Severe acute respiratory syndrome coronavirus 2</topic><topic>Stem Cells</topic><topic>Therapeutic targets</topic><topic>Toremifene</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhou, Yadi</creatorcontrib><creatorcontrib>Hou, Yuan</creatorcontrib><creatorcontrib>Shen, Jiayu</creatorcontrib><creatorcontrib>Huang, Yin</creatorcontrib><creatorcontrib>Martin, William</creatorcontrib><creatorcontrib>Cheng, Feixiong</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>Coronavirus Research Database</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Biological Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Cell discovery</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhou, Yadi</au><au>Hou, Yuan</au><au>Shen, Jiayu</au><au>Huang, Yin</au><au>Martin, William</au><au>Cheng, Feixiong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Network-based drug repurposing for novel coronavirus 2019-nCoV/SARS-CoV-2</atitle><jtitle>Cell discovery</jtitle><stitle>Cell Discov</stitle><addtitle>Cell Discov</addtitle><date>2020-03-16</date><risdate>2020</risdate><volume>6</volume><issue>1</issue><spage>14</spage><pages>14-</pages><artnum>14</artnum><issn>2056-5968</issn><eissn>2056-5968</eissn><abstract>Human coronaviruses (HCoVs), including severe acute respiratory syndrome coronavirus (SARS-CoV) and 2019 novel coronavirus (2019-nCoV, also known as SARS-CoV-2), lead global epidemics with high morbidity and mortality. However, there are currently no effective drugs targeting 2019-nCoV/SARS-CoV-2. Drug repurposing, representing as an effective drug discovery strategy from existing drugs, could shorten the time and reduce the cost compared to de novo drug discovery. In this study, we present an integrative, antiviral drug repurposing methodology implementing a systems pharmacology-based network medicine platform, quantifying the interplay between the HCoV–host interactome and drug targets in the human protein–protein interaction network. Phylogenetic analyses of 15 HCoV whole genomes reveal that 2019-nCoV/SARS-CoV-2 shares the highest nucleotide sequence identity with SARS-CoV (79.7%). Specifically, the envelope and nucleocapsid proteins of 2019-nCoV/SARS-CoV-2 are two evolutionarily conserved regions, having the sequence identities of 96% and 89.6%, respectively, compared to SARS-CoV. Using network proximity analyses of drug targets and HCoV–host interactions in the human interactome, we prioritize 16 potential anti-HCoV repurposable drugs (e.g., melatonin, mercaptopurine, and sirolimus) that are further validated by enrichment analyses of drug-gene signatures and HCoV-induced transcriptomics data in human cell lines. We further identify three potential drug combinations (e.g., sirolimus plus dactinomycin, mercaptopurine plus melatonin, and toremifene plus emodin) captured by the “ Complementary Exposure ” pattern: the targets of the drugs both hit the HCoV–host subnetwork, but target separate neighborhoods in the human interactome network. In summary, this study offers powerful network-based methodologies for rapid identification of candidate repurposable drugs and potential drug combinations targeting 2019-nCoV/SARS-CoV-2.</abstract><cop>Singapore</cop><pub>Springer Singapore</pub><pmid>32194980</pmid><doi>10.1038/s41421-020-0153-3</doi><orcidid>https://orcid.org/0000-0003-0616-0462</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2056-5968
ispartof Cell discovery, 2020-03, Vol.6 (1), p.14, Article 14
issn 2056-5968
2056-5968
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7073332
source Nature Free; DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals; PubMed Central; Springer Nature OA Free Journals
subjects 6-Mercaptopurine
631/1647/2067
631/1647/2217/748
631/1647/48
Antiviral agents
Biomedical and Life Sciences
Cell Biology
Cell Culture
Cell Cycle Analysis
Cell lines
Cell Physiology
Conserved sequence
Coronaviridae
Coronaviruses
COVID-19
Dactinomycin
Drug delivery
Drug development
Drug discovery
Drugs
Emodin
Genomes
Life Sciences
Melatonin
Morbidity
Nucleocapsids
Nucleotide sequence
Phylogeny
Rapamycin
Severe acute respiratory syndrome
Severe acute respiratory syndrome coronavirus 2
Stem Cells
Therapeutic targets
Toremifene
title Network-based drug repurposing for novel coronavirus 2019-nCoV/SARS-CoV-2
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T23%3A04%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Network-based%20drug%20repurposing%20for%20novel%20coronavirus%202019-nCoV/SARS-CoV-2&rft.jtitle=Cell%20discovery&rft.au=Zhou,%20Yadi&rft.date=2020-03-16&rft.volume=6&rft.issue=1&rft.spage=14&rft.pages=14-&rft.artnum=14&rft.issn=2056-5968&rft.eissn=2056-5968&rft_id=info:doi/10.1038/s41421-020-0153-3&rft_dat=%3Cproquest_pubme%3E2377289788%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2377289788&rft_id=info:pmid/32194980&rfr_iscdi=true