Increased Tumor Penetration of Single-Domain Antibody-Drug Conjugates Improves In Vivo Efficacy in Prostate Cancer Models
Targeted delivery of chemotherapeutics aims to increase efficacy and lower toxicity by concentrating drugs at the site-of-action, a method embodied by the seven current FDA-approved antibody-drug conjugates (ADC). However, a variety of pharmacokinetic challenges result in relatively narrow therapeut...
Gespeichert in:
Veröffentlicht in: | Cancer research (Chicago, Ill.) Ill.), 2020-03, Vol.80 (6), p.1268-1278 |
---|---|
Hauptverfasser: | , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1278 |
---|---|
container_issue | 6 |
container_start_page | 1268 |
container_title | Cancer research (Chicago, Ill.) |
container_volume | 80 |
creator | Nessler, Ian Khera, Eshita Vance, Steven Kopp, Anna Qiu, Qifeng Keating, Thomas A Abu-Yousif, Adnan O Sandal, Thomas Legg, James Thompson, Lorraine Goodwin, Normann Thurber, Greg M |
description | Targeted delivery of chemotherapeutics aims to increase efficacy and lower toxicity by concentrating drugs at the site-of-action, a method embodied by the seven current FDA-approved antibody-drug conjugates (ADC). However, a variety of pharmacokinetic challenges result in relatively narrow therapeutic windows for these agents, hampering the development of new drugs. Here, we use a series of prostate-specific membrane antigen-binding single-domain (Humabody) ADC constructs to demonstrate that tissue penetration of protein-drug conjugates plays a major role in therapeutic efficacy. Counterintuitively, a construct with lower
potency resulted in higher
efficacy than other protein-drug conjugates. Biodistribution data, tumor histology images, spheroid experiments,
single-cell measurements, and computational results demonstrate that a smaller size and slower internalization rate enabled higher tissue penetration and more cell killing. The results also illustrate the benefits of linking an albumin-binding domain to the single-domain ADCs. A construct lacking an albumin-binding domain was rapidly cleared, leading to lower tumor uptake (%ID/g) and decreased
efficacy. In conclusion, these results provide evidence that reaching the maximum number of cells with a lethal payload dose correlates more strongly with
efficacy than total tumor uptake or
potency alone for these protein-drug conjugates. Computational modeling and protein engineering can be used to custom design an optimal framework for controlling internalization, clearance, and tissue penetration to maximize cell killing. SIGNIFICANCE: A mechanistic study of protein-drug conjugates demonstrates that a lower potency compound is more effective
than other agents with equal tumor uptake due to improved tissue penetration and cellular distribution. |
doi_str_mv | 10.1158/0008-5472.can-19-2295 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7073300</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2339789103</sourcerecordid><originalsourceid>FETCH-LOGICAL-c477t-6f2200b37232a3fb4dd9f784dc50e4cf226e4a465832daa26dd4a4c07285212d3</originalsourceid><addsrcrecordid>eNpVkVtr3DAQhUVoaTZJf0KKHvuiVFfLfgkszm0hbQNJ-yq0krxVsKWNZC_sv49M0qV9mhnmnCMNHwDnBF8QIupvGOMaCS7phdEBkQZR2ogjsCCC1UhyLj6AxUFzDE5yfi6jIFh8AseMNJxUTb0A-1UwyensLHyahpjggwtuTHr0McDYwUcfNr1DV3HQPsBlGP062j26StMGtjE8Txs9ugxXwzbF3dwE-NvvIrzuOm-02cPiekgxj0UGWx2MS_B7tK7PZ-Bjp_vsPr_XU_Dr5vqpvUP3P29X7fIeGS7liKqOUozXTFJGNevW3NqmkzW3RmDHTdlWjmteiZpRqzWtrC2jwZLWghJq2Sm4fMvdTuvBWeNCOa9X2-QHnfYqaq_-3wT_R23iTkksGcO4BHx9D0jxZXJ5VIPPxvW9Di5OWVHGGlk3BLMiFW9SU07OyXWHZwhWMzY1I1EzEtUufyjSqBlb8X35948H119O7BVZ4ZX6</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2339789103</pqid></control><display><type>article</type><title>Increased Tumor Penetration of Single-Domain Antibody-Drug Conjugates Improves In Vivo Efficacy in Prostate Cancer Models</title><source>MEDLINE</source><source>American Association for Cancer Research</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Nessler, Ian ; Khera, Eshita ; Vance, Steven ; Kopp, Anna ; Qiu, Qifeng ; Keating, Thomas A ; Abu-Yousif, Adnan O ; Sandal, Thomas ; Legg, James ; Thompson, Lorraine ; Goodwin, Normann ; Thurber, Greg M</creator><creatorcontrib>Nessler, Ian ; Khera, Eshita ; Vance, Steven ; Kopp, Anna ; Qiu, Qifeng ; Keating, Thomas A ; Abu-Yousif, Adnan O ; Sandal, Thomas ; Legg, James ; Thompson, Lorraine ; Goodwin, Normann ; Thurber, Greg M</creatorcontrib><description>Targeted delivery of chemotherapeutics aims to increase efficacy and lower toxicity by concentrating drugs at the site-of-action, a method embodied by the seven current FDA-approved antibody-drug conjugates (ADC). However, a variety of pharmacokinetic challenges result in relatively narrow therapeutic windows for these agents, hampering the development of new drugs. Here, we use a series of prostate-specific membrane antigen-binding single-domain (Humabody) ADC constructs to demonstrate that tissue penetration of protein-drug conjugates plays a major role in therapeutic efficacy. Counterintuitively, a construct with lower
potency resulted in higher
efficacy than other protein-drug conjugates. Biodistribution data, tumor histology images, spheroid experiments,
single-cell measurements, and computational results demonstrate that a smaller size and slower internalization rate enabled higher tissue penetration and more cell killing. The results also illustrate the benefits of linking an albumin-binding domain to the single-domain ADCs. A construct lacking an albumin-binding domain was rapidly cleared, leading to lower tumor uptake (%ID/g) and decreased
efficacy. In conclusion, these results provide evidence that reaching the maximum number of cells with a lethal payload dose correlates more strongly with
efficacy than total tumor uptake or
potency alone for these protein-drug conjugates. Computational modeling and protein engineering can be used to custom design an optimal framework for controlling internalization, clearance, and tissue penetration to maximize cell killing. SIGNIFICANCE: A mechanistic study of protein-drug conjugates demonstrates that a lower potency compound is more effective
than other agents with equal tumor uptake due to improved tissue penetration and cellular distribution.</description><identifier>ISSN: 0008-5472</identifier><identifier>ISSN: 1538-7445</identifier><identifier>EISSN: 1538-7445</identifier><identifier>DOI: 10.1158/0008-5472.can-19-2295</identifier><identifier>PMID: 31941698</identifier><language>eng</language><publisher>United States</publisher><subject>Animals ; Antineoplastic Agents, Alkylating - chemistry ; Antineoplastic Agents, Alkylating - pharmacology ; Antineoplastic Agents, Alkylating - therapeutic use ; Cell Line, Tumor ; Computer Simulation ; Humans ; Immunoconjugates - chemistry ; Immunoconjugates - pharmacokinetics ; Immunoconjugates - therapeutic use ; Male ; Mice ; Microscopy, Confocal ; Models, Biological ; Prostatic Neoplasms - diagnostic imaging ; Prostatic Neoplasms - drug therapy ; Prostatic Neoplasms - pathology ; Single-Domain Antibodies - chemistry ; Single-Domain Antibodies - pharmacology ; Single-Domain Antibodies - therapeutic use ; Spheroids, Cellular ; Structure-Activity Relationship ; Tissue Distribution ; Xenograft Model Antitumor Assays</subject><ispartof>Cancer research (Chicago, Ill.), 2020-03, Vol.80 (6), p.1268-1278</ispartof><rights>2020 American Association for Cancer Research.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c477t-6f2200b37232a3fb4dd9f784dc50e4cf226e4a465832daa26dd4a4c07285212d3</citedby><cites>FETCH-LOGICAL-c477t-6f2200b37232a3fb4dd9f784dc50e4cf226e4a465832daa26dd4a4c07285212d3</cites><orcidid>0000-0002-9508-0167</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,3356,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31941698$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Nessler, Ian</creatorcontrib><creatorcontrib>Khera, Eshita</creatorcontrib><creatorcontrib>Vance, Steven</creatorcontrib><creatorcontrib>Kopp, Anna</creatorcontrib><creatorcontrib>Qiu, Qifeng</creatorcontrib><creatorcontrib>Keating, Thomas A</creatorcontrib><creatorcontrib>Abu-Yousif, Adnan O</creatorcontrib><creatorcontrib>Sandal, Thomas</creatorcontrib><creatorcontrib>Legg, James</creatorcontrib><creatorcontrib>Thompson, Lorraine</creatorcontrib><creatorcontrib>Goodwin, Normann</creatorcontrib><creatorcontrib>Thurber, Greg M</creatorcontrib><title>Increased Tumor Penetration of Single-Domain Antibody-Drug Conjugates Improves In Vivo Efficacy in Prostate Cancer Models</title><title>Cancer research (Chicago, Ill.)</title><addtitle>Cancer Res</addtitle><description>Targeted delivery of chemotherapeutics aims to increase efficacy and lower toxicity by concentrating drugs at the site-of-action, a method embodied by the seven current FDA-approved antibody-drug conjugates (ADC). However, a variety of pharmacokinetic challenges result in relatively narrow therapeutic windows for these agents, hampering the development of new drugs. Here, we use a series of prostate-specific membrane antigen-binding single-domain (Humabody) ADC constructs to demonstrate that tissue penetration of protein-drug conjugates plays a major role in therapeutic efficacy. Counterintuitively, a construct with lower
potency resulted in higher
efficacy than other protein-drug conjugates. Biodistribution data, tumor histology images, spheroid experiments,
single-cell measurements, and computational results demonstrate that a smaller size and slower internalization rate enabled higher tissue penetration and more cell killing. The results also illustrate the benefits of linking an albumin-binding domain to the single-domain ADCs. A construct lacking an albumin-binding domain was rapidly cleared, leading to lower tumor uptake (%ID/g) and decreased
efficacy. In conclusion, these results provide evidence that reaching the maximum number of cells with a lethal payload dose correlates more strongly with
efficacy than total tumor uptake or
potency alone for these protein-drug conjugates. Computational modeling and protein engineering can be used to custom design an optimal framework for controlling internalization, clearance, and tissue penetration to maximize cell killing. SIGNIFICANCE: A mechanistic study of protein-drug conjugates demonstrates that a lower potency compound is more effective
than other agents with equal tumor uptake due to improved tissue penetration and cellular distribution.</description><subject>Animals</subject><subject>Antineoplastic Agents, Alkylating - chemistry</subject><subject>Antineoplastic Agents, Alkylating - pharmacology</subject><subject>Antineoplastic Agents, Alkylating - therapeutic use</subject><subject>Cell Line, Tumor</subject><subject>Computer Simulation</subject><subject>Humans</subject><subject>Immunoconjugates - chemistry</subject><subject>Immunoconjugates - pharmacokinetics</subject><subject>Immunoconjugates - therapeutic use</subject><subject>Male</subject><subject>Mice</subject><subject>Microscopy, Confocal</subject><subject>Models, Biological</subject><subject>Prostatic Neoplasms - diagnostic imaging</subject><subject>Prostatic Neoplasms - drug therapy</subject><subject>Prostatic Neoplasms - pathology</subject><subject>Single-Domain Antibodies - chemistry</subject><subject>Single-Domain Antibodies - pharmacology</subject><subject>Single-Domain Antibodies - therapeutic use</subject><subject>Spheroids, Cellular</subject><subject>Structure-Activity Relationship</subject><subject>Tissue Distribution</subject><subject>Xenograft Model Antitumor Assays</subject><issn>0008-5472</issn><issn>1538-7445</issn><issn>1538-7445</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpVkVtr3DAQhUVoaTZJf0KKHvuiVFfLfgkszm0hbQNJ-yq0krxVsKWNZC_sv49M0qV9mhnmnCMNHwDnBF8QIupvGOMaCS7phdEBkQZR2ogjsCCC1UhyLj6AxUFzDE5yfi6jIFh8AseMNJxUTb0A-1UwyensLHyahpjggwtuTHr0McDYwUcfNr1DV3HQPsBlGP062j26StMGtjE8Txs9ugxXwzbF3dwE-NvvIrzuOm-02cPiekgxj0UGWx2MS_B7tK7PZ-Bjp_vsPr_XU_Dr5vqpvUP3P29X7fIeGS7liKqOUozXTFJGNevW3NqmkzW3RmDHTdlWjmteiZpRqzWtrC2jwZLWghJq2Sm4fMvdTuvBWeNCOa9X2-QHnfYqaq_-3wT_R23iTkksGcO4BHx9D0jxZXJ5VIPPxvW9Di5OWVHGGlk3BLMiFW9SU07OyXWHZwhWMzY1I1EzEtUufyjSqBlb8X35948H119O7BVZ4ZX6</recordid><startdate>20200315</startdate><enddate>20200315</enddate><creator>Nessler, Ian</creator><creator>Khera, Eshita</creator><creator>Vance, Steven</creator><creator>Kopp, Anna</creator><creator>Qiu, Qifeng</creator><creator>Keating, Thomas A</creator><creator>Abu-Yousif, Adnan O</creator><creator>Sandal, Thomas</creator><creator>Legg, James</creator><creator>Thompson, Lorraine</creator><creator>Goodwin, Normann</creator><creator>Thurber, Greg M</creator><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-9508-0167</orcidid></search><sort><creationdate>20200315</creationdate><title>Increased Tumor Penetration of Single-Domain Antibody-Drug Conjugates Improves In Vivo Efficacy in Prostate Cancer Models</title><author>Nessler, Ian ; Khera, Eshita ; Vance, Steven ; Kopp, Anna ; Qiu, Qifeng ; Keating, Thomas A ; Abu-Yousif, Adnan O ; Sandal, Thomas ; Legg, James ; Thompson, Lorraine ; Goodwin, Normann ; Thurber, Greg M</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c477t-6f2200b37232a3fb4dd9f784dc50e4cf226e4a465832daa26dd4a4c07285212d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Animals</topic><topic>Antineoplastic Agents, Alkylating - chemistry</topic><topic>Antineoplastic Agents, Alkylating - pharmacology</topic><topic>Antineoplastic Agents, Alkylating - therapeutic use</topic><topic>Cell Line, Tumor</topic><topic>Computer Simulation</topic><topic>Humans</topic><topic>Immunoconjugates - chemistry</topic><topic>Immunoconjugates - pharmacokinetics</topic><topic>Immunoconjugates - therapeutic use</topic><topic>Male</topic><topic>Mice</topic><topic>Microscopy, Confocal</topic><topic>Models, Biological</topic><topic>Prostatic Neoplasms - diagnostic imaging</topic><topic>Prostatic Neoplasms - drug therapy</topic><topic>Prostatic Neoplasms - pathology</topic><topic>Single-Domain Antibodies - chemistry</topic><topic>Single-Domain Antibodies - pharmacology</topic><topic>Single-Domain Antibodies - therapeutic use</topic><topic>Spheroids, Cellular</topic><topic>Structure-Activity Relationship</topic><topic>Tissue Distribution</topic><topic>Xenograft Model Antitumor Assays</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nessler, Ian</creatorcontrib><creatorcontrib>Khera, Eshita</creatorcontrib><creatorcontrib>Vance, Steven</creatorcontrib><creatorcontrib>Kopp, Anna</creatorcontrib><creatorcontrib>Qiu, Qifeng</creatorcontrib><creatorcontrib>Keating, Thomas A</creatorcontrib><creatorcontrib>Abu-Yousif, Adnan O</creatorcontrib><creatorcontrib>Sandal, Thomas</creatorcontrib><creatorcontrib>Legg, James</creatorcontrib><creatorcontrib>Thompson, Lorraine</creatorcontrib><creatorcontrib>Goodwin, Normann</creatorcontrib><creatorcontrib>Thurber, Greg M</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Cancer research (Chicago, Ill.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nessler, Ian</au><au>Khera, Eshita</au><au>Vance, Steven</au><au>Kopp, Anna</au><au>Qiu, Qifeng</au><au>Keating, Thomas A</au><au>Abu-Yousif, Adnan O</au><au>Sandal, Thomas</au><au>Legg, James</au><au>Thompson, Lorraine</au><au>Goodwin, Normann</au><au>Thurber, Greg M</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Increased Tumor Penetration of Single-Domain Antibody-Drug Conjugates Improves In Vivo Efficacy in Prostate Cancer Models</atitle><jtitle>Cancer research (Chicago, Ill.)</jtitle><addtitle>Cancer Res</addtitle><date>2020-03-15</date><risdate>2020</risdate><volume>80</volume><issue>6</issue><spage>1268</spage><epage>1278</epage><pages>1268-1278</pages><issn>0008-5472</issn><issn>1538-7445</issn><eissn>1538-7445</eissn><abstract>Targeted delivery of chemotherapeutics aims to increase efficacy and lower toxicity by concentrating drugs at the site-of-action, a method embodied by the seven current FDA-approved antibody-drug conjugates (ADC). However, a variety of pharmacokinetic challenges result in relatively narrow therapeutic windows for these agents, hampering the development of new drugs. Here, we use a series of prostate-specific membrane antigen-binding single-domain (Humabody) ADC constructs to demonstrate that tissue penetration of protein-drug conjugates plays a major role in therapeutic efficacy. Counterintuitively, a construct with lower
potency resulted in higher
efficacy than other protein-drug conjugates. Biodistribution data, tumor histology images, spheroid experiments,
single-cell measurements, and computational results demonstrate that a smaller size and slower internalization rate enabled higher tissue penetration and more cell killing. The results also illustrate the benefits of linking an albumin-binding domain to the single-domain ADCs. A construct lacking an albumin-binding domain was rapidly cleared, leading to lower tumor uptake (%ID/g) and decreased
efficacy. In conclusion, these results provide evidence that reaching the maximum number of cells with a lethal payload dose correlates more strongly with
efficacy than total tumor uptake or
potency alone for these protein-drug conjugates. Computational modeling and protein engineering can be used to custom design an optimal framework for controlling internalization, clearance, and tissue penetration to maximize cell killing. SIGNIFICANCE: A mechanistic study of protein-drug conjugates demonstrates that a lower potency compound is more effective
than other agents with equal tumor uptake due to improved tissue penetration and cellular distribution.</abstract><cop>United States</cop><pmid>31941698</pmid><doi>10.1158/0008-5472.can-19-2295</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-9508-0167</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0008-5472 |
ispartof | Cancer research (Chicago, Ill.), 2020-03, Vol.80 (6), p.1268-1278 |
issn | 0008-5472 1538-7445 1538-7445 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7073300 |
source | MEDLINE; American Association for Cancer Research; EZB-FREE-00999 freely available EZB journals |
subjects | Animals Antineoplastic Agents, Alkylating - chemistry Antineoplastic Agents, Alkylating - pharmacology Antineoplastic Agents, Alkylating - therapeutic use Cell Line, Tumor Computer Simulation Humans Immunoconjugates - chemistry Immunoconjugates - pharmacokinetics Immunoconjugates - therapeutic use Male Mice Microscopy, Confocal Models, Biological Prostatic Neoplasms - diagnostic imaging Prostatic Neoplasms - drug therapy Prostatic Neoplasms - pathology Single-Domain Antibodies - chemistry Single-Domain Antibodies - pharmacology Single-Domain Antibodies - therapeutic use Spheroids, Cellular Structure-Activity Relationship Tissue Distribution Xenograft Model Antitumor Assays |
title | Increased Tumor Penetration of Single-Domain Antibody-Drug Conjugates Improves In Vivo Efficacy in Prostate Cancer Models |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T02%3A53%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Increased%20Tumor%20Penetration%20of%20Single-Domain%20Antibody-Drug%20Conjugates%20Improves%20In%20Vivo%20Efficacy%20in%20Prostate%20Cancer%20Models&rft.jtitle=Cancer%20research%20(Chicago,%20Ill.)&rft.au=Nessler,%20Ian&rft.date=2020-03-15&rft.volume=80&rft.issue=6&rft.spage=1268&rft.epage=1278&rft.pages=1268-1278&rft.issn=0008-5472&rft.eissn=1538-7445&rft_id=info:doi/10.1158/0008-5472.can-19-2295&rft_dat=%3Cproquest_pubme%3E2339789103%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2339789103&rft_id=info:pmid/31941698&rfr_iscdi=true |