De novo design of tunable, pH-driven conformational changes

The ability of naturally occurring proteins to change conformation in response to environmental changes is critical to biological function. Although there have been advances in the de novo design of stable proteins with a single, deep free-energy minimum, the design of conformational switches remain...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Science (American Association for the Advancement of Science) 2019-05, Vol.364 (6441), p.658-664
Hauptverfasser: Boyken, Scott E., Benhaim, Mark A., Busch, Florian, Jia, Mengxuan, Bick, Matthew J., Choi, Heejun, Klima, Jason C., Chen, Zibo, Walkey, Carl, Mileant, Alexander, Sahasrabuddhe, Aniruddha, Wei, Kathy Y., Hodge, Edgar A., Byron, Sarah, Quijano-Rubio, Alfredo, Sankaran, Banumathi, King, Neil P., Lippincott-Schwartz, Jennifer, Wysocki, Vicki H., Lee, Kelly K., Baker, David
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 664
container_issue 6441
container_start_page 658
container_title Science (American Association for the Advancement of Science)
container_volume 364
creator Boyken, Scott E.
Benhaim, Mark A.
Busch, Florian
Jia, Mengxuan
Bick, Matthew J.
Choi, Heejun
Klima, Jason C.
Chen, Zibo
Walkey, Carl
Mileant, Alexander
Sahasrabuddhe, Aniruddha
Wei, Kathy Y.
Hodge, Edgar A.
Byron, Sarah
Quijano-Rubio, Alfredo
Sankaran, Banumathi
King, Neil P.
Lippincott-Schwartz, Jennifer
Wysocki, Vicki H.
Lee, Kelly K.
Baker, David
description The ability of naturally occurring proteins to change conformation in response to environmental changes is critical to biological function. Although there have been advances in the de novo design of stable proteins with a single, deep free-energy minimum, the design of conformational switches remains challenging. We present a general strategy to design pH-responsive protein conformational changes by precisely preorganizing histidine residues in buried hydrogen-bond networks. We design homotrimers and heterodimers that are stable above pH 6.5 but undergo cooperative, large-scale conformational changes when the pH is lowered and electrostatic and steric repulsion builds up as the network histidine residues become protonated. The transition pH and cooperativity can be controlled through the number of histidine-containing networks and the strength of the surrounding hydrophobic interactions. Upon disassembly, the designed proteins disrupt lipid membranes both in vitro and after being endocytosed in mammalian cells. Our results demonstrate that environmentally triggered conformational changes can now be programmed by de novo protein design.
doi_str_mv 10.1126/science.aav7897
format Article
fullrecord <record><control><sourceid>jstor_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7072037</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>26649465</jstor_id><sourcerecordid>26649465</sourcerecordid><originalsourceid>FETCH-LOGICAL-c536t-f0c763fecaacf0e4a434d7ae3c8d67c01fd7ce621e53351b91dba7213052cf263</originalsourceid><addsrcrecordid>eNpdkc1vEzEQxS1ERdOWMyfQil44sK0_1nZWSEioQFupEhc4W87sOHG0sYPtjcR_j6OECDj58H7zxvMeIa8YvWGMq9sMHgPgjbU7Pe_1MzJjtJdtz6l4TmaUCtXOqZbn5CLnNaVV68ULci4qpZXiM_LhMzYh7mIzYPbL0ETXlCnYxYjvm-1DOyS_w9BADC6mjS0-Bjs2sLJhifmKnDk7Znx5fC_Jj69fvt89tE_f7h_vPj21IIUqraOglXAI1oKj2NlOdIO2KGA-KA2UuUEDKs5QCiHZomfDwmrOBJUcHFfiknw8-G6nxQYHwFCSHc02-Y1Nv0y03vyrBL8yy7gzmuoahK4Gbw8GMRdvamYFYVVvCgjFMNnJnu-hd8ctKf6cMBez8RlwHG3AOGXDueBUCt2Lil7_h67jlGoye4rPeXVTslK3BwpSzDmhO_2YUbNvzxzbM8f26sSbvw898X_qqsDrA7DOJaaTzpXq-q6u_A0eHqGC</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2228227365</pqid></control><display><type>article</type><title>De novo design of tunable, pH-driven conformational changes</title><source>American Association for the Advancement of Science</source><source>MEDLINE</source><creator>Boyken, Scott E. ; Benhaim, Mark A. ; Busch, Florian ; Jia, Mengxuan ; Bick, Matthew J. ; Choi, Heejun ; Klima, Jason C. ; Chen, Zibo ; Walkey, Carl ; Mileant, Alexander ; Sahasrabuddhe, Aniruddha ; Wei, Kathy Y. ; Hodge, Edgar A. ; Byron, Sarah ; Quijano-Rubio, Alfredo ; Sankaran, Banumathi ; King, Neil P. ; Lippincott-Schwartz, Jennifer ; Wysocki, Vicki H. ; Lee, Kelly K. ; Baker, David</creator><creatorcontrib>Boyken, Scott E. ; Benhaim, Mark A. ; Busch, Florian ; Jia, Mengxuan ; Bick, Matthew J. ; Choi, Heejun ; Klima, Jason C. ; Chen, Zibo ; Walkey, Carl ; Mileant, Alexander ; Sahasrabuddhe, Aniruddha ; Wei, Kathy Y. ; Hodge, Edgar A. ; Byron, Sarah ; Quijano-Rubio, Alfredo ; Sankaran, Banumathi ; King, Neil P. ; Lippincott-Schwartz, Jennifer ; Wysocki, Vicki H. ; Lee, Kelly K. ; Baker, David</creatorcontrib><description>The ability of naturally occurring proteins to change conformation in response to environmental changes is critical to biological function. Although there have been advances in the de novo design of stable proteins with a single, deep free-energy minimum, the design of conformational switches remains challenging. We present a general strategy to design pH-responsive protein conformational changes by precisely preorganizing histidine residues in buried hydrogen-bond networks. We design homotrimers and heterodimers that are stable above pH 6.5 but undergo cooperative, large-scale conformational changes when the pH is lowered and electrostatic and steric repulsion builds up as the network histidine residues become protonated. The transition pH and cooperativity can be controlled through the number of histidine-containing networks and the strength of the surrounding hydrophobic interactions. Upon disassembly, the designed proteins disrupt lipid membranes both in vitro and after being endocytosed in mammalian cells. Our results demonstrate that environmentally triggered conformational changes can now be programmed by de novo protein design.</description><identifier>ISSN: 0036-8075</identifier><identifier>EISSN: 1095-9203</identifier><identifier>DOI: 10.1126/science.aav7897</identifier><identifier>PMID: 31097662</identifier><language>eng</language><publisher>United States: American Association for the Advancement of Science</publisher><subject>Design ; Dismantling ; Disruption ; Endocytosis ; Endosomes ; Environmental changes ; Free energy ; Histidine ; Hydrogen-Ion Concentration ; Hydrophobicity ; Interfaces ; Lipid membranes ; Lipids ; Mammalian cells ; Membranes ; Monomers ; Networks ; Oligomers ; pH effects ; Protein Conformation ; Protein Engineering - methods ; Protein folding ; Protein Multimerization ; Protein Stability ; Proteins ; Residues ; Sequences ; Switches ; Switching theory</subject><ispartof>Science (American Association for the Advancement of Science), 2019-05, Vol.364 (6441), p.658-664</ispartof><rights>Copyright © 2019 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.</rights><rights>Copyright © 2019 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c536t-f0c763fecaacf0e4a434d7ae3c8d67c01fd7ce621e53351b91dba7213052cf263</citedby><cites>FETCH-LOGICAL-c536t-f0c763fecaacf0e4a434d7ae3c8d67c01fd7ce621e53351b91dba7213052cf263</cites><orcidid>0000-0002-7900-624X ; 0000-0002-8794-1385 ; 0000-0002-4324-6065 ; 0000-0002-2978-4692 ; 0000-0002-8601-3501 ; 0000-0001-7896-6217 ; 0000-0002-1337-3813 ; 0000-0002-5378-0632 ; 0000-0003-2906-5599 ; 0000-0003-0387-7847 ; 0000-0003-1606-5821 ; 0000-0003-0495-2538 ; 0000-0002-9585-859X ; 0000-0003-2990-2895 ; 0000-0002-3266-8131 ; 0000000287941385 ; 0000000316065821 ; 0000000213373813 ; 0000000286013501 ; 000000029585859X ; 0000000304952538 ; 000000027900624X ; 0000000232668131 ; 0000000178966217 ; 0000000329902895 ; 0000000229784692 ; 0000000253780632 ; 0000000329065599 ; 0000000243246065 ; 0000000303877847</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,2871,2872,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31097662$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/1545927$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Boyken, Scott E.</creatorcontrib><creatorcontrib>Benhaim, Mark A.</creatorcontrib><creatorcontrib>Busch, Florian</creatorcontrib><creatorcontrib>Jia, Mengxuan</creatorcontrib><creatorcontrib>Bick, Matthew J.</creatorcontrib><creatorcontrib>Choi, Heejun</creatorcontrib><creatorcontrib>Klima, Jason C.</creatorcontrib><creatorcontrib>Chen, Zibo</creatorcontrib><creatorcontrib>Walkey, Carl</creatorcontrib><creatorcontrib>Mileant, Alexander</creatorcontrib><creatorcontrib>Sahasrabuddhe, Aniruddha</creatorcontrib><creatorcontrib>Wei, Kathy Y.</creatorcontrib><creatorcontrib>Hodge, Edgar A.</creatorcontrib><creatorcontrib>Byron, Sarah</creatorcontrib><creatorcontrib>Quijano-Rubio, Alfredo</creatorcontrib><creatorcontrib>Sankaran, Banumathi</creatorcontrib><creatorcontrib>King, Neil P.</creatorcontrib><creatorcontrib>Lippincott-Schwartz, Jennifer</creatorcontrib><creatorcontrib>Wysocki, Vicki H.</creatorcontrib><creatorcontrib>Lee, Kelly K.</creatorcontrib><creatorcontrib>Baker, David</creatorcontrib><title>De novo design of tunable, pH-driven conformational changes</title><title>Science (American Association for the Advancement of Science)</title><addtitle>Science</addtitle><description>The ability of naturally occurring proteins to change conformation in response to environmental changes is critical to biological function. Although there have been advances in the de novo design of stable proteins with a single, deep free-energy minimum, the design of conformational switches remains challenging. We present a general strategy to design pH-responsive protein conformational changes by precisely preorganizing histidine residues in buried hydrogen-bond networks. We design homotrimers and heterodimers that are stable above pH 6.5 but undergo cooperative, large-scale conformational changes when the pH is lowered and electrostatic and steric repulsion builds up as the network histidine residues become protonated. The transition pH and cooperativity can be controlled through the number of histidine-containing networks and the strength of the surrounding hydrophobic interactions. Upon disassembly, the designed proteins disrupt lipid membranes both in vitro and after being endocytosed in mammalian cells. Our results demonstrate that environmentally triggered conformational changes can now be programmed by de novo protein design.</description><subject>Design</subject><subject>Dismantling</subject><subject>Disruption</subject><subject>Endocytosis</subject><subject>Endosomes</subject><subject>Environmental changes</subject><subject>Free energy</subject><subject>Histidine</subject><subject>Hydrogen-Ion Concentration</subject><subject>Hydrophobicity</subject><subject>Interfaces</subject><subject>Lipid membranes</subject><subject>Lipids</subject><subject>Mammalian cells</subject><subject>Membranes</subject><subject>Monomers</subject><subject>Networks</subject><subject>Oligomers</subject><subject>pH effects</subject><subject>Protein Conformation</subject><subject>Protein Engineering - methods</subject><subject>Protein folding</subject><subject>Protein Multimerization</subject><subject>Protein Stability</subject><subject>Proteins</subject><subject>Residues</subject><subject>Sequences</subject><subject>Switches</subject><subject>Switching theory</subject><issn>0036-8075</issn><issn>1095-9203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpdkc1vEzEQxS1ERdOWMyfQil44sK0_1nZWSEioQFupEhc4W87sOHG0sYPtjcR_j6OECDj58H7zxvMeIa8YvWGMq9sMHgPgjbU7Pe_1MzJjtJdtz6l4TmaUCtXOqZbn5CLnNaVV68ULci4qpZXiM_LhMzYh7mIzYPbL0ETXlCnYxYjvm-1DOyS_w9BADC6mjS0-Bjs2sLJhifmKnDk7Znx5fC_Jj69fvt89tE_f7h_vPj21IIUqraOglXAI1oKj2NlOdIO2KGA-KA2UuUEDKs5QCiHZomfDwmrOBJUcHFfiknw8-G6nxQYHwFCSHc02-Y1Nv0y03vyrBL8yy7gzmuoahK4Gbw8GMRdvamYFYVVvCgjFMNnJnu-hd8ctKf6cMBez8RlwHG3AOGXDueBUCt2Lil7_h67jlGoye4rPeXVTslK3BwpSzDmhO_2YUbNvzxzbM8f26sSbvw898X_qqsDrA7DOJaaTzpXq-q6u_A0eHqGC</recordid><startdate>20190517</startdate><enddate>20190517</enddate><creator>Boyken, Scott E.</creator><creator>Benhaim, Mark A.</creator><creator>Busch, Florian</creator><creator>Jia, Mengxuan</creator><creator>Bick, Matthew J.</creator><creator>Choi, Heejun</creator><creator>Klima, Jason C.</creator><creator>Chen, Zibo</creator><creator>Walkey, Carl</creator><creator>Mileant, Alexander</creator><creator>Sahasrabuddhe, Aniruddha</creator><creator>Wei, Kathy Y.</creator><creator>Hodge, Edgar A.</creator><creator>Byron, Sarah</creator><creator>Quijano-Rubio, Alfredo</creator><creator>Sankaran, Banumathi</creator><creator>King, Neil P.</creator><creator>Lippincott-Schwartz, Jennifer</creator><creator>Wysocki, Vicki H.</creator><creator>Lee, Kelly K.</creator><creator>Baker, David</creator><general>American Association for the Advancement of Science</general><general>The American Association for the Advancement of Science</general><general>American Association for the Advancement of Science (AAAS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QQ</scope><scope>7QR</scope><scope>7SC</scope><scope>7SE</scope><scope>7SN</scope><scope>7SP</scope><scope>7SR</scope><scope>7SS</scope><scope>7T7</scope><scope>7TA</scope><scope>7TB</scope><scope>7TK</scope><scope>7TM</scope><scope>7U5</scope><scope>7U9</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>H94</scope><scope>JG9</scope><scope>JQ2</scope><scope>K9.</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>OTOTI</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-7900-624X</orcidid><orcidid>https://orcid.org/0000-0002-8794-1385</orcidid><orcidid>https://orcid.org/0000-0002-4324-6065</orcidid><orcidid>https://orcid.org/0000-0002-2978-4692</orcidid><orcidid>https://orcid.org/0000-0002-8601-3501</orcidid><orcidid>https://orcid.org/0000-0001-7896-6217</orcidid><orcidid>https://orcid.org/0000-0002-1337-3813</orcidid><orcidid>https://orcid.org/0000-0002-5378-0632</orcidid><orcidid>https://orcid.org/0000-0003-2906-5599</orcidid><orcidid>https://orcid.org/0000-0003-0387-7847</orcidid><orcidid>https://orcid.org/0000-0003-1606-5821</orcidid><orcidid>https://orcid.org/0000-0003-0495-2538</orcidid><orcidid>https://orcid.org/0000-0002-9585-859X</orcidid><orcidid>https://orcid.org/0000-0003-2990-2895</orcidid><orcidid>https://orcid.org/0000-0002-3266-8131</orcidid><orcidid>https://orcid.org/0000000287941385</orcidid><orcidid>https://orcid.org/0000000316065821</orcidid><orcidid>https://orcid.org/0000000213373813</orcidid><orcidid>https://orcid.org/0000000286013501</orcidid><orcidid>https://orcid.org/000000029585859X</orcidid><orcidid>https://orcid.org/0000000304952538</orcidid><orcidid>https://orcid.org/000000027900624X</orcidid><orcidid>https://orcid.org/0000000232668131</orcidid><orcidid>https://orcid.org/0000000178966217</orcidid><orcidid>https://orcid.org/0000000329902895</orcidid><orcidid>https://orcid.org/0000000229784692</orcidid><orcidid>https://orcid.org/0000000253780632</orcidid><orcidid>https://orcid.org/0000000329065599</orcidid><orcidid>https://orcid.org/0000000243246065</orcidid><orcidid>https://orcid.org/0000000303877847</orcidid></search><sort><creationdate>20190517</creationdate><title>De novo design of tunable, pH-driven conformational changes</title><author>Boyken, Scott E. ; Benhaim, Mark A. ; Busch, Florian ; Jia, Mengxuan ; Bick, Matthew J. ; Choi, Heejun ; Klima, Jason C. ; Chen, Zibo ; Walkey, Carl ; Mileant, Alexander ; Sahasrabuddhe, Aniruddha ; Wei, Kathy Y. ; Hodge, Edgar A. ; Byron, Sarah ; Quijano-Rubio, Alfredo ; Sankaran, Banumathi ; King, Neil P. ; Lippincott-Schwartz, Jennifer ; Wysocki, Vicki H. ; Lee, Kelly K. ; Baker, David</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c536t-f0c763fecaacf0e4a434d7ae3c8d67c01fd7ce621e53351b91dba7213052cf263</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Design</topic><topic>Dismantling</topic><topic>Disruption</topic><topic>Endocytosis</topic><topic>Endosomes</topic><topic>Environmental changes</topic><topic>Free energy</topic><topic>Histidine</topic><topic>Hydrogen-Ion Concentration</topic><topic>Hydrophobicity</topic><topic>Interfaces</topic><topic>Lipid membranes</topic><topic>Lipids</topic><topic>Mammalian cells</topic><topic>Membranes</topic><topic>Monomers</topic><topic>Networks</topic><topic>Oligomers</topic><topic>pH effects</topic><topic>Protein Conformation</topic><topic>Protein Engineering - methods</topic><topic>Protein folding</topic><topic>Protein Multimerization</topic><topic>Protein Stability</topic><topic>Proteins</topic><topic>Residues</topic><topic>Sequences</topic><topic>Switches</topic><topic>Switching theory</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Boyken, Scott E.</creatorcontrib><creatorcontrib>Benhaim, Mark A.</creatorcontrib><creatorcontrib>Busch, Florian</creatorcontrib><creatorcontrib>Jia, Mengxuan</creatorcontrib><creatorcontrib>Bick, Matthew J.</creatorcontrib><creatorcontrib>Choi, Heejun</creatorcontrib><creatorcontrib>Klima, Jason C.</creatorcontrib><creatorcontrib>Chen, Zibo</creatorcontrib><creatorcontrib>Walkey, Carl</creatorcontrib><creatorcontrib>Mileant, Alexander</creatorcontrib><creatorcontrib>Sahasrabuddhe, Aniruddha</creatorcontrib><creatorcontrib>Wei, Kathy Y.</creatorcontrib><creatorcontrib>Hodge, Edgar A.</creatorcontrib><creatorcontrib>Byron, Sarah</creatorcontrib><creatorcontrib>Quijano-Rubio, Alfredo</creatorcontrib><creatorcontrib>Sankaran, Banumathi</creatorcontrib><creatorcontrib>King, Neil P.</creatorcontrib><creatorcontrib>Lippincott-Schwartz, Jennifer</creatorcontrib><creatorcontrib>Wysocki, Vicki H.</creatorcontrib><creatorcontrib>Lee, Kelly K.</creatorcontrib><creatorcontrib>Baker, David</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Ecology Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Science (American Association for the Advancement of Science)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Boyken, Scott E.</au><au>Benhaim, Mark A.</au><au>Busch, Florian</au><au>Jia, Mengxuan</au><au>Bick, Matthew J.</au><au>Choi, Heejun</au><au>Klima, Jason C.</au><au>Chen, Zibo</au><au>Walkey, Carl</au><au>Mileant, Alexander</au><au>Sahasrabuddhe, Aniruddha</au><au>Wei, Kathy Y.</au><au>Hodge, Edgar A.</au><au>Byron, Sarah</au><au>Quijano-Rubio, Alfredo</au><au>Sankaran, Banumathi</au><au>King, Neil P.</au><au>Lippincott-Schwartz, Jennifer</au><au>Wysocki, Vicki H.</au><au>Lee, Kelly K.</au><au>Baker, David</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>De novo design of tunable, pH-driven conformational changes</atitle><jtitle>Science (American Association for the Advancement of Science)</jtitle><addtitle>Science</addtitle><date>2019-05-17</date><risdate>2019</risdate><volume>364</volume><issue>6441</issue><spage>658</spage><epage>664</epage><pages>658-664</pages><issn>0036-8075</issn><eissn>1095-9203</eissn><abstract>The ability of naturally occurring proteins to change conformation in response to environmental changes is critical to biological function. Although there have been advances in the de novo design of stable proteins with a single, deep free-energy minimum, the design of conformational switches remains challenging. We present a general strategy to design pH-responsive protein conformational changes by precisely preorganizing histidine residues in buried hydrogen-bond networks. We design homotrimers and heterodimers that are stable above pH 6.5 but undergo cooperative, large-scale conformational changes when the pH is lowered and electrostatic and steric repulsion builds up as the network histidine residues become protonated. The transition pH and cooperativity can be controlled through the number of histidine-containing networks and the strength of the surrounding hydrophobic interactions. Upon disassembly, the designed proteins disrupt lipid membranes both in vitro and after being endocytosed in mammalian cells. Our results demonstrate that environmentally triggered conformational changes can now be programmed by de novo protein design.</abstract><cop>United States</cop><pub>American Association for the Advancement of Science</pub><pmid>31097662</pmid><doi>10.1126/science.aav7897</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0002-7900-624X</orcidid><orcidid>https://orcid.org/0000-0002-8794-1385</orcidid><orcidid>https://orcid.org/0000-0002-4324-6065</orcidid><orcidid>https://orcid.org/0000-0002-2978-4692</orcidid><orcidid>https://orcid.org/0000-0002-8601-3501</orcidid><orcidid>https://orcid.org/0000-0001-7896-6217</orcidid><orcidid>https://orcid.org/0000-0002-1337-3813</orcidid><orcidid>https://orcid.org/0000-0002-5378-0632</orcidid><orcidid>https://orcid.org/0000-0003-2906-5599</orcidid><orcidid>https://orcid.org/0000-0003-0387-7847</orcidid><orcidid>https://orcid.org/0000-0003-1606-5821</orcidid><orcidid>https://orcid.org/0000-0003-0495-2538</orcidid><orcidid>https://orcid.org/0000-0002-9585-859X</orcidid><orcidid>https://orcid.org/0000-0003-2990-2895</orcidid><orcidid>https://orcid.org/0000-0002-3266-8131</orcidid><orcidid>https://orcid.org/0000000287941385</orcidid><orcidid>https://orcid.org/0000000316065821</orcidid><orcidid>https://orcid.org/0000000213373813</orcidid><orcidid>https://orcid.org/0000000286013501</orcidid><orcidid>https://orcid.org/000000029585859X</orcidid><orcidid>https://orcid.org/0000000304952538</orcidid><orcidid>https://orcid.org/000000027900624X</orcidid><orcidid>https://orcid.org/0000000232668131</orcidid><orcidid>https://orcid.org/0000000178966217</orcidid><orcidid>https://orcid.org/0000000329902895</orcidid><orcidid>https://orcid.org/0000000229784692</orcidid><orcidid>https://orcid.org/0000000253780632</orcidid><orcidid>https://orcid.org/0000000329065599</orcidid><orcidid>https://orcid.org/0000000243246065</orcidid><orcidid>https://orcid.org/0000000303877847</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0036-8075
ispartof Science (American Association for the Advancement of Science), 2019-05, Vol.364 (6441), p.658-664
issn 0036-8075
1095-9203
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7072037
source American Association for the Advancement of Science; MEDLINE
subjects Design
Dismantling
Disruption
Endocytosis
Endosomes
Environmental changes
Free energy
Histidine
Hydrogen-Ion Concentration
Hydrophobicity
Interfaces
Lipid membranes
Lipids
Mammalian cells
Membranes
Monomers
Networks
Oligomers
pH effects
Protein Conformation
Protein Engineering - methods
Protein folding
Protein Multimerization
Protein Stability
Proteins
Residues
Sequences
Switches
Switching theory
title De novo design of tunable, pH-driven conformational changes
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T14%3A15%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=De%20novo%20design%20of%20tunable,%20pH-driven%20conformational%20changes&rft.jtitle=Science%20(American%20Association%20for%20the%20Advancement%20of%20Science)&rft.au=Boyken,%20Scott%20E.&rft.date=2019-05-17&rft.volume=364&rft.issue=6441&rft.spage=658&rft.epage=664&rft.pages=658-664&rft.issn=0036-8075&rft.eissn=1095-9203&rft_id=info:doi/10.1126/science.aav7897&rft_dat=%3Cjstor_pubme%3E26649465%3C/jstor_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2228227365&rft_id=info:pmid/31097662&rft_jstor_id=26649465&rfr_iscdi=true