De novo design of tunable, pH-driven conformational changes
The ability of naturally occurring proteins to change conformation in response to environmental changes is critical to biological function. Although there have been advances in the de novo design of stable proteins with a single, deep free-energy minimum, the design of conformational switches remain...
Gespeichert in:
Veröffentlicht in: | Science (American Association for the Advancement of Science) 2019-05, Vol.364 (6441), p.658-664 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 664 |
---|---|
container_issue | 6441 |
container_start_page | 658 |
container_title | Science (American Association for the Advancement of Science) |
container_volume | 364 |
creator | Boyken, Scott E. Benhaim, Mark A. Busch, Florian Jia, Mengxuan Bick, Matthew J. Choi, Heejun Klima, Jason C. Chen, Zibo Walkey, Carl Mileant, Alexander Sahasrabuddhe, Aniruddha Wei, Kathy Y. Hodge, Edgar A. Byron, Sarah Quijano-Rubio, Alfredo Sankaran, Banumathi King, Neil P. Lippincott-Schwartz, Jennifer Wysocki, Vicki H. Lee, Kelly K. Baker, David |
description | The ability of naturally occurring proteins to change conformation in response to environmental changes is critical to biological function. Although there have been advances in the de novo design of stable proteins with a single, deep free-energy minimum, the design of conformational switches remains challenging. We present a general strategy to design pH-responsive protein conformational changes by precisely preorganizing histidine residues in buried hydrogen-bond networks. We design homotrimers and heterodimers that are stable above pH 6.5 but undergo cooperative, large-scale conformational changes when the pH is lowered and electrostatic and steric repulsion builds up as the network histidine residues become protonated. The transition pH and cooperativity can be controlled through the number of histidine-containing networks and the strength of the surrounding hydrophobic interactions. Upon disassembly, the designed proteins disrupt lipid membranes both in vitro and after being endocytosed in mammalian cells. Our results demonstrate that environmentally triggered conformational changes can now be programmed by de novo protein design. |
doi_str_mv | 10.1126/science.aav7897 |
format | Article |
fullrecord | <record><control><sourceid>jstor_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7072037</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>26649465</jstor_id><sourcerecordid>26649465</sourcerecordid><originalsourceid>FETCH-LOGICAL-c536t-f0c763fecaacf0e4a434d7ae3c8d67c01fd7ce621e53351b91dba7213052cf263</originalsourceid><addsrcrecordid>eNpdkc1vEzEQxS1ERdOWMyfQil44sK0_1nZWSEioQFupEhc4W87sOHG0sYPtjcR_j6OECDj58H7zxvMeIa8YvWGMq9sMHgPgjbU7Pe_1MzJjtJdtz6l4TmaUCtXOqZbn5CLnNaVV68ULci4qpZXiM_LhMzYh7mIzYPbL0ETXlCnYxYjvm-1DOyS_w9BADC6mjS0-Bjs2sLJhifmKnDk7Znx5fC_Jj69fvt89tE_f7h_vPj21IIUqraOglXAI1oKj2NlOdIO2KGA-KA2UuUEDKs5QCiHZomfDwmrOBJUcHFfiknw8-G6nxQYHwFCSHc02-Y1Nv0y03vyrBL8yy7gzmuoahK4Gbw8GMRdvamYFYVVvCgjFMNnJnu-hd8ctKf6cMBez8RlwHG3AOGXDueBUCt2Lil7_h67jlGoye4rPeXVTslK3BwpSzDmhO_2YUbNvzxzbM8f26sSbvw898X_qqsDrA7DOJaaTzpXq-q6u_A0eHqGC</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2228227365</pqid></control><display><type>article</type><title>De novo design of tunable, pH-driven conformational changes</title><source>American Association for the Advancement of Science</source><source>MEDLINE</source><creator>Boyken, Scott E. ; Benhaim, Mark A. ; Busch, Florian ; Jia, Mengxuan ; Bick, Matthew J. ; Choi, Heejun ; Klima, Jason C. ; Chen, Zibo ; Walkey, Carl ; Mileant, Alexander ; Sahasrabuddhe, Aniruddha ; Wei, Kathy Y. ; Hodge, Edgar A. ; Byron, Sarah ; Quijano-Rubio, Alfredo ; Sankaran, Banumathi ; King, Neil P. ; Lippincott-Schwartz, Jennifer ; Wysocki, Vicki H. ; Lee, Kelly K. ; Baker, David</creator><creatorcontrib>Boyken, Scott E. ; Benhaim, Mark A. ; Busch, Florian ; Jia, Mengxuan ; Bick, Matthew J. ; Choi, Heejun ; Klima, Jason C. ; Chen, Zibo ; Walkey, Carl ; Mileant, Alexander ; Sahasrabuddhe, Aniruddha ; Wei, Kathy Y. ; Hodge, Edgar A. ; Byron, Sarah ; Quijano-Rubio, Alfredo ; Sankaran, Banumathi ; King, Neil P. ; Lippincott-Schwartz, Jennifer ; Wysocki, Vicki H. ; Lee, Kelly K. ; Baker, David</creatorcontrib><description>The ability of naturally occurring proteins to change conformation in response to environmental changes is critical to biological function. Although there have been advances in the de novo design of stable proteins with a single, deep free-energy minimum, the design of conformational switches remains challenging. We present a general strategy to design pH-responsive protein conformational changes by precisely preorganizing histidine residues in buried hydrogen-bond networks. We design homotrimers and heterodimers that are stable above pH 6.5 but undergo cooperative, large-scale conformational changes when the pH is lowered and electrostatic and steric repulsion builds up as the network histidine residues become protonated. The transition pH and cooperativity can be controlled through the number of histidine-containing networks and the strength of the surrounding hydrophobic interactions. Upon disassembly, the designed proteins disrupt lipid membranes both in vitro and after being endocytosed in mammalian cells. Our results demonstrate that environmentally triggered conformational changes can now be programmed by de novo protein design.</description><identifier>ISSN: 0036-8075</identifier><identifier>EISSN: 1095-9203</identifier><identifier>DOI: 10.1126/science.aav7897</identifier><identifier>PMID: 31097662</identifier><language>eng</language><publisher>United States: American Association for the Advancement of Science</publisher><subject>Design ; Dismantling ; Disruption ; Endocytosis ; Endosomes ; Environmental changes ; Free energy ; Histidine ; Hydrogen-Ion Concentration ; Hydrophobicity ; Interfaces ; Lipid membranes ; Lipids ; Mammalian cells ; Membranes ; Monomers ; Networks ; Oligomers ; pH effects ; Protein Conformation ; Protein Engineering - methods ; Protein folding ; Protein Multimerization ; Protein Stability ; Proteins ; Residues ; Sequences ; Switches ; Switching theory</subject><ispartof>Science (American Association for the Advancement of Science), 2019-05, Vol.364 (6441), p.658-664</ispartof><rights>Copyright © 2019 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.</rights><rights>Copyright © 2019 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c536t-f0c763fecaacf0e4a434d7ae3c8d67c01fd7ce621e53351b91dba7213052cf263</citedby><cites>FETCH-LOGICAL-c536t-f0c763fecaacf0e4a434d7ae3c8d67c01fd7ce621e53351b91dba7213052cf263</cites><orcidid>0000-0002-7900-624X ; 0000-0002-8794-1385 ; 0000-0002-4324-6065 ; 0000-0002-2978-4692 ; 0000-0002-8601-3501 ; 0000-0001-7896-6217 ; 0000-0002-1337-3813 ; 0000-0002-5378-0632 ; 0000-0003-2906-5599 ; 0000-0003-0387-7847 ; 0000-0003-1606-5821 ; 0000-0003-0495-2538 ; 0000-0002-9585-859X ; 0000-0003-2990-2895 ; 0000-0002-3266-8131 ; 0000000287941385 ; 0000000316065821 ; 0000000213373813 ; 0000000286013501 ; 000000029585859X ; 0000000304952538 ; 000000027900624X ; 0000000232668131 ; 0000000178966217 ; 0000000329902895 ; 0000000229784692 ; 0000000253780632 ; 0000000329065599 ; 0000000243246065 ; 0000000303877847</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,2871,2872,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31097662$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/1545927$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Boyken, Scott E.</creatorcontrib><creatorcontrib>Benhaim, Mark A.</creatorcontrib><creatorcontrib>Busch, Florian</creatorcontrib><creatorcontrib>Jia, Mengxuan</creatorcontrib><creatorcontrib>Bick, Matthew J.</creatorcontrib><creatorcontrib>Choi, Heejun</creatorcontrib><creatorcontrib>Klima, Jason C.</creatorcontrib><creatorcontrib>Chen, Zibo</creatorcontrib><creatorcontrib>Walkey, Carl</creatorcontrib><creatorcontrib>Mileant, Alexander</creatorcontrib><creatorcontrib>Sahasrabuddhe, Aniruddha</creatorcontrib><creatorcontrib>Wei, Kathy Y.</creatorcontrib><creatorcontrib>Hodge, Edgar A.</creatorcontrib><creatorcontrib>Byron, Sarah</creatorcontrib><creatorcontrib>Quijano-Rubio, Alfredo</creatorcontrib><creatorcontrib>Sankaran, Banumathi</creatorcontrib><creatorcontrib>King, Neil P.</creatorcontrib><creatorcontrib>Lippincott-Schwartz, Jennifer</creatorcontrib><creatorcontrib>Wysocki, Vicki H.</creatorcontrib><creatorcontrib>Lee, Kelly K.</creatorcontrib><creatorcontrib>Baker, David</creatorcontrib><title>De novo design of tunable, pH-driven conformational changes</title><title>Science (American Association for the Advancement of Science)</title><addtitle>Science</addtitle><description>The ability of naturally occurring proteins to change conformation in response to environmental changes is critical to biological function. Although there have been advances in the de novo design of stable proteins with a single, deep free-energy minimum, the design of conformational switches remains challenging. We present a general strategy to design pH-responsive protein conformational changes by precisely preorganizing histidine residues in buried hydrogen-bond networks. We design homotrimers and heterodimers that are stable above pH 6.5 but undergo cooperative, large-scale conformational changes when the pH is lowered and electrostatic and steric repulsion builds up as the network histidine residues become protonated. The transition pH and cooperativity can be controlled through the number of histidine-containing networks and the strength of the surrounding hydrophobic interactions. Upon disassembly, the designed proteins disrupt lipid membranes both in vitro and after being endocytosed in mammalian cells. Our results demonstrate that environmentally triggered conformational changes can now be programmed by de novo protein design.</description><subject>Design</subject><subject>Dismantling</subject><subject>Disruption</subject><subject>Endocytosis</subject><subject>Endosomes</subject><subject>Environmental changes</subject><subject>Free energy</subject><subject>Histidine</subject><subject>Hydrogen-Ion Concentration</subject><subject>Hydrophobicity</subject><subject>Interfaces</subject><subject>Lipid membranes</subject><subject>Lipids</subject><subject>Mammalian cells</subject><subject>Membranes</subject><subject>Monomers</subject><subject>Networks</subject><subject>Oligomers</subject><subject>pH effects</subject><subject>Protein Conformation</subject><subject>Protein Engineering - methods</subject><subject>Protein folding</subject><subject>Protein Multimerization</subject><subject>Protein Stability</subject><subject>Proteins</subject><subject>Residues</subject><subject>Sequences</subject><subject>Switches</subject><subject>Switching theory</subject><issn>0036-8075</issn><issn>1095-9203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpdkc1vEzEQxS1ERdOWMyfQil44sK0_1nZWSEioQFupEhc4W87sOHG0sYPtjcR_j6OECDj58H7zxvMeIa8YvWGMq9sMHgPgjbU7Pe_1MzJjtJdtz6l4TmaUCtXOqZbn5CLnNaVV68ULci4qpZXiM_LhMzYh7mIzYPbL0ETXlCnYxYjvm-1DOyS_w9BADC6mjS0-Bjs2sLJhifmKnDk7Znx5fC_Jj69fvt89tE_f7h_vPj21IIUqraOglXAI1oKj2NlOdIO2KGA-KA2UuUEDKs5QCiHZomfDwmrOBJUcHFfiknw8-G6nxQYHwFCSHc02-Y1Nv0y03vyrBL8yy7gzmuoahK4Gbw8GMRdvamYFYVVvCgjFMNnJnu-hd8ctKf6cMBez8RlwHG3AOGXDueBUCt2Lil7_h67jlGoye4rPeXVTslK3BwpSzDmhO_2YUbNvzxzbM8f26sSbvw898X_qqsDrA7DOJaaTzpXq-q6u_A0eHqGC</recordid><startdate>20190517</startdate><enddate>20190517</enddate><creator>Boyken, Scott E.</creator><creator>Benhaim, Mark A.</creator><creator>Busch, Florian</creator><creator>Jia, Mengxuan</creator><creator>Bick, Matthew J.</creator><creator>Choi, Heejun</creator><creator>Klima, Jason C.</creator><creator>Chen, Zibo</creator><creator>Walkey, Carl</creator><creator>Mileant, Alexander</creator><creator>Sahasrabuddhe, Aniruddha</creator><creator>Wei, Kathy Y.</creator><creator>Hodge, Edgar A.</creator><creator>Byron, Sarah</creator><creator>Quijano-Rubio, Alfredo</creator><creator>Sankaran, Banumathi</creator><creator>King, Neil P.</creator><creator>Lippincott-Schwartz, Jennifer</creator><creator>Wysocki, Vicki H.</creator><creator>Lee, Kelly K.</creator><creator>Baker, David</creator><general>American Association for the Advancement of Science</general><general>The American Association for the Advancement of Science</general><general>American Association for the Advancement of Science (AAAS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QQ</scope><scope>7QR</scope><scope>7SC</scope><scope>7SE</scope><scope>7SN</scope><scope>7SP</scope><scope>7SR</scope><scope>7SS</scope><scope>7T7</scope><scope>7TA</scope><scope>7TB</scope><scope>7TK</scope><scope>7TM</scope><scope>7U5</scope><scope>7U9</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>H94</scope><scope>JG9</scope><scope>JQ2</scope><scope>K9.</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>OTOTI</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-7900-624X</orcidid><orcidid>https://orcid.org/0000-0002-8794-1385</orcidid><orcidid>https://orcid.org/0000-0002-4324-6065</orcidid><orcidid>https://orcid.org/0000-0002-2978-4692</orcidid><orcidid>https://orcid.org/0000-0002-8601-3501</orcidid><orcidid>https://orcid.org/0000-0001-7896-6217</orcidid><orcidid>https://orcid.org/0000-0002-1337-3813</orcidid><orcidid>https://orcid.org/0000-0002-5378-0632</orcidid><orcidid>https://orcid.org/0000-0003-2906-5599</orcidid><orcidid>https://orcid.org/0000-0003-0387-7847</orcidid><orcidid>https://orcid.org/0000-0003-1606-5821</orcidid><orcidid>https://orcid.org/0000-0003-0495-2538</orcidid><orcidid>https://orcid.org/0000-0002-9585-859X</orcidid><orcidid>https://orcid.org/0000-0003-2990-2895</orcidid><orcidid>https://orcid.org/0000-0002-3266-8131</orcidid><orcidid>https://orcid.org/0000000287941385</orcidid><orcidid>https://orcid.org/0000000316065821</orcidid><orcidid>https://orcid.org/0000000213373813</orcidid><orcidid>https://orcid.org/0000000286013501</orcidid><orcidid>https://orcid.org/000000029585859X</orcidid><orcidid>https://orcid.org/0000000304952538</orcidid><orcidid>https://orcid.org/000000027900624X</orcidid><orcidid>https://orcid.org/0000000232668131</orcidid><orcidid>https://orcid.org/0000000178966217</orcidid><orcidid>https://orcid.org/0000000329902895</orcidid><orcidid>https://orcid.org/0000000229784692</orcidid><orcidid>https://orcid.org/0000000253780632</orcidid><orcidid>https://orcid.org/0000000329065599</orcidid><orcidid>https://orcid.org/0000000243246065</orcidid><orcidid>https://orcid.org/0000000303877847</orcidid></search><sort><creationdate>20190517</creationdate><title>De novo design of tunable, pH-driven conformational changes</title><author>Boyken, Scott E. ; Benhaim, Mark A. ; Busch, Florian ; Jia, Mengxuan ; Bick, Matthew J. ; Choi, Heejun ; Klima, Jason C. ; Chen, Zibo ; Walkey, Carl ; Mileant, Alexander ; Sahasrabuddhe, Aniruddha ; Wei, Kathy Y. ; Hodge, Edgar A. ; Byron, Sarah ; Quijano-Rubio, Alfredo ; Sankaran, Banumathi ; King, Neil P. ; Lippincott-Schwartz, Jennifer ; Wysocki, Vicki H. ; Lee, Kelly K. ; Baker, David</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c536t-f0c763fecaacf0e4a434d7ae3c8d67c01fd7ce621e53351b91dba7213052cf263</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Design</topic><topic>Dismantling</topic><topic>Disruption</topic><topic>Endocytosis</topic><topic>Endosomes</topic><topic>Environmental changes</topic><topic>Free energy</topic><topic>Histidine</topic><topic>Hydrogen-Ion Concentration</topic><topic>Hydrophobicity</topic><topic>Interfaces</topic><topic>Lipid membranes</topic><topic>Lipids</topic><topic>Mammalian cells</topic><topic>Membranes</topic><topic>Monomers</topic><topic>Networks</topic><topic>Oligomers</topic><topic>pH effects</topic><topic>Protein Conformation</topic><topic>Protein Engineering - methods</topic><topic>Protein folding</topic><topic>Protein Multimerization</topic><topic>Protein Stability</topic><topic>Proteins</topic><topic>Residues</topic><topic>Sequences</topic><topic>Switches</topic><topic>Switching theory</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Boyken, Scott E.</creatorcontrib><creatorcontrib>Benhaim, Mark A.</creatorcontrib><creatorcontrib>Busch, Florian</creatorcontrib><creatorcontrib>Jia, Mengxuan</creatorcontrib><creatorcontrib>Bick, Matthew J.</creatorcontrib><creatorcontrib>Choi, Heejun</creatorcontrib><creatorcontrib>Klima, Jason C.</creatorcontrib><creatorcontrib>Chen, Zibo</creatorcontrib><creatorcontrib>Walkey, Carl</creatorcontrib><creatorcontrib>Mileant, Alexander</creatorcontrib><creatorcontrib>Sahasrabuddhe, Aniruddha</creatorcontrib><creatorcontrib>Wei, Kathy Y.</creatorcontrib><creatorcontrib>Hodge, Edgar A.</creatorcontrib><creatorcontrib>Byron, Sarah</creatorcontrib><creatorcontrib>Quijano-Rubio, Alfredo</creatorcontrib><creatorcontrib>Sankaran, Banumathi</creatorcontrib><creatorcontrib>King, Neil P.</creatorcontrib><creatorcontrib>Lippincott-Schwartz, Jennifer</creatorcontrib><creatorcontrib>Wysocki, Vicki H.</creatorcontrib><creatorcontrib>Lee, Kelly K.</creatorcontrib><creatorcontrib>Baker, David</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Ecology Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Science (American Association for the Advancement of Science)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Boyken, Scott E.</au><au>Benhaim, Mark A.</au><au>Busch, Florian</au><au>Jia, Mengxuan</au><au>Bick, Matthew J.</au><au>Choi, Heejun</au><au>Klima, Jason C.</au><au>Chen, Zibo</au><au>Walkey, Carl</au><au>Mileant, Alexander</au><au>Sahasrabuddhe, Aniruddha</au><au>Wei, Kathy Y.</au><au>Hodge, Edgar A.</au><au>Byron, Sarah</au><au>Quijano-Rubio, Alfredo</au><au>Sankaran, Banumathi</au><au>King, Neil P.</au><au>Lippincott-Schwartz, Jennifer</au><au>Wysocki, Vicki H.</au><au>Lee, Kelly K.</au><au>Baker, David</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>De novo design of tunable, pH-driven conformational changes</atitle><jtitle>Science (American Association for the Advancement of Science)</jtitle><addtitle>Science</addtitle><date>2019-05-17</date><risdate>2019</risdate><volume>364</volume><issue>6441</issue><spage>658</spage><epage>664</epage><pages>658-664</pages><issn>0036-8075</issn><eissn>1095-9203</eissn><abstract>The ability of naturally occurring proteins to change conformation in response to environmental changes is critical to biological function. Although there have been advances in the de novo design of stable proteins with a single, deep free-energy minimum, the design of conformational switches remains challenging. We present a general strategy to design pH-responsive protein conformational changes by precisely preorganizing histidine residues in buried hydrogen-bond networks. We design homotrimers and heterodimers that are stable above pH 6.5 but undergo cooperative, large-scale conformational changes when the pH is lowered and electrostatic and steric repulsion builds up as the network histidine residues become protonated. The transition pH and cooperativity can be controlled through the number of histidine-containing networks and the strength of the surrounding hydrophobic interactions. Upon disassembly, the designed proteins disrupt lipid membranes both in vitro and after being endocytosed in mammalian cells. Our results demonstrate that environmentally triggered conformational changes can now be programmed by de novo protein design.</abstract><cop>United States</cop><pub>American Association for the Advancement of Science</pub><pmid>31097662</pmid><doi>10.1126/science.aav7897</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0002-7900-624X</orcidid><orcidid>https://orcid.org/0000-0002-8794-1385</orcidid><orcidid>https://orcid.org/0000-0002-4324-6065</orcidid><orcidid>https://orcid.org/0000-0002-2978-4692</orcidid><orcidid>https://orcid.org/0000-0002-8601-3501</orcidid><orcidid>https://orcid.org/0000-0001-7896-6217</orcidid><orcidid>https://orcid.org/0000-0002-1337-3813</orcidid><orcidid>https://orcid.org/0000-0002-5378-0632</orcidid><orcidid>https://orcid.org/0000-0003-2906-5599</orcidid><orcidid>https://orcid.org/0000-0003-0387-7847</orcidid><orcidid>https://orcid.org/0000-0003-1606-5821</orcidid><orcidid>https://orcid.org/0000-0003-0495-2538</orcidid><orcidid>https://orcid.org/0000-0002-9585-859X</orcidid><orcidid>https://orcid.org/0000-0003-2990-2895</orcidid><orcidid>https://orcid.org/0000-0002-3266-8131</orcidid><orcidid>https://orcid.org/0000000287941385</orcidid><orcidid>https://orcid.org/0000000316065821</orcidid><orcidid>https://orcid.org/0000000213373813</orcidid><orcidid>https://orcid.org/0000000286013501</orcidid><orcidid>https://orcid.org/000000029585859X</orcidid><orcidid>https://orcid.org/0000000304952538</orcidid><orcidid>https://orcid.org/000000027900624X</orcidid><orcidid>https://orcid.org/0000000232668131</orcidid><orcidid>https://orcid.org/0000000178966217</orcidid><orcidid>https://orcid.org/0000000329902895</orcidid><orcidid>https://orcid.org/0000000229784692</orcidid><orcidid>https://orcid.org/0000000253780632</orcidid><orcidid>https://orcid.org/0000000329065599</orcidid><orcidid>https://orcid.org/0000000243246065</orcidid><orcidid>https://orcid.org/0000000303877847</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0036-8075 |
ispartof | Science (American Association for the Advancement of Science), 2019-05, Vol.364 (6441), p.658-664 |
issn | 0036-8075 1095-9203 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7072037 |
source | American Association for the Advancement of Science; MEDLINE |
subjects | Design Dismantling Disruption Endocytosis Endosomes Environmental changes Free energy Histidine Hydrogen-Ion Concentration Hydrophobicity Interfaces Lipid membranes Lipids Mammalian cells Membranes Monomers Networks Oligomers pH effects Protein Conformation Protein Engineering - methods Protein folding Protein Multimerization Protein Stability Proteins Residues Sequences Switches Switching theory |
title | De novo design of tunable, pH-driven conformational changes |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T14%3A15%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=De%20novo%20design%20of%20tunable,%20pH-driven%20conformational%20changes&rft.jtitle=Science%20(American%20Association%20for%20the%20Advancement%20of%20Science)&rft.au=Boyken,%20Scott%20E.&rft.date=2019-05-17&rft.volume=364&rft.issue=6441&rft.spage=658&rft.epage=664&rft.pages=658-664&rft.issn=0036-8075&rft.eissn=1095-9203&rft_id=info:doi/10.1126/science.aav7897&rft_dat=%3Cjstor_pubme%3E26649465%3C/jstor_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2228227365&rft_id=info:pmid/31097662&rft_jstor_id=26649465&rfr_iscdi=true |