Division of labor and growth during electrical cooperation in multicellular cable bacteria
Multicellularity is a key evolutionary innovation, leading to co-ordinated activity and resource sharing among cells, which generally occurs via the physical exchange of chemical compounds. However, filamentous cable bacteria display a unique metabolism in which redox transformations in distant cell...
Gespeichert in:
Veröffentlicht in: | Proceedings of the National Academy of Sciences - PNAS 2020-03, Vol.117 (10), p.5478-5485 |
---|---|
Hauptverfasser: | , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 5485 |
---|---|
container_issue | 10 |
container_start_page | 5478 |
container_title | Proceedings of the National Academy of Sciences - PNAS |
container_volume | 117 |
creator | Geerlings, Nicole M. J. Karman, Cheryl Trashin, Stanislav As, Karel S. Kienhuis, Michiel V. M. Hidalgo-Martinez, Silvia Vasquez-Cardenas, Diana Boschker, Henricus T. S. De Wael, Karolien Middelburg, Jack J. Polerecky, Lubos Meysman, Filip J. R. |
description | Multicellularity is a key evolutionary innovation, leading to co-ordinated activity and resource sharing among cells, which generally occurs via the physical exchange of chemical compounds. However, filamentous cable bacteria display a unique metabolism in which redox transformations in distant cells are coupled via long-distance electron transport rather than an exchange of chemicals. This challenges our understanding of organismal functioning, as the link among electron transfer, metabolism, energy conservation, and filament growth in cable bacteria remains enigmatic. Here, we show that cells within individual filaments of cable bacteria display a remarkable dichotomy in biosynthesis that coincides with redox zonation. Nanoscale secondary ion mass spectrometry combined with 13C (bicarbonate and propionate) and 15N-ammonia isotope labeling reveals that cells performing sulfide oxidation in deeper anoxic horizons have a high assimilation rate, whereas cells performing oxygen reduction in the oxic zone show very little or no label uptake. Accordingly, oxygen reduction appears to merely function as a mechanism to quickly dispense of electrons with little to no energy conservation, while biosynthesis and growth are restricted to sulfide-respiring cells. Still, cells can immediately switch roles when redox conditions change, and show no differentiation, which suggests that the “community service” performed by the cells in the oxic zone is only temporary. Overall, our data reveal a division of labor and electrical cooperation among cells that has not been seen previously in multicellular organisms. |
doi_str_mv | 10.1073/pnas.1916244117 |
format | Article |
fullrecord | <record><control><sourceid>jstor_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7071850</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>26929261</jstor_id><sourcerecordid>26929261</sourcerecordid><originalsourceid>FETCH-LOGICAL-c443t-3dd89bc7c311210c145eb61619a0f3dd6def467a04cc8163184c82fbcf5766363</originalsourceid><addsrcrecordid>eNpdkb1vFDEUxC1ERI5ATQWyREOzyXu217tukKLwFSkSDTQ0ltfrvfjkWx-2N4j_Hp8uHCTVK-Y3ozcaQl4hnCN0_GI3m3yOCiUTArF7QlYIChspFDwlKwDWNb1g4pQ8z3kDAKrt4Rk55QyUqLYV-fHB3_ns40zjRIMZYqJmHuk6xV_llo5L8vOauuBsSd6aQG2MO5dM2Tv8TLdLKN66EJZgErVmCI4OxhaXvHlBTiYTsnt5f8_I908fv119aW6-fr6-urxprBC8NHwcezXYznJEhmBRtG6QKFEZmKooRzcJ2RkQ1vYoOfbC9mwa7NR2UnLJz8j7Q-5uGbZutG4uyQS9S35r0m8djdcPldnf6nW80x102LdQA97dB6T4c3G56K3P-1JmdnHJmnEpoH7Xsoq-fYRu4pLmWq9SXa-UgJZX6uJA2RRzTm46PoOg97vp_W76327V8eb_Dkf-71AVeH0ANrnEdNSZVEwxifwPrgae3Q</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2378994053</pqid></control><display><type>article</type><title>Division of labor and growth during electrical cooperation in multicellular cable bacteria</title><source>Jstor Complete Legacy</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Geerlings, Nicole M. J. ; Karman, Cheryl ; Trashin, Stanislav ; As, Karel S. ; Kienhuis, Michiel V. M. ; Hidalgo-Martinez, Silvia ; Vasquez-Cardenas, Diana ; Boschker, Henricus T. S. ; De Wael, Karolien ; Middelburg, Jack J. ; Polerecky, Lubos ; Meysman, Filip J. R.</creator><creatorcontrib>Geerlings, Nicole M. J. ; Karman, Cheryl ; Trashin, Stanislav ; As, Karel S. ; Kienhuis, Michiel V. M. ; Hidalgo-Martinez, Silvia ; Vasquez-Cardenas, Diana ; Boschker, Henricus T. S. ; De Wael, Karolien ; Middelburg, Jack J. ; Polerecky, Lubos ; Meysman, Filip J. R.</creatorcontrib><description>Multicellularity is a key evolutionary innovation, leading to co-ordinated activity and resource sharing among cells, which generally occurs via the physical exchange of chemical compounds. However, filamentous cable bacteria display a unique metabolism in which redox transformations in distant cells are coupled via long-distance electron transport rather than an exchange of chemicals. This challenges our understanding of organismal functioning, as the link among electron transfer, metabolism, energy conservation, and filament growth in cable bacteria remains enigmatic. Here, we show that cells within individual filaments of cable bacteria display a remarkable dichotomy in biosynthesis that coincides with redox zonation. Nanoscale secondary ion mass spectrometry combined with 13C (bicarbonate and propionate) and 15N-ammonia isotope labeling reveals that cells performing sulfide oxidation in deeper anoxic horizons have a high assimilation rate, whereas cells performing oxygen reduction in the oxic zone show very little or no label uptake. Accordingly, oxygen reduction appears to merely function as a mechanism to quickly dispense of electrons with little to no energy conservation, while biosynthesis and growth are restricted to sulfide-respiring cells. Still, cells can immediately switch roles when redox conditions change, and show no differentiation, which suggests that the “community service” performed by the cells in the oxic zone is only temporary. Overall, our data reveal a division of labor and electrical cooperation among cells that has not been seen previously in multicellular organisms.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.1916244117</identifier><identifier>PMID: 32094191</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Ammonia ; Bacteria ; Bicarbonates ; Biological Sciences ; Biosynthesis ; Chemical compounds ; Cooperation ; Division of labor ; Electron transfer ; Electron transport ; Energy conservation ; Energy metabolism ; Filaments ; Labor ; Mass spectrometry ; Mass spectroscopy ; Metabolism ; Oxidation ; Oxygen ; Propionic acid ; Reduction ; Secondary ion mass spectrometry ; Sulfide ; Sulfides ; Telephone cables ; Zonation</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2020-03, Vol.117 (10), p.5478-5485</ispartof><rights>Copyright © 2020 the Author(s). Published by PNAS.</rights><rights>Copyright National Academy of Sciences Mar 10, 2020</rights><rights>Copyright © 2020 the Author(s). Published by PNAS. 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c443t-3dd89bc7c311210c145eb61619a0f3dd6def467a04cc8163184c82fbcf5766363</citedby><cites>FETCH-LOGICAL-c443t-3dd89bc7c311210c145eb61619a0f3dd6def467a04cc8163184c82fbcf5766363</cites><orcidid>0000-0003-2056-5650</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/26929261$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/26929261$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,723,776,780,799,881,27901,27902,53766,53768,57992,58225</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32094191$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Geerlings, Nicole M. J.</creatorcontrib><creatorcontrib>Karman, Cheryl</creatorcontrib><creatorcontrib>Trashin, Stanislav</creatorcontrib><creatorcontrib>As, Karel S.</creatorcontrib><creatorcontrib>Kienhuis, Michiel V. M.</creatorcontrib><creatorcontrib>Hidalgo-Martinez, Silvia</creatorcontrib><creatorcontrib>Vasquez-Cardenas, Diana</creatorcontrib><creatorcontrib>Boschker, Henricus T. S.</creatorcontrib><creatorcontrib>De Wael, Karolien</creatorcontrib><creatorcontrib>Middelburg, Jack J.</creatorcontrib><creatorcontrib>Polerecky, Lubos</creatorcontrib><creatorcontrib>Meysman, Filip J. R.</creatorcontrib><title>Division of labor and growth during electrical cooperation in multicellular cable bacteria</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>Multicellularity is a key evolutionary innovation, leading to co-ordinated activity and resource sharing among cells, which generally occurs via the physical exchange of chemical compounds. However, filamentous cable bacteria display a unique metabolism in which redox transformations in distant cells are coupled via long-distance electron transport rather than an exchange of chemicals. This challenges our understanding of organismal functioning, as the link among electron transfer, metabolism, energy conservation, and filament growth in cable bacteria remains enigmatic. Here, we show that cells within individual filaments of cable bacteria display a remarkable dichotomy in biosynthesis that coincides with redox zonation. Nanoscale secondary ion mass spectrometry combined with 13C (bicarbonate and propionate) and 15N-ammonia isotope labeling reveals that cells performing sulfide oxidation in deeper anoxic horizons have a high assimilation rate, whereas cells performing oxygen reduction in the oxic zone show very little or no label uptake. Accordingly, oxygen reduction appears to merely function as a mechanism to quickly dispense of electrons with little to no energy conservation, while biosynthesis and growth are restricted to sulfide-respiring cells. Still, cells can immediately switch roles when redox conditions change, and show no differentiation, which suggests that the “community service” performed by the cells in the oxic zone is only temporary. Overall, our data reveal a division of labor and electrical cooperation among cells that has not been seen previously in multicellular organisms.</description><subject>Ammonia</subject><subject>Bacteria</subject><subject>Bicarbonates</subject><subject>Biological Sciences</subject><subject>Biosynthesis</subject><subject>Chemical compounds</subject><subject>Cooperation</subject><subject>Division of labor</subject><subject>Electron transfer</subject><subject>Electron transport</subject><subject>Energy conservation</subject><subject>Energy metabolism</subject><subject>Filaments</subject><subject>Labor</subject><subject>Mass spectrometry</subject><subject>Mass spectroscopy</subject><subject>Metabolism</subject><subject>Oxidation</subject><subject>Oxygen</subject><subject>Propionic acid</subject><subject>Reduction</subject><subject>Secondary ion mass spectrometry</subject><subject>Sulfide</subject><subject>Sulfides</subject><subject>Telephone cables</subject><subject>Zonation</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNpdkb1vFDEUxC1ERI5ATQWyREOzyXu217tukKLwFSkSDTQ0ltfrvfjkWx-2N4j_Hp8uHCTVK-Y3ozcaQl4hnCN0_GI3m3yOCiUTArF7QlYIChspFDwlKwDWNb1g4pQ8z3kDAKrt4Rk55QyUqLYV-fHB3_ns40zjRIMZYqJmHuk6xV_llo5L8vOauuBsSd6aQG2MO5dM2Tv8TLdLKN66EJZgErVmCI4OxhaXvHlBTiYTsnt5f8_I908fv119aW6-fr6-urxprBC8NHwcezXYznJEhmBRtG6QKFEZmKooRzcJ2RkQ1vYoOfbC9mwa7NR2UnLJz8j7Q-5uGbZutG4uyQS9S35r0m8djdcPldnf6nW80x102LdQA97dB6T4c3G56K3P-1JmdnHJmnEpoH7Xsoq-fYRu4pLmWq9SXa-UgJZX6uJA2RRzTm46PoOg97vp_W76327V8eb_Dkf-71AVeH0ANrnEdNSZVEwxifwPrgae3Q</recordid><startdate>20200310</startdate><enddate>20200310</enddate><creator>Geerlings, Nicole M. J.</creator><creator>Karman, Cheryl</creator><creator>Trashin, Stanislav</creator><creator>As, Karel S.</creator><creator>Kienhuis, Michiel V. M.</creator><creator>Hidalgo-Martinez, Silvia</creator><creator>Vasquez-Cardenas, Diana</creator><creator>Boschker, Henricus T. S.</creator><creator>De Wael, Karolien</creator><creator>Middelburg, Jack J.</creator><creator>Polerecky, Lubos</creator><creator>Meysman, Filip J. R.</creator><general>National Academy of Sciences</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-2056-5650</orcidid></search><sort><creationdate>20200310</creationdate><title>Division of labor and growth during electrical cooperation in multicellular cable bacteria</title><author>Geerlings, Nicole M. J. ; Karman, Cheryl ; Trashin, Stanislav ; As, Karel S. ; Kienhuis, Michiel V. M. ; Hidalgo-Martinez, Silvia ; Vasquez-Cardenas, Diana ; Boschker, Henricus T. S. ; De Wael, Karolien ; Middelburg, Jack J. ; Polerecky, Lubos ; Meysman, Filip J. R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c443t-3dd89bc7c311210c145eb61619a0f3dd6def467a04cc8163184c82fbcf5766363</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Ammonia</topic><topic>Bacteria</topic><topic>Bicarbonates</topic><topic>Biological Sciences</topic><topic>Biosynthesis</topic><topic>Chemical compounds</topic><topic>Cooperation</topic><topic>Division of labor</topic><topic>Electron transfer</topic><topic>Electron transport</topic><topic>Energy conservation</topic><topic>Energy metabolism</topic><topic>Filaments</topic><topic>Labor</topic><topic>Mass spectrometry</topic><topic>Mass spectroscopy</topic><topic>Metabolism</topic><topic>Oxidation</topic><topic>Oxygen</topic><topic>Propionic acid</topic><topic>Reduction</topic><topic>Secondary ion mass spectrometry</topic><topic>Sulfide</topic><topic>Sulfides</topic><topic>Telephone cables</topic><topic>Zonation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Geerlings, Nicole M. J.</creatorcontrib><creatorcontrib>Karman, Cheryl</creatorcontrib><creatorcontrib>Trashin, Stanislav</creatorcontrib><creatorcontrib>As, Karel S.</creatorcontrib><creatorcontrib>Kienhuis, Michiel V. M.</creatorcontrib><creatorcontrib>Hidalgo-Martinez, Silvia</creatorcontrib><creatorcontrib>Vasquez-Cardenas, Diana</creatorcontrib><creatorcontrib>Boschker, Henricus T. S.</creatorcontrib><creatorcontrib>De Wael, Karolien</creatorcontrib><creatorcontrib>Middelburg, Jack J.</creatorcontrib><creatorcontrib>Polerecky, Lubos</creatorcontrib><creatorcontrib>Meysman, Filip J. R.</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Geerlings, Nicole M. J.</au><au>Karman, Cheryl</au><au>Trashin, Stanislav</au><au>As, Karel S.</au><au>Kienhuis, Michiel V. M.</au><au>Hidalgo-Martinez, Silvia</au><au>Vasquez-Cardenas, Diana</au><au>Boschker, Henricus T. S.</au><au>De Wael, Karolien</au><au>Middelburg, Jack J.</au><au>Polerecky, Lubos</au><au>Meysman, Filip J. R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Division of labor and growth during electrical cooperation in multicellular cable bacteria</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2020-03-10</date><risdate>2020</risdate><volume>117</volume><issue>10</issue><spage>5478</spage><epage>5485</epage><pages>5478-5485</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>Multicellularity is a key evolutionary innovation, leading to co-ordinated activity and resource sharing among cells, which generally occurs via the physical exchange of chemical compounds. However, filamentous cable bacteria display a unique metabolism in which redox transformations in distant cells are coupled via long-distance electron transport rather than an exchange of chemicals. This challenges our understanding of organismal functioning, as the link among electron transfer, metabolism, energy conservation, and filament growth in cable bacteria remains enigmatic. Here, we show that cells within individual filaments of cable bacteria display a remarkable dichotomy in biosynthesis that coincides with redox zonation. Nanoscale secondary ion mass spectrometry combined with 13C (bicarbonate and propionate) and 15N-ammonia isotope labeling reveals that cells performing sulfide oxidation in deeper anoxic horizons have a high assimilation rate, whereas cells performing oxygen reduction in the oxic zone show very little or no label uptake. Accordingly, oxygen reduction appears to merely function as a mechanism to quickly dispense of electrons with little to no energy conservation, while biosynthesis and growth are restricted to sulfide-respiring cells. Still, cells can immediately switch roles when redox conditions change, and show no differentiation, which suggests that the “community service” performed by the cells in the oxic zone is only temporary. Overall, our data reveal a division of labor and electrical cooperation among cells that has not been seen previously in multicellular organisms.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>32094191</pmid><doi>10.1073/pnas.1916244117</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0003-2056-5650</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0027-8424 |
ispartof | Proceedings of the National Academy of Sciences - PNAS, 2020-03, Vol.117 (10), p.5478-5485 |
issn | 0027-8424 1091-6490 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7071850 |
source | Jstor Complete Legacy; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry |
subjects | Ammonia Bacteria Bicarbonates Biological Sciences Biosynthesis Chemical compounds Cooperation Division of labor Electron transfer Electron transport Energy conservation Energy metabolism Filaments Labor Mass spectrometry Mass spectroscopy Metabolism Oxidation Oxygen Propionic acid Reduction Secondary ion mass spectrometry Sulfide Sulfides Telephone cables Zonation |
title | Division of labor and growth during electrical cooperation in multicellular cable bacteria |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-13T09%3A15%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Division%20of%20labor%20and%20growth%20during%20electrical%20cooperation%20in%20multicellular%20cable%20bacteria&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Geerlings,%20Nicole%20M.%20J.&rft.date=2020-03-10&rft.volume=117&rft.issue=10&rft.spage=5478&rft.epage=5485&rft.pages=5478-5485&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.1916244117&rft_dat=%3Cjstor_pubme%3E26929261%3C/jstor_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2378994053&rft_id=info:pmid/32094191&rft_jstor_id=26929261&rfr_iscdi=true |