Is a Linear or a Walkabout Protocol More Efficient When Using a Rover to Choose Biologically Relevant Samples in a Small Region of Interest?

We conducted a field test at a potential Mars analog site to provide insight into planning for future robotic missions such as Mars 2020, where science operations must facilitate efficient choice of biologically relevant sampling locations. We compared two data acquisition and decision-making protoc...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Astrobiology 2020-03, Vol.20 (3), p.327-348
Hauptverfasser: Yingst, R. Aileen, Bartley, Julie K., Jr, Thomas J. Chidsey, Cohen, Barbara A., Hynek, Brian M., Kah, Linda C., Minitti, Michelle E., Berg, Michael D. Vanden, Williams, Rebecca M.E., Adams, Madison, Black, Sarah, El-Maarry, Mohammed R., Gemperline, John, Kronyak, Rachel, Lotto, Michael
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 348
container_issue 3
container_start_page 327
container_title Astrobiology
container_volume 20
creator Yingst, R. Aileen
Bartley, Julie K.
Jr, Thomas J. Chidsey
Cohen, Barbara A.
Hynek, Brian M.
Kah, Linda C.
Minitti, Michelle E.
Berg, Michael D. Vanden
Williams, Rebecca M.E.
Adams, Madison
Black, Sarah
El-Maarry, Mohammed R.
Gemperline, John
Kronyak, Rachel
Lotto, Michael
description We conducted a field test at a potential Mars analog site to provide insight into planning for future robotic missions such as Mars 2020, where science operations must facilitate efficient choice of biologically relevant sampling locations. We compared two data acquisition and decision-making protocols currently used by Mars Science Laboratory: (1) a linear approach, where sites are examined as they are encountered and (2) a walkabout approach, in which the field site is first examined with remote rover instruments to gain an understanding of regional context followed by deployment of time- and power-intensive contact and sampling instruments on a smaller subset of locations. The walkabout method was advantageous in terms of both the time required to execute and a greater confidence in results and interpretations, leading to enhanced ability to tailor follow-on observations to better address key science and sampling goals. This advantage is directly linked to the walkabout method's ability to provide broad geological context earlier in the science analysis process. For Mars 2020, and specifically for small regions to be explored (e.g.,
doi_str_mv 10.1089/ast.2019.2090
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7071088</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2352048304</sourcerecordid><originalsourceid>FETCH-LOGICAL-c436t-aeebd26dcb69f43193071d5fc86c2e573d83130455b06ed46b70203d1a2ede973</originalsourceid><addsrcrecordid>eNpdkk2LFDEQhhtR3A89ehMJePHSayXpz4uiw6oDI8quyx5DOl09kzWdjEn3wP6H_dHWMOuiXlIF9dTHy5sse8HhjEPTvtVpOhPAW3paeJQd87Ks8wZqeLzPJc851MVRdpLSDQCXoq2eZkdSgJCFqI6zu2Vimq2sRx1ZiJRfa_dTd2Ge2PcYpmCCY19DRHY-DNZY9BO73qBnV8n6NeEXYYeRTYEtNiEkZB9tcGFtjXbull2gw52mlks9bh0mZj21XI5UpNraBs_CwJZ-wohpev8sezJol_D5fTzNrj6d_1h8yVffPi8XH1a5KWQ15Rqx60XVm65qh0LyVkLN-3IwTWUElrXsG8klFGXZQYV9UXU1CJA91wJ7bGt5mr07zN3O3Yi9IVFRO7WNdtTxVgVt1b8VbzdqHXaqpkXQNDTgzf2AGH7NdLoabTLonPYY5qSELAUUDd1A6Ov_0JswR0_yiKraloOsBVH5gTIxpBRxeDiGg9r7rMhntfdZ7X0m_tXfCh7oP8YS8PIAeJ20IhW0DgSnL8DLAuRvjyCshw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2369910372</pqid></control><display><type>article</type><title>Is a Linear or a Walkabout Protocol More Efficient When Using a Rover to Choose Biologically Relevant Samples in a Small Region of Interest?</title><source>NASA Technical Reports Server</source><source>Alma/SFX Local Collection</source><creator>Yingst, R. Aileen ; Bartley, Julie K. ; Jr, Thomas J. Chidsey ; Cohen, Barbara A. ; Hynek, Brian M. ; Kah, Linda C. ; Minitti, Michelle E. ; Berg, Michael D. Vanden ; Williams, Rebecca M.E. ; Adams, Madison ; Black, Sarah ; El-Maarry, Mohammed R. ; Gemperline, John ; Kronyak, Rachel ; Lotto, Michael</creator><creatorcontrib>Yingst, R. Aileen ; Bartley, Julie K. ; Jr, Thomas J. Chidsey ; Cohen, Barbara A. ; Hynek, Brian M. ; Kah, Linda C. ; Minitti, Michelle E. ; Berg, Michael D. Vanden ; Williams, Rebecca M.E. ; Adams, Madison ; Black, Sarah ; El-Maarry, Mohammed R. ; Gemperline, John ; Kronyak, Rachel ; Lotto, Michael</creatorcontrib><description>We conducted a field test at a potential Mars analog site to provide insight into planning for future robotic missions such as Mars 2020, where science operations must facilitate efficient choice of biologically relevant sampling locations. We compared two data acquisition and decision-making protocols currently used by Mars Science Laboratory: (1) a linear approach, where sites are examined as they are encountered and (2) a walkabout approach, in which the field site is first examined with remote rover instruments to gain an understanding of regional context followed by deployment of time- and power-intensive contact and sampling instruments on a smaller subset of locations. The walkabout method was advantageous in terms of both the time required to execute and a greater confidence in results and interpretations, leading to enhanced ability to tailor follow-on observations to better address key science and sampling goals. This advantage is directly linked to the walkabout method's ability to provide broad geological context earlier in the science analysis process. For Mars 2020, and specifically for small regions to be explored (e.g., &lt;1 sq. km), we recommend that the walkabout approach be considered where possible, to provide early context and time for the science team to develop a coherent suite of hypotheses and robust ways to test them.</description><identifier>ISSN: 1531-1074</identifier><identifier>EISSN: 1557-8070</identifier><identifier>DOI: 10.1089/ast.2019.2090</identifier><identifier>PMID: 32023426</identifier><language>eng</language><publisher>Goddard Space Flight Center: Mary Ann Liebert / Astrobiology Society</publisher><subject>Analogs ; Biological sampling ; Data acquisition ; Decision making ; Deployment ; Exobiology ; Field tests ; Geosciences (General) ; Instruments ; Mars missions ; Sampling ; Sampling instruments ; Science</subject><ispartof>Astrobiology, 2020-03, Vol.20 (3), p.327-348</ispartof><rights>Copyright Determination: GOV_PERMITTED</rights><rights>Copyright Mary Ann Liebert, Inc. Mar 2020</rights><rights>R. Aileen Yingst 2019; Published by Mary Ann Liebert, Inc. 2019 R. Aileen Yingst et al.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c436t-aeebd26dcb69f43193071d5fc86c2e573d83130455b06ed46b70203d1a2ede973</citedby><cites>FETCH-LOGICAL-c436t-aeebd26dcb69f43193071d5fc86c2e573d83130455b06ed46b70203d1a2ede973</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,796,881,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32023426$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Yingst, R. Aileen</creatorcontrib><creatorcontrib>Bartley, Julie K.</creatorcontrib><creatorcontrib>Jr, Thomas J. Chidsey</creatorcontrib><creatorcontrib>Cohen, Barbara A.</creatorcontrib><creatorcontrib>Hynek, Brian M.</creatorcontrib><creatorcontrib>Kah, Linda C.</creatorcontrib><creatorcontrib>Minitti, Michelle E.</creatorcontrib><creatorcontrib>Berg, Michael D. Vanden</creatorcontrib><creatorcontrib>Williams, Rebecca M.E.</creatorcontrib><creatorcontrib>Adams, Madison</creatorcontrib><creatorcontrib>Black, Sarah</creatorcontrib><creatorcontrib>El-Maarry, Mohammed R.</creatorcontrib><creatorcontrib>Gemperline, John</creatorcontrib><creatorcontrib>Kronyak, Rachel</creatorcontrib><creatorcontrib>Lotto, Michael</creatorcontrib><title>Is a Linear or a Walkabout Protocol More Efficient When Using a Rover to Choose Biologically Relevant Samples in a Small Region of Interest?</title><title>Astrobiology</title><addtitle>Astrobiology</addtitle><description>We conducted a field test at a potential Mars analog site to provide insight into planning for future robotic missions such as Mars 2020, where science operations must facilitate efficient choice of biologically relevant sampling locations. We compared two data acquisition and decision-making protocols currently used by Mars Science Laboratory: (1) a linear approach, where sites are examined as they are encountered and (2) a walkabout approach, in which the field site is first examined with remote rover instruments to gain an understanding of regional context followed by deployment of time- and power-intensive contact and sampling instruments on a smaller subset of locations. The walkabout method was advantageous in terms of both the time required to execute and a greater confidence in results and interpretations, leading to enhanced ability to tailor follow-on observations to better address key science and sampling goals. This advantage is directly linked to the walkabout method's ability to provide broad geological context earlier in the science analysis process. For Mars 2020, and specifically for small regions to be explored (e.g., &lt;1 sq. km), we recommend that the walkabout approach be considered where possible, to provide early context and time for the science team to develop a coherent suite of hypotheses and robust ways to test them.</description><subject>Analogs</subject><subject>Biological sampling</subject><subject>Data acquisition</subject><subject>Decision making</subject><subject>Deployment</subject><subject>Exobiology</subject><subject>Field tests</subject><subject>Geosciences (General)</subject><subject>Instruments</subject><subject>Mars missions</subject><subject>Sampling</subject><subject>Sampling instruments</subject><subject>Science</subject><issn>1531-1074</issn><issn>1557-8070</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>CYI</sourceid><recordid>eNpdkk2LFDEQhhtR3A89ehMJePHSayXpz4uiw6oDI8quyx5DOl09kzWdjEn3wP6H_dHWMOuiXlIF9dTHy5sse8HhjEPTvtVpOhPAW3paeJQd87Ks8wZqeLzPJc851MVRdpLSDQCXoq2eZkdSgJCFqI6zu2Vimq2sRx1ZiJRfa_dTd2Ge2PcYpmCCY19DRHY-DNZY9BO73qBnV8n6NeEXYYeRTYEtNiEkZB9tcGFtjXbull2gw52mlks9bh0mZj21XI5UpNraBs_CwJZ-wohpev8sezJol_D5fTzNrj6d_1h8yVffPi8XH1a5KWQ15Rqx60XVm65qh0LyVkLN-3IwTWUElrXsG8klFGXZQYV9UXU1CJA91wJ7bGt5mr07zN3O3Yi9IVFRO7WNdtTxVgVt1b8VbzdqHXaqpkXQNDTgzf2AGH7NdLoabTLonPYY5qSELAUUDd1A6Ov_0JswR0_yiKraloOsBVH5gTIxpBRxeDiGg9r7rMhntfdZ7X0m_tXfCh7oP8YS8PIAeJ20IhW0DgSnL8DLAuRvjyCshw</recordid><startdate>20200301</startdate><enddate>20200301</enddate><creator>Yingst, R. Aileen</creator><creator>Bartley, Julie K.</creator><creator>Jr, Thomas J. Chidsey</creator><creator>Cohen, Barbara A.</creator><creator>Hynek, Brian M.</creator><creator>Kah, Linda C.</creator><creator>Minitti, Michelle E.</creator><creator>Berg, Michael D. Vanden</creator><creator>Williams, Rebecca M.E.</creator><creator>Adams, Madison</creator><creator>Black, Sarah</creator><creator>El-Maarry, Mohammed R.</creator><creator>Gemperline, John</creator><creator>Kronyak, Rachel</creator><creator>Lotto, Michael</creator><general>Mary Ann Liebert / Astrobiology Society</general><general>Mary Ann Liebert, Inc</general><general>Mary Ann Liebert, Inc., publishers</general><scope>CYE</scope><scope>CYI</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SN</scope><scope>C1K</scope><scope>F1W</scope><scope>H95</scope><scope>L.G</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20200301</creationdate><title>Is a Linear or a Walkabout Protocol More Efficient When Using a Rover to Choose Biologically Relevant Samples in a Small Region of Interest?</title><author>Yingst, R. Aileen ; Bartley, Julie K. ; Jr, Thomas J. Chidsey ; Cohen, Barbara A. ; Hynek, Brian M. ; Kah, Linda C. ; Minitti, Michelle E. ; Berg, Michael D. Vanden ; Williams, Rebecca M.E. ; Adams, Madison ; Black, Sarah ; El-Maarry, Mohammed R. ; Gemperline, John ; Kronyak, Rachel ; Lotto, Michael</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c436t-aeebd26dcb69f43193071d5fc86c2e573d83130455b06ed46b70203d1a2ede973</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Analogs</topic><topic>Biological sampling</topic><topic>Data acquisition</topic><topic>Decision making</topic><topic>Deployment</topic><topic>Exobiology</topic><topic>Field tests</topic><topic>Geosciences (General)</topic><topic>Instruments</topic><topic>Mars missions</topic><topic>Sampling</topic><topic>Sampling instruments</topic><topic>Science</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yingst, R. Aileen</creatorcontrib><creatorcontrib>Bartley, Julie K.</creatorcontrib><creatorcontrib>Jr, Thomas J. Chidsey</creatorcontrib><creatorcontrib>Cohen, Barbara A.</creatorcontrib><creatorcontrib>Hynek, Brian M.</creatorcontrib><creatorcontrib>Kah, Linda C.</creatorcontrib><creatorcontrib>Minitti, Michelle E.</creatorcontrib><creatorcontrib>Berg, Michael D. Vanden</creatorcontrib><creatorcontrib>Williams, Rebecca M.E.</creatorcontrib><creatorcontrib>Adams, Madison</creatorcontrib><creatorcontrib>Black, Sarah</creatorcontrib><creatorcontrib>El-Maarry, Mohammed R.</creatorcontrib><creatorcontrib>Gemperline, John</creatorcontrib><creatorcontrib>Kronyak, Rachel</creatorcontrib><creatorcontrib>Lotto, Michael</creatorcontrib><collection>NASA Scientific and Technical Information</collection><collection>NASA Technical Reports Server</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Ecology Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 1: Biological Sciences &amp; Living Resources</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Astrobiology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yingst, R. Aileen</au><au>Bartley, Julie K.</au><au>Jr, Thomas J. Chidsey</au><au>Cohen, Barbara A.</au><au>Hynek, Brian M.</au><au>Kah, Linda C.</au><au>Minitti, Michelle E.</au><au>Berg, Michael D. Vanden</au><au>Williams, Rebecca M.E.</au><au>Adams, Madison</au><au>Black, Sarah</au><au>El-Maarry, Mohammed R.</au><au>Gemperline, John</au><au>Kronyak, Rachel</au><au>Lotto, Michael</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Is a Linear or a Walkabout Protocol More Efficient When Using a Rover to Choose Biologically Relevant Samples in a Small Region of Interest?</atitle><jtitle>Astrobiology</jtitle><addtitle>Astrobiology</addtitle><date>2020-03-01</date><risdate>2020</risdate><volume>20</volume><issue>3</issue><spage>327</spage><epage>348</epage><pages>327-348</pages><issn>1531-1074</issn><eissn>1557-8070</eissn><abstract>We conducted a field test at a potential Mars analog site to provide insight into planning for future robotic missions such as Mars 2020, where science operations must facilitate efficient choice of biologically relevant sampling locations. We compared two data acquisition and decision-making protocols currently used by Mars Science Laboratory: (1) a linear approach, where sites are examined as they are encountered and (2) a walkabout approach, in which the field site is first examined with remote rover instruments to gain an understanding of regional context followed by deployment of time- and power-intensive contact and sampling instruments on a smaller subset of locations. The walkabout method was advantageous in terms of both the time required to execute and a greater confidence in results and interpretations, leading to enhanced ability to tailor follow-on observations to better address key science and sampling goals. This advantage is directly linked to the walkabout method's ability to provide broad geological context earlier in the science analysis process. For Mars 2020, and specifically for small regions to be explored (e.g., &lt;1 sq. km), we recommend that the walkabout approach be considered where possible, to provide early context and time for the science team to develop a coherent suite of hypotheses and robust ways to test them.</abstract><cop>Goddard Space Flight Center</cop><pub>Mary Ann Liebert / Astrobiology Society</pub><pmid>32023426</pmid><doi>10.1089/ast.2019.2090</doi><tpages>22</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1531-1074
ispartof Astrobiology, 2020-03, Vol.20 (3), p.327-348
issn 1531-1074
1557-8070
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7071088
source NASA Technical Reports Server; Alma/SFX Local Collection
subjects Analogs
Biological sampling
Data acquisition
Decision making
Deployment
Exobiology
Field tests
Geosciences (General)
Instruments
Mars missions
Sampling
Sampling instruments
Science
title Is a Linear or a Walkabout Protocol More Efficient When Using a Rover to Choose Biologically Relevant Samples in a Small Region of Interest?
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T10%3A03%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Is%20a%20Linear%20or%20a%20Walkabout%20Protocol%20More%20Efficient%20When%20Using%20a%20Rover%20to%20Choose%20Biologically%20Relevant%20Samples%20in%20a%20Small%20Region%20of%20Interest?&rft.jtitle=Astrobiology&rft.au=Yingst,%20R.%20Aileen&rft.date=2020-03-01&rft.volume=20&rft.issue=3&rft.spage=327&rft.epage=348&rft.pages=327-348&rft.issn=1531-1074&rft.eissn=1557-8070&rft_id=info:doi/10.1089/ast.2019.2090&rft_dat=%3Cproquest_pubme%3E2352048304%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2369910372&rft_id=info:pmid/32023426&rfr_iscdi=true