Cholesteryl α-D-glucoside 6-acyltransferase enhances the adhesion of Helicobacter pylori to gastric epithelium
Helicobacter pylori , the most common etiologic agent of gastric diseases including gastric cancer, is auxotrophic for cholesterol and has to hijack it from gastric epithelia. Upon uptake, the bacteria convert cholesterol to cholesteryl 6′- O -acyl-α-D-glucopyranoside (CAG) to promote lipid raft clu...
Gespeichert in:
Veröffentlicht in: | Communications biology 2020-03, Vol.3 (1), p.120-120, Article 120 |
---|---|
Hauptverfasser: | , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 120 |
---|---|
container_issue | 1 |
container_start_page | 120 |
container_title | Communications biology |
container_volume | 3 |
creator | Jan, Hau-Ming Chen, Yi-Chi Yang, Tsai-Chen Ong, Lih-Lih Chang, Chia-Chen Muthusamy, Sasikala Abera, Andualem Bahiru Wu, Ming-Shiang Gervay-Hague, Jacquelyn Mong, Kwok-Kong Tony Lin, Chun-Hung |
description | Helicobacter pylori
, the most common etiologic agent of gastric diseases including gastric cancer, is auxotrophic for cholesterol and has to hijack it from gastric epithelia. Upon uptake, the bacteria convert cholesterol to cholesteryl 6′-
O
-acyl-α-D-glucopyranoside (CAG) to promote lipid raft clustering in the host cell membranes. However, how CAG appears in the host to exert the pathogenesis still remains ambiguous. Herein we identified
hp0499
to be the gene of cholesteryl α-D-glucopyranoside acyltransferase (CGAT). Together with cholesteryl glucosyltransferase (catalyzing the prior step), CGAT is secreted via outer membrane vesicles to the host cells for direct synthesis of CAG. This significantly enhances lipid rafts clustering, gathers adhesion molecules (including Lewis antigens and integrins α5, β1), and promotes more bacterial adhesion. Furthermore, the clinically used drug amiodarone was shown as a potent inhibitor of CGAT to effectively reduce the bacterial adhesion, indicating that CGAT is a potential target of therapeutic intervention.
Jan et al. identify cholesteryl α-D- glucopyranoside acyltransferase as a key enzyme in
Helicobacter pylori
’s synthesis of cholesteryl 6’-O-acyl-α-D-glucopyranoside, which promotes bacterial adhesion. This study provides insights into the
H. pylori
-induced pathogenesis and therapeutic strategies against it. |
doi_str_mv | 10.1038/s42003-020-0855-y |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7069968</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2376945618</sourcerecordid><originalsourceid>FETCH-LOGICAL-c470t-57b65dd59ededc061d3b398ba142fc58e4b500a6789a4eb8b26b14dd445518a33</originalsourceid><addsrcrecordid>eNp1kc2KFDEUhYMoztDOA7iRgBs30fxXaiNI68wIA250HVKpW10Z0pU2qRLqseZFfCbT9DiOgqsE7jlfcu5B6CWjbxkV5l2RnFJBKKeEGqXI-gSdc9G2RGjJnz66n6GLUm4ppaxtWy3kc3QmOGuq0ZyjtB1ThDJDXiP-eUc-kl1cfCqhB6yJ82ucs5vKANkVwDCNbvJQ8DwCdv0IJaQJpwFfQww-dc5XED6sMeWA54R3rsw5eAyHUB0xLPsX6NngYoGL-3ODvl1--rq9Jjdfrj5vP9wQLxs6E9V0WvW9aqGH3lPNetGJ1nSOST54ZUB2ilKnG9M6CZ3puO6Y7HsplWLGCbFB70_cw9LtKwKmmiPaQw57l1ebXLB_T6Yw2l36YRuq65ZMBby5B-T0fakbsvtQPMToJkhLsVw0jVBc141u0Ot_pLdpyVONd1TpVirNjkB2UvmcSskwPHyGUXts1J4atbUYe2zUrtXz6nGKB8fv_qqAnwSljqYd5D9P_5_6C5sArzI</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2376945618</pqid></control><display><type>article</type><title>Cholesteryl α-D-glucoside 6-acyltransferase enhances the adhesion of Helicobacter pylori to gastric epithelium</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central Open Access</source><source>Springer Nature OA Free Journals</source><source>Nature Free</source><source>PubMed Central</source><creator>Jan, Hau-Ming ; Chen, Yi-Chi ; Yang, Tsai-Chen ; Ong, Lih-Lih ; Chang, Chia-Chen ; Muthusamy, Sasikala ; Abera, Andualem Bahiru ; Wu, Ming-Shiang ; Gervay-Hague, Jacquelyn ; Mong, Kwok-Kong Tony ; Lin, Chun-Hung</creator><creatorcontrib>Jan, Hau-Ming ; Chen, Yi-Chi ; Yang, Tsai-Chen ; Ong, Lih-Lih ; Chang, Chia-Chen ; Muthusamy, Sasikala ; Abera, Andualem Bahiru ; Wu, Ming-Shiang ; Gervay-Hague, Jacquelyn ; Mong, Kwok-Kong Tony ; Lin, Chun-Hung</creatorcontrib><description>Helicobacter pylori
, the most common etiologic agent of gastric diseases including gastric cancer, is auxotrophic for cholesterol and has to hijack it from gastric epithelia. Upon uptake, the bacteria convert cholesterol to cholesteryl 6′-
O
-acyl-α-D-glucopyranoside (CAG) to promote lipid raft clustering in the host cell membranes. However, how CAG appears in the host to exert the pathogenesis still remains ambiguous. Herein we identified
hp0499
to be the gene of cholesteryl α-D-glucopyranoside acyltransferase (CGAT). Together with cholesteryl glucosyltransferase (catalyzing the prior step), CGAT is secreted via outer membrane vesicles to the host cells for direct synthesis of CAG. This significantly enhances lipid rafts clustering, gathers adhesion molecules (including Lewis antigens and integrins α5, β1), and promotes more bacterial adhesion. Furthermore, the clinically used drug amiodarone was shown as a potent inhibitor of CGAT to effectively reduce the bacterial adhesion, indicating that CGAT is a potential target of therapeutic intervention.
Jan et al. identify cholesteryl α-D- glucopyranoside acyltransferase as a key enzyme in
Helicobacter pylori
’s synthesis of cholesteryl 6’-O-acyl-α-D-glucopyranoside, which promotes bacterial adhesion. This study provides insights into the
H. pylori
-induced pathogenesis and therapeutic strategies against it.</description><identifier>ISSN: 2399-3642</identifier><identifier>EISSN: 2399-3642</identifier><identifier>DOI: 10.1038/s42003-020-0855-y</identifier><identifier>PMID: 32170208</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>13/31 ; 13/51 ; 14/1 ; 14/19 ; 14/28 ; 14/34 ; 14/63 ; 631/326/421 ; 631/326/88 ; 631/80/79/1236 ; 82/80 ; 82/83 ; Acyltransferase ; Acyltransferases - antagonists & inhibitors ; Acyltransferases - genetics ; Acyltransferases - metabolism ; Amiodarone ; Amiodarone - pharmacology ; Antigens ; Bacteria ; Bacterial Adhesion - drug effects ; Bacterial Adhesion - genetics ; Bacterial Proteins - antagonists & inhibitors ; Bacterial Proteins - genetics ; Bacterial Proteins - metabolism ; Biology ; Biomedical and Life Sciences ; Cell Line, Tumor ; Cell membranes ; Cholesterol ; Cholesterol - analogs & derivatives ; Cholesterol - metabolism ; Epithelium ; Epithelium - microbiology ; Gastric cancer ; Gastric Mucosa - microbiology ; Gene Knockout Techniques ; Genes, Bacterial ; Glucosyltransferase ; Glucosyltransferases - metabolism ; Helicobacter pylori ; Helicobacter pylori - enzymology ; Humans ; Integrin alpha5 - metabolism ; Integrin beta1 - metabolism ; Integrins ; Lewis antigens ; Lewis Blood Group Antigens - metabolism ; Life Sciences ; Lipid rafts ; Membrane Microdomains - metabolism ; Membrane vesicles ; Pathogenesis ; Trinucleotide repeats</subject><ispartof>Communications biology, 2020-03, Vol.3 (1), p.120-120, Article 120</ispartof><rights>The Author(s) 2020</rights><rights>This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c470t-57b65dd59ededc061d3b398ba142fc58e4b500a6789a4eb8b26b14dd445518a33</citedby><cites>FETCH-LOGICAL-c470t-57b65dd59ededc061d3b398ba142fc58e4b500a6789a4eb8b26b14dd445518a33</cites><orcidid>0000-0002-0418-085X ; 0000-0002-6795-8825 ; 0000-0003-3819-4085</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7069968/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7069968/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,725,778,782,862,883,27907,27908,41103,42172,51559,53774,53776</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32170208$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Jan, Hau-Ming</creatorcontrib><creatorcontrib>Chen, Yi-Chi</creatorcontrib><creatorcontrib>Yang, Tsai-Chen</creatorcontrib><creatorcontrib>Ong, Lih-Lih</creatorcontrib><creatorcontrib>Chang, Chia-Chen</creatorcontrib><creatorcontrib>Muthusamy, Sasikala</creatorcontrib><creatorcontrib>Abera, Andualem Bahiru</creatorcontrib><creatorcontrib>Wu, Ming-Shiang</creatorcontrib><creatorcontrib>Gervay-Hague, Jacquelyn</creatorcontrib><creatorcontrib>Mong, Kwok-Kong Tony</creatorcontrib><creatorcontrib>Lin, Chun-Hung</creatorcontrib><title>Cholesteryl α-D-glucoside 6-acyltransferase enhances the adhesion of Helicobacter pylori to gastric epithelium</title><title>Communications biology</title><addtitle>Commun Biol</addtitle><addtitle>Commun Biol</addtitle><description>Helicobacter pylori
, the most common etiologic agent of gastric diseases including gastric cancer, is auxotrophic for cholesterol and has to hijack it from gastric epithelia. Upon uptake, the bacteria convert cholesterol to cholesteryl 6′-
O
-acyl-α-D-glucopyranoside (CAG) to promote lipid raft clustering in the host cell membranes. However, how CAG appears in the host to exert the pathogenesis still remains ambiguous. Herein we identified
hp0499
to be the gene of cholesteryl α-D-glucopyranoside acyltransferase (CGAT). Together with cholesteryl glucosyltransferase (catalyzing the prior step), CGAT is secreted via outer membrane vesicles to the host cells for direct synthesis of CAG. This significantly enhances lipid rafts clustering, gathers adhesion molecules (including Lewis antigens and integrins α5, β1), and promotes more bacterial adhesion. Furthermore, the clinically used drug amiodarone was shown as a potent inhibitor of CGAT to effectively reduce the bacterial adhesion, indicating that CGAT is a potential target of therapeutic intervention.
Jan et al. identify cholesteryl α-D- glucopyranoside acyltransferase as a key enzyme in
Helicobacter pylori
’s synthesis of cholesteryl 6’-O-acyl-α-D-glucopyranoside, which promotes bacterial adhesion. This study provides insights into the
H. pylori
-induced pathogenesis and therapeutic strategies against it.</description><subject>13/31</subject><subject>13/51</subject><subject>14/1</subject><subject>14/19</subject><subject>14/28</subject><subject>14/34</subject><subject>14/63</subject><subject>631/326/421</subject><subject>631/326/88</subject><subject>631/80/79/1236</subject><subject>82/80</subject><subject>82/83</subject><subject>Acyltransferase</subject><subject>Acyltransferases - antagonists & inhibitors</subject><subject>Acyltransferases - genetics</subject><subject>Acyltransferases - metabolism</subject><subject>Amiodarone</subject><subject>Amiodarone - pharmacology</subject><subject>Antigens</subject><subject>Bacteria</subject><subject>Bacterial Adhesion - drug effects</subject><subject>Bacterial Adhesion - genetics</subject><subject>Bacterial Proteins - antagonists & inhibitors</subject><subject>Bacterial Proteins - genetics</subject><subject>Bacterial Proteins - metabolism</subject><subject>Biology</subject><subject>Biomedical and Life Sciences</subject><subject>Cell Line, Tumor</subject><subject>Cell membranes</subject><subject>Cholesterol</subject><subject>Cholesterol - analogs & derivatives</subject><subject>Cholesterol - metabolism</subject><subject>Epithelium</subject><subject>Epithelium - microbiology</subject><subject>Gastric cancer</subject><subject>Gastric Mucosa - microbiology</subject><subject>Gene Knockout Techniques</subject><subject>Genes, Bacterial</subject><subject>Glucosyltransferase</subject><subject>Glucosyltransferases - metabolism</subject><subject>Helicobacter pylori</subject><subject>Helicobacter pylori - enzymology</subject><subject>Humans</subject><subject>Integrin alpha5 - metabolism</subject><subject>Integrin beta1 - metabolism</subject><subject>Integrins</subject><subject>Lewis antigens</subject><subject>Lewis Blood Group Antigens - metabolism</subject><subject>Life Sciences</subject><subject>Lipid rafts</subject><subject>Membrane Microdomains - metabolism</subject><subject>Membrane vesicles</subject><subject>Pathogenesis</subject><subject>Trinucleotide repeats</subject><issn>2399-3642</issn><issn>2399-3642</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1kc2KFDEUhYMoztDOA7iRgBs30fxXaiNI68wIA250HVKpW10Z0pU2qRLqseZFfCbT9DiOgqsE7jlfcu5B6CWjbxkV5l2RnFJBKKeEGqXI-gSdc9G2RGjJnz66n6GLUm4ppaxtWy3kc3QmOGuq0ZyjtB1ThDJDXiP-eUc-kl1cfCqhB6yJ82ucs5vKANkVwDCNbvJQ8DwCdv0IJaQJpwFfQww-dc5XED6sMeWA54R3rsw5eAyHUB0xLPsX6NngYoGL-3ODvl1--rq9Jjdfrj5vP9wQLxs6E9V0WvW9aqGH3lPNetGJ1nSOST54ZUB2ilKnG9M6CZ3puO6Y7HsplWLGCbFB70_cw9LtKwKmmiPaQw57l1ebXLB_T6Yw2l36YRuq65ZMBby5B-T0fakbsvtQPMToJkhLsVw0jVBc141u0Ot_pLdpyVONd1TpVirNjkB2UvmcSskwPHyGUXts1J4atbUYe2zUrtXz6nGKB8fv_qqAnwSljqYd5D9P_5_6C5sArzI</recordid><startdate>20200313</startdate><enddate>20200313</enddate><creator>Jan, Hau-Ming</creator><creator>Chen, Yi-Chi</creator><creator>Yang, Tsai-Chen</creator><creator>Ong, Lih-Lih</creator><creator>Chang, Chia-Chen</creator><creator>Muthusamy, Sasikala</creator><creator>Abera, Andualem Bahiru</creator><creator>Wu, Ming-Shiang</creator><creator>Gervay-Hague, Jacquelyn</creator><creator>Mong, Kwok-Kong Tony</creator><creator>Lin, Chun-Hung</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7XB</scope><scope>88I</scope><scope>8FE</scope><scope>8FH</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>LK8</scope><scope>M2P</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-0418-085X</orcidid><orcidid>https://orcid.org/0000-0002-6795-8825</orcidid><orcidid>https://orcid.org/0000-0003-3819-4085</orcidid></search><sort><creationdate>20200313</creationdate><title>Cholesteryl α-D-glucoside 6-acyltransferase enhances the adhesion of Helicobacter pylori to gastric epithelium</title><author>Jan, Hau-Ming ; Chen, Yi-Chi ; Yang, Tsai-Chen ; Ong, Lih-Lih ; Chang, Chia-Chen ; Muthusamy, Sasikala ; Abera, Andualem Bahiru ; Wu, Ming-Shiang ; Gervay-Hague, Jacquelyn ; Mong, Kwok-Kong Tony ; Lin, Chun-Hung</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c470t-57b65dd59ededc061d3b398ba142fc58e4b500a6789a4eb8b26b14dd445518a33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>13/31</topic><topic>13/51</topic><topic>14/1</topic><topic>14/19</topic><topic>14/28</topic><topic>14/34</topic><topic>14/63</topic><topic>631/326/421</topic><topic>631/326/88</topic><topic>631/80/79/1236</topic><topic>82/80</topic><topic>82/83</topic><topic>Acyltransferase</topic><topic>Acyltransferases - antagonists & inhibitors</topic><topic>Acyltransferases - genetics</topic><topic>Acyltransferases - metabolism</topic><topic>Amiodarone</topic><topic>Amiodarone - pharmacology</topic><topic>Antigens</topic><topic>Bacteria</topic><topic>Bacterial Adhesion - drug effects</topic><topic>Bacterial Adhesion - genetics</topic><topic>Bacterial Proteins - antagonists & inhibitors</topic><topic>Bacterial Proteins - genetics</topic><topic>Bacterial Proteins - metabolism</topic><topic>Biology</topic><topic>Biomedical and Life Sciences</topic><topic>Cell Line, Tumor</topic><topic>Cell membranes</topic><topic>Cholesterol</topic><topic>Cholesterol - analogs & derivatives</topic><topic>Cholesterol - metabolism</topic><topic>Epithelium</topic><topic>Epithelium - microbiology</topic><topic>Gastric cancer</topic><topic>Gastric Mucosa - microbiology</topic><topic>Gene Knockout Techniques</topic><topic>Genes, Bacterial</topic><topic>Glucosyltransferase</topic><topic>Glucosyltransferases - metabolism</topic><topic>Helicobacter pylori</topic><topic>Helicobacter pylori - enzymology</topic><topic>Humans</topic><topic>Integrin alpha5 - metabolism</topic><topic>Integrin beta1 - metabolism</topic><topic>Integrins</topic><topic>Lewis antigens</topic><topic>Lewis Blood Group Antigens - metabolism</topic><topic>Life Sciences</topic><topic>Lipid rafts</topic><topic>Membrane Microdomains - metabolism</topic><topic>Membrane vesicles</topic><topic>Pathogenesis</topic><topic>Trinucleotide repeats</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jan, Hau-Ming</creatorcontrib><creatorcontrib>Chen, Yi-Chi</creatorcontrib><creatorcontrib>Yang, Tsai-Chen</creatorcontrib><creatorcontrib>Ong, Lih-Lih</creatorcontrib><creatorcontrib>Chang, Chia-Chen</creatorcontrib><creatorcontrib>Muthusamy, Sasikala</creatorcontrib><creatorcontrib>Abera, Andualem Bahiru</creatorcontrib><creatorcontrib>Wu, Ming-Shiang</creatorcontrib><creatorcontrib>Gervay-Hague, Jacquelyn</creatorcontrib><creatorcontrib>Mong, Kwok-Kong Tony</creatorcontrib><creatorcontrib>Lin, Chun-Hung</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection (ProQuest)</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Science Database (ProQuest)</collection><collection>Biological Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Communications biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jan, Hau-Ming</au><au>Chen, Yi-Chi</au><au>Yang, Tsai-Chen</au><au>Ong, Lih-Lih</au><au>Chang, Chia-Chen</au><au>Muthusamy, Sasikala</au><au>Abera, Andualem Bahiru</au><au>Wu, Ming-Shiang</au><au>Gervay-Hague, Jacquelyn</au><au>Mong, Kwok-Kong Tony</au><au>Lin, Chun-Hung</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Cholesteryl α-D-glucoside 6-acyltransferase enhances the adhesion of Helicobacter pylori to gastric epithelium</atitle><jtitle>Communications biology</jtitle><stitle>Commun Biol</stitle><addtitle>Commun Biol</addtitle><date>2020-03-13</date><risdate>2020</risdate><volume>3</volume><issue>1</issue><spage>120</spage><epage>120</epage><pages>120-120</pages><artnum>120</artnum><issn>2399-3642</issn><eissn>2399-3642</eissn><abstract>Helicobacter pylori
, the most common etiologic agent of gastric diseases including gastric cancer, is auxotrophic for cholesterol and has to hijack it from gastric epithelia. Upon uptake, the bacteria convert cholesterol to cholesteryl 6′-
O
-acyl-α-D-glucopyranoside (CAG) to promote lipid raft clustering in the host cell membranes. However, how CAG appears in the host to exert the pathogenesis still remains ambiguous. Herein we identified
hp0499
to be the gene of cholesteryl α-D-glucopyranoside acyltransferase (CGAT). Together with cholesteryl glucosyltransferase (catalyzing the prior step), CGAT is secreted via outer membrane vesicles to the host cells for direct synthesis of CAG. This significantly enhances lipid rafts clustering, gathers adhesion molecules (including Lewis antigens and integrins α5, β1), and promotes more bacterial adhesion. Furthermore, the clinically used drug amiodarone was shown as a potent inhibitor of CGAT to effectively reduce the bacterial adhesion, indicating that CGAT is a potential target of therapeutic intervention.
Jan et al. identify cholesteryl α-D- glucopyranoside acyltransferase as a key enzyme in
Helicobacter pylori
’s synthesis of cholesteryl 6’-O-acyl-α-D-glucopyranoside, which promotes bacterial adhesion. This study provides insights into the
H. pylori
-induced pathogenesis and therapeutic strategies against it.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>32170208</pmid><doi>10.1038/s42003-020-0855-y</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0002-0418-085X</orcidid><orcidid>https://orcid.org/0000-0002-6795-8825</orcidid><orcidid>https://orcid.org/0000-0003-3819-4085</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2399-3642 |
ispartof | Communications biology, 2020-03, Vol.3 (1), p.120-120, Article 120 |
issn | 2399-3642 2399-3642 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7069968 |
source | MEDLINE; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central Open Access; Springer Nature OA Free Journals; Nature Free; PubMed Central |
subjects | 13/31 13/51 14/1 14/19 14/28 14/34 14/63 631/326/421 631/326/88 631/80/79/1236 82/80 82/83 Acyltransferase Acyltransferases - antagonists & inhibitors Acyltransferases - genetics Acyltransferases - metabolism Amiodarone Amiodarone - pharmacology Antigens Bacteria Bacterial Adhesion - drug effects Bacterial Adhesion - genetics Bacterial Proteins - antagonists & inhibitors Bacterial Proteins - genetics Bacterial Proteins - metabolism Biology Biomedical and Life Sciences Cell Line, Tumor Cell membranes Cholesterol Cholesterol - analogs & derivatives Cholesterol - metabolism Epithelium Epithelium - microbiology Gastric cancer Gastric Mucosa - microbiology Gene Knockout Techniques Genes, Bacterial Glucosyltransferase Glucosyltransferases - metabolism Helicobacter pylori Helicobacter pylori - enzymology Humans Integrin alpha5 - metabolism Integrin beta1 - metabolism Integrins Lewis antigens Lewis Blood Group Antigens - metabolism Life Sciences Lipid rafts Membrane Microdomains - metabolism Membrane vesicles Pathogenesis Trinucleotide repeats |
title | Cholesteryl α-D-glucoside 6-acyltransferase enhances the adhesion of Helicobacter pylori to gastric epithelium |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T06%3A23%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Cholesteryl%20%CE%B1-D-glucoside%206-acyltransferase%20enhances%20the%20adhesion%20of%20Helicobacter%20pylori%20to%20gastric%20epithelium&rft.jtitle=Communications%20biology&rft.au=Jan,%20Hau-Ming&rft.date=2020-03-13&rft.volume=3&rft.issue=1&rft.spage=120&rft.epage=120&rft.pages=120-120&rft.artnum=120&rft.issn=2399-3642&rft.eissn=2399-3642&rft_id=info:doi/10.1038/s42003-020-0855-y&rft_dat=%3Cproquest_pubme%3E2376945618%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2376945618&rft_id=info:pmid/32170208&rfr_iscdi=true |