Exogenous GDF11, but not GDF8, reduces body weight and improves glucose homeostasis in mice
Insulin resistance is associated with aging in mice and humans. We have previously shown that administration of recombinant GDF11 (rGDF11) to aged mice alters aging phenotypes in the brain, skeletal muscle, and heart. While the closely related protein GDF8 has a role in metabolism, limited data are...
Gespeichert in:
Veröffentlicht in: | Scientific reports 2020-03, Vol.10 (1), p.4561-4561, Article 4561 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 4561 |
---|---|
container_issue | 1 |
container_start_page | 4561 |
container_title | Scientific reports |
container_volume | 10 |
creator | Walker, Ryan G. Barrandon, Ornella Poggioli, Tommaso Dagdeviren, Sezin Carroll, Shannon H. Mills, Melanie J. Mendello, Kourtney R. Gomez, Yanet Loffredo, Francesco S. Pancoast, James R. Macias-Trevino, Claudio Marts, Colin LeClair, Katherine B. Noh, Hye-Lim Kim, Taekyoon Banks, Alexander S. Kim, Jason K. Cohen, David E. Wagers, Amy J. Melton, Douglas A. Lee, Richard T. |
description | Insulin resistance is associated with aging in mice and humans. We have previously shown that administration of recombinant GDF11 (rGDF11) to aged mice alters aging phenotypes in the brain, skeletal muscle, and heart. While the closely related protein GDF8 has a role in metabolism, limited data are available on the potential metabolic effects of GDF11 or GDF8 in aging. To determine the metabolic effects of these two ligands, we administered rGDF11 or rGDF8 protein to young or aged mice fed a standard chow diet, short-term high-fat diet (HFD), or long-term HFD. Under nearly all of these diet conditions, administration of exogenous rGDF11 reduced body weight by 3–17% and significantly improved glucose tolerance in aged mice fed a chow (~30% vs. saline) or HF (~50% vs. saline) diet and young mice fed a HFD (~30%). On the other hand, exogenous rGDF8 showed signifcantly lesser effect or no effect at all on glucose tolerance compared to rGDF11, consistent with data demonstrating that GFD11 is a more potent signaling ligand than GDF8. Collectively, our results show that administration of exogenous rGDF11, but not rGDF8, can reduce diet-induced weight gain and improve metabolic homeostasis. |
doi_str_mv | 10.1038/s41598-020-61443-y |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7067781</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2376708170</sourcerecordid><originalsourceid>FETCH-LOGICAL-c474t-61efe7357c11cb93e6095df20cc59bba504a3553a56ad92aacc62f56a61f3ce33</originalsourceid><addsrcrecordid>eNp9kU1P3DAQhi1EBYjyBzhUlrj0QFp_xHZyqVQtH62E1Es5cbAcZ5I1SuzFToD993i7QGkP-GKP5pl3ZvwidEzJF0p49TWVVNRVQRgpJC1LXqx30AEjpSgYZ2z3zXsfHaV0S_IRrC5pvYf2OaNSKEoO0M35Y-jBhznhy7MLSk9xM0_Yh2kTVqc4QjtbSLgJ7Ro_gOuXEza-xW5cxXCfE_0w25AAL8MIIU0muYSdx6Oz8BF96MyQ4Oj5PkTXF-e_Fz-Kq1-XPxffrwpbqnLK40MHigtlKbVNzUGSWrQdI9aKummMIKXhQnAjpGlrZoy1knU5kLTjFjg_RN-2uqu5GaG14KdoBr2KbjRxrYNx-t-Md0vdh3utiFSqolng87NADHczpEmPLlkYBuMh_4xmXCnOa85kRk_-Q2_DHH1eb0NJRSqqSKbYlrIxpBShex2GEr2xT2_t09k-_cc-vc5Fn96u8VryYlYG-BZIOeV7iH97vyP7BA-apeE</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2376708170</pqid></control><display><type>article</type><title>Exogenous GDF11, but not GDF8, reduces body weight and improves glucose homeostasis in mice</title><source>MEDLINE</source><source>Nature Free</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><source>Springer Nature OA Free Journals</source><creator>Walker, Ryan G. ; Barrandon, Ornella ; Poggioli, Tommaso ; Dagdeviren, Sezin ; Carroll, Shannon H. ; Mills, Melanie J. ; Mendello, Kourtney R. ; Gomez, Yanet ; Loffredo, Francesco S. ; Pancoast, James R. ; Macias-Trevino, Claudio ; Marts, Colin ; LeClair, Katherine B. ; Noh, Hye-Lim ; Kim, Taekyoon ; Banks, Alexander S. ; Kim, Jason K. ; Cohen, David E. ; Wagers, Amy J. ; Melton, Douglas A. ; Lee, Richard T.</creator><creatorcontrib>Walker, Ryan G. ; Barrandon, Ornella ; Poggioli, Tommaso ; Dagdeviren, Sezin ; Carroll, Shannon H. ; Mills, Melanie J. ; Mendello, Kourtney R. ; Gomez, Yanet ; Loffredo, Francesco S. ; Pancoast, James R. ; Macias-Trevino, Claudio ; Marts, Colin ; LeClair, Katherine B. ; Noh, Hye-Lim ; Kim, Taekyoon ; Banks, Alexander S. ; Kim, Jason K. ; Cohen, David E. ; Wagers, Amy J. ; Melton, Douglas A. ; Lee, Richard T.</creatorcontrib><description>Insulin resistance is associated with aging in mice and humans. We have previously shown that administration of recombinant GDF11 (rGDF11) to aged mice alters aging phenotypes in the brain, skeletal muscle, and heart. While the closely related protein GDF8 has a role in metabolism, limited data are available on the potential metabolic effects of GDF11 or GDF8 in aging. To determine the metabolic effects of these two ligands, we administered rGDF11 or rGDF8 protein to young or aged mice fed a standard chow diet, short-term high-fat diet (HFD), or long-term HFD. Under nearly all of these diet conditions, administration of exogenous rGDF11 reduced body weight by 3–17% and significantly improved glucose tolerance in aged mice fed a chow (~30% vs. saline) or HF (~50% vs. saline) diet and young mice fed a HFD (~30%). On the other hand, exogenous rGDF8 showed signifcantly lesser effect or no effect at all on glucose tolerance compared to rGDF11, consistent with data demonstrating that GFD11 is a more potent signaling ligand than GDF8. Collectively, our results show that administration of exogenous rGDF11, but not rGDF8, can reduce diet-induced weight gain and improve metabolic homeostasis.</description><identifier>ISSN: 2045-2322</identifier><identifier>EISSN: 2045-2322</identifier><identifier>DOI: 10.1038/s41598-020-61443-y</identifier><identifier>PMID: 32165710</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>631/45/127/1219 ; 692/699/2743/393 ; Aging ; Aging - blood ; Aging - drug effects ; Aging - metabolism ; Animals ; Body weight ; Body Weight - drug effects ; Body weight gain ; Bone Morphogenetic Proteins - administration & dosage ; Bone Morphogenetic Proteins - pharmacology ; Diet ; Diet, High-Fat - adverse effects ; Energy Metabolism - drug effects ; Glucose ; Glucose tolerance ; Growth Differentiation Factors - administration & dosage ; Growth Differentiation Factors - pharmacology ; High fat diet ; Homeostasis ; Humanities and Social Sciences ; Insulin ; Insulin Resistance ; Male ; Metabolism ; Mice ; Mice, Inbred C57BL ; multidisciplinary ; Myostatin - administration & dosage ; Myostatin - pharmacology ; Phenotypes ; Protein turnover ; Recombinant Proteins - administration & dosage ; Recombinant Proteins - pharmacology ; Science ; Science (multidisciplinary) ; Signal Transduction - drug effects ; Skeletal muscle</subject><ispartof>Scientific reports, 2020-03, Vol.10 (1), p.4561-4561, Article 4561</ispartof><rights>The Author(s) 2020</rights><rights>This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c474t-61efe7357c11cb93e6095df20cc59bba504a3553a56ad92aacc62f56a61f3ce33</citedby><cites>FETCH-LOGICAL-c474t-61efe7357c11cb93e6095df20cc59bba504a3553a56ad92aacc62f56a61f3ce33</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7067781/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7067781/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,27901,27902,41096,42165,51551,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32165710$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Walker, Ryan G.</creatorcontrib><creatorcontrib>Barrandon, Ornella</creatorcontrib><creatorcontrib>Poggioli, Tommaso</creatorcontrib><creatorcontrib>Dagdeviren, Sezin</creatorcontrib><creatorcontrib>Carroll, Shannon H.</creatorcontrib><creatorcontrib>Mills, Melanie J.</creatorcontrib><creatorcontrib>Mendello, Kourtney R.</creatorcontrib><creatorcontrib>Gomez, Yanet</creatorcontrib><creatorcontrib>Loffredo, Francesco S.</creatorcontrib><creatorcontrib>Pancoast, James R.</creatorcontrib><creatorcontrib>Macias-Trevino, Claudio</creatorcontrib><creatorcontrib>Marts, Colin</creatorcontrib><creatorcontrib>LeClair, Katherine B.</creatorcontrib><creatorcontrib>Noh, Hye-Lim</creatorcontrib><creatorcontrib>Kim, Taekyoon</creatorcontrib><creatorcontrib>Banks, Alexander S.</creatorcontrib><creatorcontrib>Kim, Jason K.</creatorcontrib><creatorcontrib>Cohen, David E.</creatorcontrib><creatorcontrib>Wagers, Amy J.</creatorcontrib><creatorcontrib>Melton, Douglas A.</creatorcontrib><creatorcontrib>Lee, Richard T.</creatorcontrib><title>Exogenous GDF11, but not GDF8, reduces body weight and improves glucose homeostasis in mice</title><title>Scientific reports</title><addtitle>Sci Rep</addtitle><addtitle>Sci Rep</addtitle><description>Insulin resistance is associated with aging in mice and humans. We have previously shown that administration of recombinant GDF11 (rGDF11) to aged mice alters aging phenotypes in the brain, skeletal muscle, and heart. While the closely related protein GDF8 has a role in metabolism, limited data are available on the potential metabolic effects of GDF11 or GDF8 in aging. To determine the metabolic effects of these two ligands, we administered rGDF11 or rGDF8 protein to young or aged mice fed a standard chow diet, short-term high-fat diet (HFD), or long-term HFD. Under nearly all of these diet conditions, administration of exogenous rGDF11 reduced body weight by 3–17% and significantly improved glucose tolerance in aged mice fed a chow (~30% vs. saline) or HF (~50% vs. saline) diet and young mice fed a HFD (~30%). On the other hand, exogenous rGDF8 showed signifcantly lesser effect or no effect at all on glucose tolerance compared to rGDF11, consistent with data demonstrating that GFD11 is a more potent signaling ligand than GDF8. Collectively, our results show that administration of exogenous rGDF11, but not rGDF8, can reduce diet-induced weight gain and improve metabolic homeostasis.</description><subject>631/45/127/1219</subject><subject>692/699/2743/393</subject><subject>Aging</subject><subject>Aging - blood</subject><subject>Aging - drug effects</subject><subject>Aging - metabolism</subject><subject>Animals</subject><subject>Body weight</subject><subject>Body Weight - drug effects</subject><subject>Body weight gain</subject><subject>Bone Morphogenetic Proteins - administration & dosage</subject><subject>Bone Morphogenetic Proteins - pharmacology</subject><subject>Diet</subject><subject>Diet, High-Fat - adverse effects</subject><subject>Energy Metabolism - drug effects</subject><subject>Glucose</subject><subject>Glucose tolerance</subject><subject>Growth Differentiation Factors - administration & dosage</subject><subject>Growth Differentiation Factors - pharmacology</subject><subject>High fat diet</subject><subject>Homeostasis</subject><subject>Humanities and Social Sciences</subject><subject>Insulin</subject><subject>Insulin Resistance</subject><subject>Male</subject><subject>Metabolism</subject><subject>Mice</subject><subject>Mice, Inbred C57BL</subject><subject>multidisciplinary</subject><subject>Myostatin - administration & dosage</subject><subject>Myostatin - pharmacology</subject><subject>Phenotypes</subject><subject>Protein turnover</subject><subject>Recombinant Proteins - administration & dosage</subject><subject>Recombinant Proteins - pharmacology</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>Signal Transduction - drug effects</subject><subject>Skeletal muscle</subject><issn>2045-2322</issn><issn>2045-2322</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><recordid>eNp9kU1P3DAQhi1EBYjyBzhUlrj0QFp_xHZyqVQtH62E1Es5cbAcZ5I1SuzFToD993i7QGkP-GKP5pl3ZvwidEzJF0p49TWVVNRVQRgpJC1LXqx30AEjpSgYZ2z3zXsfHaV0S_IRrC5pvYf2OaNSKEoO0M35Y-jBhznhy7MLSk9xM0_Yh2kTVqc4QjtbSLgJ7Ro_gOuXEza-xW5cxXCfE_0w25AAL8MIIU0muYSdx6Oz8BF96MyQ4Oj5PkTXF-e_Fz-Kq1-XPxffrwpbqnLK40MHigtlKbVNzUGSWrQdI9aKummMIKXhQnAjpGlrZoy1knU5kLTjFjg_RN-2uqu5GaG14KdoBr2KbjRxrYNx-t-Md0vdh3utiFSqolng87NADHczpEmPLlkYBuMh_4xmXCnOa85kRk_-Q2_DHH1eb0NJRSqqSKbYlrIxpBShex2GEr2xT2_t09k-_cc-vc5Fn96u8VryYlYG-BZIOeV7iH97vyP7BA-apeE</recordid><startdate>20200312</startdate><enddate>20200312</enddate><creator>Walker, Ryan G.</creator><creator>Barrandon, Ornella</creator><creator>Poggioli, Tommaso</creator><creator>Dagdeviren, Sezin</creator><creator>Carroll, Shannon H.</creator><creator>Mills, Melanie J.</creator><creator>Mendello, Kourtney R.</creator><creator>Gomez, Yanet</creator><creator>Loffredo, Francesco S.</creator><creator>Pancoast, James R.</creator><creator>Macias-Trevino, Claudio</creator><creator>Marts, Colin</creator><creator>LeClair, Katherine B.</creator><creator>Noh, Hye-Lim</creator><creator>Kim, Taekyoon</creator><creator>Banks, Alexander S.</creator><creator>Kim, Jason K.</creator><creator>Cohen, David E.</creator><creator>Wagers, Amy J.</creator><creator>Melton, Douglas A.</creator><creator>Lee, Richard T.</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20200312</creationdate><title>Exogenous GDF11, but not GDF8, reduces body weight and improves glucose homeostasis in mice</title><author>Walker, Ryan G. ; Barrandon, Ornella ; Poggioli, Tommaso ; Dagdeviren, Sezin ; Carroll, Shannon H. ; Mills, Melanie J. ; Mendello, Kourtney R. ; Gomez, Yanet ; Loffredo, Francesco S. ; Pancoast, James R. ; Macias-Trevino, Claudio ; Marts, Colin ; LeClair, Katherine B. ; Noh, Hye-Lim ; Kim, Taekyoon ; Banks, Alexander S. ; Kim, Jason K. ; Cohen, David E. ; Wagers, Amy J. ; Melton, Douglas A. ; Lee, Richard T.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c474t-61efe7357c11cb93e6095df20cc59bba504a3553a56ad92aacc62f56a61f3ce33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>631/45/127/1219</topic><topic>692/699/2743/393</topic><topic>Aging</topic><topic>Aging - blood</topic><topic>Aging - drug effects</topic><topic>Aging - metabolism</topic><topic>Animals</topic><topic>Body weight</topic><topic>Body Weight - drug effects</topic><topic>Body weight gain</topic><topic>Bone Morphogenetic Proteins - administration & dosage</topic><topic>Bone Morphogenetic Proteins - pharmacology</topic><topic>Diet</topic><topic>Diet, High-Fat - adverse effects</topic><topic>Energy Metabolism - drug effects</topic><topic>Glucose</topic><topic>Glucose tolerance</topic><topic>Growth Differentiation Factors - administration & dosage</topic><topic>Growth Differentiation Factors - pharmacology</topic><topic>High fat diet</topic><topic>Homeostasis</topic><topic>Humanities and Social Sciences</topic><topic>Insulin</topic><topic>Insulin Resistance</topic><topic>Male</topic><topic>Metabolism</topic><topic>Mice</topic><topic>Mice, Inbred C57BL</topic><topic>multidisciplinary</topic><topic>Myostatin - administration & dosage</topic><topic>Myostatin - pharmacology</topic><topic>Phenotypes</topic><topic>Protein turnover</topic><topic>Recombinant Proteins - administration & dosage</topic><topic>Recombinant Proteins - pharmacology</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>Signal Transduction - drug effects</topic><topic>Skeletal muscle</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Walker, Ryan G.</creatorcontrib><creatorcontrib>Barrandon, Ornella</creatorcontrib><creatorcontrib>Poggioli, Tommaso</creatorcontrib><creatorcontrib>Dagdeviren, Sezin</creatorcontrib><creatorcontrib>Carroll, Shannon H.</creatorcontrib><creatorcontrib>Mills, Melanie J.</creatorcontrib><creatorcontrib>Mendello, Kourtney R.</creatorcontrib><creatorcontrib>Gomez, Yanet</creatorcontrib><creatorcontrib>Loffredo, Francesco S.</creatorcontrib><creatorcontrib>Pancoast, James R.</creatorcontrib><creatorcontrib>Macias-Trevino, Claudio</creatorcontrib><creatorcontrib>Marts, Colin</creatorcontrib><creatorcontrib>LeClair, Katherine B.</creatorcontrib><creatorcontrib>Noh, Hye-Lim</creatorcontrib><creatorcontrib>Kim, Taekyoon</creatorcontrib><creatorcontrib>Banks, Alexander S.</creatorcontrib><creatorcontrib>Kim, Jason K.</creatorcontrib><creatorcontrib>Cohen, David E.</creatorcontrib><creatorcontrib>Wagers, Amy J.</creatorcontrib><creatorcontrib>Melton, Douglas A.</creatorcontrib><creatorcontrib>Lee, Richard T.</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Scientific reports</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Walker, Ryan G.</au><au>Barrandon, Ornella</au><au>Poggioli, Tommaso</au><au>Dagdeviren, Sezin</au><au>Carroll, Shannon H.</au><au>Mills, Melanie J.</au><au>Mendello, Kourtney R.</au><au>Gomez, Yanet</au><au>Loffredo, Francesco S.</au><au>Pancoast, James R.</au><au>Macias-Trevino, Claudio</au><au>Marts, Colin</au><au>LeClair, Katherine B.</au><au>Noh, Hye-Lim</au><au>Kim, Taekyoon</au><au>Banks, Alexander S.</au><au>Kim, Jason K.</au><au>Cohen, David E.</au><au>Wagers, Amy J.</au><au>Melton, Douglas A.</au><au>Lee, Richard T.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Exogenous GDF11, but not GDF8, reduces body weight and improves glucose homeostasis in mice</atitle><jtitle>Scientific reports</jtitle><stitle>Sci Rep</stitle><addtitle>Sci Rep</addtitle><date>2020-03-12</date><risdate>2020</risdate><volume>10</volume><issue>1</issue><spage>4561</spage><epage>4561</epage><pages>4561-4561</pages><artnum>4561</artnum><issn>2045-2322</issn><eissn>2045-2322</eissn><abstract>Insulin resistance is associated with aging in mice and humans. We have previously shown that administration of recombinant GDF11 (rGDF11) to aged mice alters aging phenotypes in the brain, skeletal muscle, and heart. While the closely related protein GDF8 has a role in metabolism, limited data are available on the potential metabolic effects of GDF11 or GDF8 in aging. To determine the metabolic effects of these two ligands, we administered rGDF11 or rGDF8 protein to young or aged mice fed a standard chow diet, short-term high-fat diet (HFD), or long-term HFD. Under nearly all of these diet conditions, administration of exogenous rGDF11 reduced body weight by 3–17% and significantly improved glucose tolerance in aged mice fed a chow (~30% vs. saline) or HF (~50% vs. saline) diet and young mice fed a HFD (~30%). On the other hand, exogenous rGDF8 showed signifcantly lesser effect or no effect at all on glucose tolerance compared to rGDF11, consistent with data demonstrating that GFD11 is a more potent signaling ligand than GDF8. Collectively, our results show that administration of exogenous rGDF11, but not rGDF8, can reduce diet-induced weight gain and improve metabolic homeostasis.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>32165710</pmid><doi>10.1038/s41598-020-61443-y</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2045-2322 |
ispartof | Scientific reports, 2020-03, Vol.10 (1), p.4561-4561, Article 4561 |
issn | 2045-2322 2045-2322 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7067781 |
source | MEDLINE; Nature Free; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry; Springer Nature OA Free Journals |
subjects | 631/45/127/1219 692/699/2743/393 Aging Aging - blood Aging - drug effects Aging - metabolism Animals Body weight Body Weight - drug effects Body weight gain Bone Morphogenetic Proteins - administration & dosage Bone Morphogenetic Proteins - pharmacology Diet Diet, High-Fat - adverse effects Energy Metabolism - drug effects Glucose Glucose tolerance Growth Differentiation Factors - administration & dosage Growth Differentiation Factors - pharmacology High fat diet Homeostasis Humanities and Social Sciences Insulin Insulin Resistance Male Metabolism Mice Mice, Inbred C57BL multidisciplinary Myostatin - administration & dosage Myostatin - pharmacology Phenotypes Protein turnover Recombinant Proteins - administration & dosage Recombinant Proteins - pharmacology Science Science (multidisciplinary) Signal Transduction - drug effects Skeletal muscle |
title | Exogenous GDF11, but not GDF8, reduces body weight and improves glucose homeostasis in mice |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-11T00%3A40%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Exogenous%20GDF11,%20but%20not%20GDF8,%20reduces%20body%20weight%20and%20improves%20glucose%20homeostasis%20in%20mice&rft.jtitle=Scientific%20reports&rft.au=Walker,%20Ryan%20G.&rft.date=2020-03-12&rft.volume=10&rft.issue=1&rft.spage=4561&rft.epage=4561&rft.pages=4561-4561&rft.artnum=4561&rft.issn=2045-2322&rft.eissn=2045-2322&rft_id=info:doi/10.1038/s41598-020-61443-y&rft_dat=%3Cproquest_pubme%3E2376708170%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2376708170&rft_id=info:pmid/32165710&rfr_iscdi=true |