On addition-subtraction chains of numbers with low Hamming weight
An addition chain is a sequence of integers such that every element in the sequence is the sum of two previous elements. They have been much studied, and generalized to addition-subtraction chains, Lucas chains, and Lucas addition-subtraction chains. These various chains have been useful in finding...
Gespeichert in:
Veröffentlicht in: | Notes on number theory and discrete mathematics 2019-01, Vol.25 (2), p.155-168 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 168 |
---|---|
container_issue | 2 |
container_start_page | 155 |
container_title | Notes on number theory and discrete mathematics |
container_volume | 25 |
creator | Moody, Dustin Tall, Amadou |
description | An addition chain is a sequence of integers such that every element in the sequence is the sum of two previous elements. They have been much studied, and generalized to addition-subtraction chains, Lucas chains, and Lucas addition-subtraction chains. These various chains have been useful in finding efficient exponentiation algorithms in groups. As a consequence, finding chains of minimal length is critical. The main objective of this paper is to extend results known for addition chains to addition-subtraction chains with Lucas addition-subtraction as a tool to construct such minimal chains. Specifically, if we let
(
) stand for the minimal length of all the Lucas addition-subtraction chains for
, we prove |
(2
) -
(
)| ≤ 1 for all integers
of Hamming weight ≤ 4. Thus, to find a minimal addition-subtraction chain for low Hamming weight integers, it suffices to only consider odd integers. |
doi_str_mv | 10.7546/nntdm.2019.25.2.155-168 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7067295</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2377344168</sourcerecordid><originalsourceid>FETCH-LOGICAL-c327t-e9c7c219f9e01fe9c448f1ee8fd575c0801199dc623050c2e031f5cf58c3cf863</originalsourceid><addsrcrecordid>eNpdkU9P3DAQxa2Kil3R_Qo0x3JI6hlnYueCtELAIq3EpT1bWcfeuEocGies-u2bZQHRnvxn3nvj8Y-xr8AzSXnxPYSx7jLkUGZIGWZAlEKhPrElikKmCiWdsSUI4CmBwAVbxfiLc47ESeVwzhYCoSBFuGTrx5BUde1H34c0TrtxqMxxn5im8iEmvUvC1O3sEJODH5uk7Q_Jpuo6H_bJwfp9M35hn13VRrt6XS_Yz7vbHzebdPt4_3Cz3qZGoBxTWxppEEpXWg5uPuW5cmCtcjVJMlxxgLKsTYGCEzdouQBHxpEywjhViAt2fcp9mnadrY0N81tb_TT4rhr-6L7y-t9K8I3e989a8kJiSXPA1Smg-c-2WW_18Y4LWWKOxTPM2m-vzYb-92TjqDsfjW3bKth-ihqFlCLP51-fpfIkNUMf42DdezZwfeSlX3jpIy-NpFHPvPTJeflxonffGx3xF1bBkug</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2377344168</pqid></control><display><type>article</type><title>On addition-subtraction chains of numbers with low Hamming weight</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Moody, Dustin ; Tall, Amadou</creator><creatorcontrib>Moody, Dustin ; Tall, Amadou ; Universite Cheikh Anta Diop de Dakar, Senegal ; National Institute of Standards and Technology, Gaithersburg, Maryland</creatorcontrib><description>An addition chain is a sequence of integers such that every element in the sequence is the sum of two previous elements. They have been much studied, and generalized to addition-subtraction chains, Lucas chains, and Lucas addition-subtraction chains. These various chains have been useful in finding efficient exponentiation algorithms in groups. As a consequence, finding chains of minimal length is critical. The main objective of this paper is to extend results known for addition chains to addition-subtraction chains with Lucas addition-subtraction as a tool to construct such minimal chains. Specifically, if we let
(
) stand for the minimal length of all the Lucas addition-subtraction chains for
, we prove |
(2
) -
(
)| ≤ 1 for all integers
of Hamming weight ≤ 4. Thus, to find a minimal addition-subtraction chain for low Hamming weight integers, it suffices to only consider odd integers.</description><identifier>ISSN: 1310-5132</identifier><identifier>EISSN: 2367-8275</identifier><identifier>DOI: 10.7546/nntdm.2019.25.2.155-168</identifier><identifier>PMID: 32165852</identifier><language>eng</language><publisher>Bulgaria: Academic Publishing House of the Bulgarian Academy of Sciences</publisher><subject>Mathematics</subject><ispartof>Notes on number theory and discrete mathematics, 2019-01, Vol.25 (2), p.155-168</ispartof><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,27903,27904</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32165852$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-03792426$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Moody, Dustin</creatorcontrib><creatorcontrib>Tall, Amadou</creatorcontrib><creatorcontrib>Universite Cheikh Anta Diop de Dakar, Senegal</creatorcontrib><creatorcontrib>National Institute of Standards and Technology, Gaithersburg, Maryland</creatorcontrib><title>On addition-subtraction chains of numbers with low Hamming weight</title><title>Notes on number theory and discrete mathematics</title><addtitle>Notes Number Theory Discret Math</addtitle><description>An addition chain is a sequence of integers such that every element in the sequence is the sum of two previous elements. They have been much studied, and generalized to addition-subtraction chains, Lucas chains, and Lucas addition-subtraction chains. These various chains have been useful in finding efficient exponentiation algorithms in groups. As a consequence, finding chains of minimal length is critical. The main objective of this paper is to extend results known for addition chains to addition-subtraction chains with Lucas addition-subtraction as a tool to construct such minimal chains. Specifically, if we let
(
) stand for the minimal length of all the Lucas addition-subtraction chains for
, we prove |
(2
) -
(
)| ≤ 1 for all integers
of Hamming weight ≤ 4. Thus, to find a minimal addition-subtraction chain for low Hamming weight integers, it suffices to only consider odd integers.</description><subject>Mathematics</subject><issn>1310-5132</issn><issn>2367-8275</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNpdkU9P3DAQxa2Kil3R_Qo0x3JI6hlnYueCtELAIq3EpT1bWcfeuEocGies-u2bZQHRnvxn3nvj8Y-xr8AzSXnxPYSx7jLkUGZIGWZAlEKhPrElikKmCiWdsSUI4CmBwAVbxfiLc47ESeVwzhYCoSBFuGTrx5BUde1H34c0TrtxqMxxn5im8iEmvUvC1O3sEJODH5uk7Q_Jpuo6H_bJwfp9M35hn13VRrt6XS_Yz7vbHzebdPt4_3Cz3qZGoBxTWxppEEpXWg5uPuW5cmCtcjVJMlxxgLKsTYGCEzdouQBHxpEywjhViAt2fcp9mnadrY0N81tb_TT4rhr-6L7y-t9K8I3e989a8kJiSXPA1Smg-c-2WW_18Y4LWWKOxTPM2m-vzYb-92TjqDsfjW3bKth-ihqFlCLP51-fpfIkNUMf42DdezZwfeSlX3jpIy-NpFHPvPTJeflxonffGx3xF1bBkug</recordid><startdate>20190101</startdate><enddate>20190101</enddate><creator>Moody, Dustin</creator><creator>Tall, Amadou</creator><general>Academic Publishing House of the Bulgarian Academy of Sciences</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>1XC</scope><scope>VOOES</scope><scope>5PM</scope></search><sort><creationdate>20190101</creationdate><title>On addition-subtraction chains of numbers with low Hamming weight</title><author>Moody, Dustin ; Tall, Amadou</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c327t-e9c7c219f9e01fe9c448f1ee8fd575c0801199dc623050c2e031f5cf58c3cf863</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Mathematics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Moody, Dustin</creatorcontrib><creatorcontrib>Tall, Amadou</creatorcontrib><creatorcontrib>Universite Cheikh Anta Diop de Dakar, Senegal</creatorcontrib><creatorcontrib>National Institute of Standards and Technology, Gaithersburg, Maryland</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Notes on number theory and discrete mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Moody, Dustin</au><au>Tall, Amadou</au><aucorp>Universite Cheikh Anta Diop de Dakar, Senegal</aucorp><aucorp>National Institute of Standards and Technology, Gaithersburg, Maryland</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On addition-subtraction chains of numbers with low Hamming weight</atitle><jtitle>Notes on number theory and discrete mathematics</jtitle><addtitle>Notes Number Theory Discret Math</addtitle><date>2019-01-01</date><risdate>2019</risdate><volume>25</volume><issue>2</issue><spage>155</spage><epage>168</epage><pages>155-168</pages><issn>1310-5132</issn><eissn>2367-8275</eissn><abstract>An addition chain is a sequence of integers such that every element in the sequence is the sum of two previous elements. They have been much studied, and generalized to addition-subtraction chains, Lucas chains, and Lucas addition-subtraction chains. These various chains have been useful in finding efficient exponentiation algorithms in groups. As a consequence, finding chains of minimal length is critical. The main objective of this paper is to extend results known for addition chains to addition-subtraction chains with Lucas addition-subtraction as a tool to construct such minimal chains. Specifically, if we let
(
) stand for the minimal length of all the Lucas addition-subtraction chains for
, we prove |
(2
) -
(
)| ≤ 1 for all integers
of Hamming weight ≤ 4. Thus, to find a minimal addition-subtraction chain for low Hamming weight integers, it suffices to only consider odd integers.</abstract><cop>Bulgaria</cop><pub>Academic Publishing House of the Bulgarian Academy of Sciences</pub><pmid>32165852</pmid><doi>10.7546/nntdm.2019.25.2.155-168</doi><tpages>14</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1310-5132 |
ispartof | Notes on number theory and discrete mathematics, 2019-01, Vol.25 (2), p.155-168 |
issn | 1310-5132 2367-8275 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7067295 |
source | Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals |
subjects | Mathematics |
title | On addition-subtraction chains of numbers with low Hamming weight |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T04%3A33%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20addition-subtraction%20chains%20of%20numbers%20with%20low%20Hamming%20weight&rft.jtitle=Notes%20on%20number%20theory%20and%20discrete%20mathematics&rft.au=Moody,%20Dustin&rft.aucorp=Universite%20Cheikh%20Anta%20Diop%20de%20Dakar,%20Senegal&rft.date=2019-01-01&rft.volume=25&rft.issue=2&rft.spage=155&rft.epage=168&rft.pages=155-168&rft.issn=1310-5132&rft.eissn=2367-8275&rft_id=info:doi/10.7546/nntdm.2019.25.2.155-168&rft_dat=%3Cproquest_pubme%3E2377344168%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2377344168&rft_id=info:pmid/32165852&rfr_iscdi=true |