Multiparametric radiomics methods for breast cancer tissue characterization using radiological imaging

Background and purpose Multiparametric radiological imaging is vital for detection, characterization, and diagnosis of many different diseases. Radiomics provide quantitative metrics from radiological imaging that may infer potential biological meaning of the underlying tissue. However, current meth...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Breast cancer research and treatment 2020-04, Vol.180 (2), p.407-421
Hauptverfasser: Parekh, Vishwa S., Jacobs, Michael A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 421
container_issue 2
container_start_page 407
container_title Breast cancer research and treatment
container_volume 180
creator Parekh, Vishwa S.
Jacobs, Michael A.
description Background and purpose Multiparametric radiological imaging is vital for detection, characterization, and diagnosis of many different diseases. Radiomics provide quantitative metrics from radiological imaging that may infer potential biological meaning of the underlying tissue. However, current methods are limited to regions of interest extracted from a single imaging parameter or modality, which limits the amount of information available within the data. This limitation can directly affect the integration and applicable scope of radiomics into different clinical settings, since single image radiomics are not capable of capturing the true underlying tissue characteristics in the multiparametric radiological imaging space. To that end, we developed a multiparametric imaging radiomic (mpRad) framework for extraction of first and second order radiomic features from multiparametric radiological datasets. Methods We developed five different radiomic techniques that extract different aspects of the inter-voxel and inter-parametric relationships within the high-dimensional multiparametric magnetic resonance imaging breast datasets. Our patient cohort consisted of 138 breast patients, where, 97 patients had malignant lesions and 41 patients had benign lesions. Sensitivity, specificity, receiver operating characteristic (ROC) and areas under the curve (AUC) analysis were performed to assess diagnostic performance of the mpRad parameters. Statistical significance was set at p  
doi_str_mv 10.1007/s10549-020-05533-5
format Article
fullrecord <record><control><sourceid>gale_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7066290</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A617190404</galeid><sourcerecordid>A617190404</sourcerecordid><originalsourceid>FETCH-LOGICAL-c638t-cb001058e17b7449cb998b2f0a24e154125591375ca948b96b22751e769c9c23</originalsourceid><addsrcrecordid>eNp9kk1rFTEUhoMo9nr1D7iQAaG4mXryPdkIpfgFFTfdh0xuZiYlM7kmMwX99c11atsrIlkETp73TU7Oi9BrDGcYQL7PGDhTNRCogXNKa_4EbTCXtJYEy6doA1jIWjQgTtCLnK8BQElQz9EJJUXEKN-g7tsSZr83yYxuTt5Wyex8HL3NVSkMcZerLqaqTc7kubJmsi5Vs895cZUdiszOLvlfZvZxqpbsp351CLH31oTKj6YvxZfoWWdCdq_u9i26-vTx6uJLffn989eL88vaCtrMtW0BSlONw7KVjCnbKtW0pANDmMOcYcK5wlRyaxRrWiVaQiTHTgpllSV0iz6stvulHd3OumlOJuh9Ks9IP3U0Xh-fTH7QfbzREoQgCorBuzuDFH8sLs969Nm6EMzk4pI1oRyzBhPCC_r2L_Q6Lmkq3RVKClCs-D1QvQlO-6mL5V57MNXnAkusgJVBbNHZP6iydq6MIk6u86V-JDh9JBicCfOQY1gOY8jHIFlBm2LOyXX3n4FBH1Kk1xTpEgj9O0X60Nqbx994L_kTmwLQFcjlaOpdeuj9P7a3Vb_RdQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2376094903</pqid></control><display><type>article</type><title>Multiparametric radiomics methods for breast cancer tissue characterization using radiological imaging</title><source>MEDLINE</source><source>SpringerLink (Online service)</source><creator>Parekh, Vishwa S. ; Jacobs, Michael A.</creator><creatorcontrib>Parekh, Vishwa S. ; Jacobs, Michael A.</creatorcontrib><description>Background and purpose Multiparametric radiological imaging is vital for detection, characterization, and diagnosis of many different diseases. Radiomics provide quantitative metrics from radiological imaging that may infer potential biological meaning of the underlying tissue. However, current methods are limited to regions of interest extracted from a single imaging parameter or modality, which limits the amount of information available within the data. This limitation can directly affect the integration and applicable scope of radiomics into different clinical settings, since single image radiomics are not capable of capturing the true underlying tissue characteristics in the multiparametric radiological imaging space. To that end, we developed a multiparametric imaging radiomic (mpRad) framework for extraction of first and second order radiomic features from multiparametric radiological datasets. Methods We developed five different radiomic techniques that extract different aspects of the inter-voxel and inter-parametric relationships within the high-dimensional multiparametric magnetic resonance imaging breast datasets. Our patient cohort consisted of 138 breast patients, where, 97 patients had malignant lesions and 41 patients had benign lesions. Sensitivity, specificity, receiver operating characteristic (ROC) and areas under the curve (AUC) analysis were performed to assess diagnostic performance of the mpRad parameters. Statistical significance was set at p  &lt; 0.05. Results The mpRad features successfully classified malignant from benign breast lesions with excellent sensitivity and specificity of 82.5% and 80.5%, respectively, with Area Under the receiver operating characteristic Curve (AUC) of 0.87 (0.81–0.93). mpRad provided a 9–28% increase in AUC metrics over single radiomic parameters. Conclusions We have introduced the mpRad framework that extends radiomic analysis from single images to multiparametric datasets for better characterization of the underlying tissue biology.</description><identifier>ISSN: 0167-6806</identifier><identifier>EISSN: 1573-7217</identifier><identifier>DOI: 10.1007/s10549-020-05533-5</identifier><identifier>PMID: 32020435</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Adult ; Aged ; Aged, 80 and over ; Benign ; Breast - diagnostic imaging ; Breast - pathology ; Breast cancer ; Breast Neoplasms - diagnostic imaging ; Breast Neoplasms - pathology ; Cancer research ; Clinical Trial ; Datasets ; Diagnostic imaging ; Female ; Humans ; Image Interpretation, Computer-Assisted - methods ; Lesions ; Machine Learning ; Magnetic resonance imaging ; Medical colleges ; Medicine ; Medicine &amp; Public Health ; Methods ; Middle Aged ; Multiparametric Magnetic Resonance Imaging - methods ; Oncology ; Radiology - standards ; Radiomics ; Retrospective Studies ; ROC Curve ; Young Adult</subject><ispartof>Breast cancer research and treatment, 2020-04, Vol.180 (2), p.407-421</ispartof><rights>The Author(s) 2020</rights><rights>COPYRIGHT 2020 Springer</rights><rights>Breast Cancer Research and Treatment is a copyright of Springer, (2020). All Rights Reserved. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c638t-cb001058e17b7449cb998b2f0a24e154125591375ca948b96b22751e769c9c23</citedby><cites>FETCH-LOGICAL-c638t-cb001058e17b7449cb998b2f0a24e154125591375ca948b96b22751e769c9c23</cites><orcidid>0000-0002-1125-1644</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10549-020-05533-5$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10549-020-05533-5$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>230,314,780,784,885,27924,27925,41488,42557,51319</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32020435$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Parekh, Vishwa S.</creatorcontrib><creatorcontrib>Jacobs, Michael A.</creatorcontrib><title>Multiparametric radiomics methods for breast cancer tissue characterization using radiological imaging</title><title>Breast cancer research and treatment</title><addtitle>Breast Cancer Res Treat</addtitle><addtitle>Breast Cancer Res Treat</addtitle><description>Background and purpose Multiparametric radiological imaging is vital for detection, characterization, and diagnosis of many different diseases. Radiomics provide quantitative metrics from radiological imaging that may infer potential biological meaning of the underlying tissue. However, current methods are limited to regions of interest extracted from a single imaging parameter or modality, which limits the amount of information available within the data. This limitation can directly affect the integration and applicable scope of radiomics into different clinical settings, since single image radiomics are not capable of capturing the true underlying tissue characteristics in the multiparametric radiological imaging space. To that end, we developed a multiparametric imaging radiomic (mpRad) framework for extraction of first and second order radiomic features from multiparametric radiological datasets. Methods We developed five different radiomic techniques that extract different aspects of the inter-voxel and inter-parametric relationships within the high-dimensional multiparametric magnetic resonance imaging breast datasets. Our patient cohort consisted of 138 breast patients, where, 97 patients had malignant lesions and 41 patients had benign lesions. Sensitivity, specificity, receiver operating characteristic (ROC) and areas under the curve (AUC) analysis were performed to assess diagnostic performance of the mpRad parameters. Statistical significance was set at p  &lt; 0.05. Results The mpRad features successfully classified malignant from benign breast lesions with excellent sensitivity and specificity of 82.5% and 80.5%, respectively, with Area Under the receiver operating characteristic Curve (AUC) of 0.87 (0.81–0.93). mpRad provided a 9–28% increase in AUC metrics over single radiomic parameters. Conclusions We have introduced the mpRad framework that extends radiomic analysis from single images to multiparametric datasets for better characterization of the underlying tissue biology.</description><subject>Adult</subject><subject>Aged</subject><subject>Aged, 80 and over</subject><subject>Benign</subject><subject>Breast - diagnostic imaging</subject><subject>Breast - pathology</subject><subject>Breast cancer</subject><subject>Breast Neoplasms - diagnostic imaging</subject><subject>Breast Neoplasms - pathology</subject><subject>Cancer research</subject><subject>Clinical Trial</subject><subject>Datasets</subject><subject>Diagnostic imaging</subject><subject>Female</subject><subject>Humans</subject><subject>Image Interpretation, Computer-Assisted - methods</subject><subject>Lesions</subject><subject>Machine Learning</subject><subject>Magnetic resonance imaging</subject><subject>Medical colleges</subject><subject>Medicine</subject><subject>Medicine &amp; Public Health</subject><subject>Methods</subject><subject>Middle Aged</subject><subject>Multiparametric Magnetic Resonance Imaging - methods</subject><subject>Oncology</subject><subject>Radiology - standards</subject><subject>Radiomics</subject><subject>Retrospective Studies</subject><subject>ROC Curve</subject><subject>Young Adult</subject><issn>0167-6806</issn><issn>1573-7217</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>EIF</sourceid><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp9kk1rFTEUhoMo9nr1D7iQAaG4mXryPdkIpfgFFTfdh0xuZiYlM7kmMwX99c11atsrIlkETp73TU7Oi9BrDGcYQL7PGDhTNRCogXNKa_4EbTCXtJYEy6doA1jIWjQgTtCLnK8BQElQz9EJJUXEKN-g7tsSZr83yYxuTt5Wyex8HL3NVSkMcZerLqaqTc7kubJmsi5Vs895cZUdiszOLvlfZvZxqpbsp351CLH31oTKj6YvxZfoWWdCdq_u9i26-vTx6uJLffn989eL88vaCtrMtW0BSlONw7KVjCnbKtW0pANDmMOcYcK5wlRyaxRrWiVaQiTHTgpllSV0iz6stvulHd3OumlOJuh9Ks9IP3U0Xh-fTH7QfbzREoQgCorBuzuDFH8sLs969Nm6EMzk4pI1oRyzBhPCC_r2L_Q6Lmkq3RVKClCs-D1QvQlO-6mL5V57MNXnAkusgJVBbNHZP6iydq6MIk6u86V-JDh9JBicCfOQY1gOY8jHIFlBm2LOyXX3n4FBH1Kk1xTpEgj9O0X60Nqbx994L_kTmwLQFcjlaOpdeuj9P7a3Vb_RdQ</recordid><startdate>20200401</startdate><enddate>20200401</enddate><creator>Parekh, Vishwa S.</creator><creator>Jacobs, Michael A.</creator><general>Springer US</general><general>Springer</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TO</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H94</scope><scope>K9-</scope><scope>K9.</scope><scope>M0R</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>MBDVC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-1125-1644</orcidid></search><sort><creationdate>20200401</creationdate><title>Multiparametric radiomics methods for breast cancer tissue characterization using radiological imaging</title><author>Parekh, Vishwa S. ; Jacobs, Michael A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c638t-cb001058e17b7449cb998b2f0a24e154125591375ca948b96b22751e769c9c23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Adult</topic><topic>Aged</topic><topic>Aged, 80 and over</topic><topic>Benign</topic><topic>Breast - diagnostic imaging</topic><topic>Breast - pathology</topic><topic>Breast cancer</topic><topic>Breast Neoplasms - diagnostic imaging</topic><topic>Breast Neoplasms - pathology</topic><topic>Cancer research</topic><topic>Clinical Trial</topic><topic>Datasets</topic><topic>Diagnostic imaging</topic><topic>Female</topic><topic>Humans</topic><topic>Image Interpretation, Computer-Assisted - methods</topic><topic>Lesions</topic><topic>Machine Learning</topic><topic>Magnetic resonance imaging</topic><topic>Medical colleges</topic><topic>Medicine</topic><topic>Medicine &amp; Public Health</topic><topic>Methods</topic><topic>Middle Aged</topic><topic>Multiparametric Magnetic Resonance Imaging - methods</topic><topic>Oncology</topic><topic>Radiology - standards</topic><topic>Radiomics</topic><topic>Retrospective Studies</topic><topic>ROC Curve</topic><topic>Young Adult</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Parekh, Vishwa S.</creatorcontrib><creatorcontrib>Jacobs, Michael A.</creatorcontrib><collection>SpringerOpen</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>ProQuest Health and Medical</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>ProQuest Public Health Database</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Consumer Health Database (Alumni Edition)</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Consumer Health Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>ProQuest Research Library</collection><collection>Research Library (Corporate)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Breast cancer research and treatment</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Parekh, Vishwa S.</au><au>Jacobs, Michael A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multiparametric radiomics methods for breast cancer tissue characterization using radiological imaging</atitle><jtitle>Breast cancer research and treatment</jtitle><stitle>Breast Cancer Res Treat</stitle><addtitle>Breast Cancer Res Treat</addtitle><date>2020-04-01</date><risdate>2020</risdate><volume>180</volume><issue>2</issue><spage>407</spage><epage>421</epage><pages>407-421</pages><issn>0167-6806</issn><eissn>1573-7217</eissn><abstract>Background and purpose Multiparametric radiological imaging is vital for detection, characterization, and diagnosis of many different diseases. Radiomics provide quantitative metrics from radiological imaging that may infer potential biological meaning of the underlying tissue. However, current methods are limited to regions of interest extracted from a single imaging parameter or modality, which limits the amount of information available within the data. This limitation can directly affect the integration and applicable scope of radiomics into different clinical settings, since single image radiomics are not capable of capturing the true underlying tissue characteristics in the multiparametric radiological imaging space. To that end, we developed a multiparametric imaging radiomic (mpRad) framework for extraction of first and second order radiomic features from multiparametric radiological datasets. Methods We developed five different radiomic techniques that extract different aspects of the inter-voxel and inter-parametric relationships within the high-dimensional multiparametric magnetic resonance imaging breast datasets. Our patient cohort consisted of 138 breast patients, where, 97 patients had malignant lesions and 41 patients had benign lesions. Sensitivity, specificity, receiver operating characteristic (ROC) and areas under the curve (AUC) analysis were performed to assess diagnostic performance of the mpRad parameters. Statistical significance was set at p  &lt; 0.05. Results The mpRad features successfully classified malignant from benign breast lesions with excellent sensitivity and specificity of 82.5% and 80.5%, respectively, with Area Under the receiver operating characteristic Curve (AUC) of 0.87 (0.81–0.93). mpRad provided a 9–28% increase in AUC metrics over single radiomic parameters. Conclusions We have introduced the mpRad framework that extends radiomic analysis from single images to multiparametric datasets for better characterization of the underlying tissue biology.</abstract><cop>New York</cop><pub>Springer US</pub><pmid>32020435</pmid><doi>10.1007/s10549-020-05533-5</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0002-1125-1644</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0167-6806
ispartof Breast cancer research and treatment, 2020-04, Vol.180 (2), p.407-421
issn 0167-6806
1573-7217
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7066290
source MEDLINE; SpringerLink (Online service)
subjects Adult
Aged
Aged, 80 and over
Benign
Breast - diagnostic imaging
Breast - pathology
Breast cancer
Breast Neoplasms - diagnostic imaging
Breast Neoplasms - pathology
Cancer research
Clinical Trial
Datasets
Diagnostic imaging
Female
Humans
Image Interpretation, Computer-Assisted - methods
Lesions
Machine Learning
Magnetic resonance imaging
Medical colleges
Medicine
Medicine & Public Health
Methods
Middle Aged
Multiparametric Magnetic Resonance Imaging - methods
Oncology
Radiology - standards
Radiomics
Retrospective Studies
ROC Curve
Young Adult
title Multiparametric radiomics methods for breast cancer tissue characterization using radiological imaging
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T09%3A59%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multiparametric%20radiomics%20methods%20for%20breast%20cancer%20tissue%20characterization%20using%20radiological%20imaging&rft.jtitle=Breast%20cancer%20research%20and%20treatment&rft.au=Parekh,%20Vishwa%20S.&rft.date=2020-04-01&rft.volume=180&rft.issue=2&rft.spage=407&rft.epage=421&rft.pages=407-421&rft.issn=0167-6806&rft.eissn=1573-7217&rft_id=info:doi/10.1007/s10549-020-05533-5&rft_dat=%3Cgale_pubme%3EA617190404%3C/gale_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2376094903&rft_id=info:pmid/32020435&rft_galeid=A617190404&rfr_iscdi=true