Multiparametric radiomics methods for breast cancer tissue characterization using radiological imaging
Background and purpose Multiparametric radiological imaging is vital for detection, characterization, and diagnosis of many different diseases. Radiomics provide quantitative metrics from radiological imaging that may infer potential biological meaning of the underlying tissue. However, current meth...
Gespeichert in:
Veröffentlicht in: | Breast cancer research and treatment 2020-04, Vol.180 (2), p.407-421 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 421 |
---|---|
container_issue | 2 |
container_start_page | 407 |
container_title | Breast cancer research and treatment |
container_volume | 180 |
creator | Parekh, Vishwa S. Jacobs, Michael A. |
description | Background and purpose
Multiparametric radiological imaging is vital for detection, characterization, and diagnosis of many different diseases. Radiomics provide quantitative metrics from radiological imaging that may infer potential biological meaning of the underlying tissue. However, current methods are limited to regions of interest extracted from a single imaging parameter or modality, which limits the amount of information available within the data. This limitation can directly affect the integration and applicable scope of radiomics into different clinical settings, since single image radiomics are not capable of capturing the true underlying tissue characteristics in the multiparametric radiological imaging space. To that end, we developed a multiparametric imaging radiomic (mpRad) framework for extraction of first and second order radiomic features from multiparametric radiological datasets.
Methods
We developed five different radiomic techniques that extract different aspects of the inter-voxel and inter-parametric relationships within the high-dimensional multiparametric magnetic resonance imaging breast datasets. Our patient cohort consisted of 138 breast patients, where, 97 patients had malignant lesions and 41 patients had benign lesions. Sensitivity, specificity, receiver operating characteristic (ROC) and areas under the curve (AUC) analysis were performed to assess diagnostic performance of the mpRad parameters. Statistical significance was set at
p
|
doi_str_mv | 10.1007/s10549-020-05533-5 |
format | Article |
fullrecord | <record><control><sourceid>gale_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7066290</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A617190404</galeid><sourcerecordid>A617190404</sourcerecordid><originalsourceid>FETCH-LOGICAL-c638t-cb001058e17b7449cb998b2f0a24e154125591375ca948b96b22751e769c9c23</originalsourceid><addsrcrecordid>eNp9kk1rFTEUhoMo9nr1D7iQAaG4mXryPdkIpfgFFTfdh0xuZiYlM7kmMwX99c11atsrIlkETp73TU7Oi9BrDGcYQL7PGDhTNRCogXNKa_4EbTCXtJYEy6doA1jIWjQgTtCLnK8BQElQz9EJJUXEKN-g7tsSZr83yYxuTt5Wyex8HL3NVSkMcZerLqaqTc7kubJmsi5Vs895cZUdiszOLvlfZvZxqpbsp351CLH31oTKj6YvxZfoWWdCdq_u9i26-vTx6uJLffn989eL88vaCtrMtW0BSlONw7KVjCnbKtW0pANDmMOcYcK5wlRyaxRrWiVaQiTHTgpllSV0iz6stvulHd3OumlOJuh9Ks9IP3U0Xh-fTH7QfbzREoQgCorBuzuDFH8sLs969Nm6EMzk4pI1oRyzBhPCC_r2L_Q6Lmkq3RVKClCs-D1QvQlO-6mL5V57MNXnAkusgJVBbNHZP6iydq6MIk6u86V-JDh9JBicCfOQY1gOY8jHIFlBm2LOyXX3n4FBH1Kk1xTpEgj9O0X60Nqbx994L_kTmwLQFcjlaOpdeuj9P7a3Vb_RdQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2376094903</pqid></control><display><type>article</type><title>Multiparametric radiomics methods for breast cancer tissue characterization using radiological imaging</title><source>MEDLINE</source><source>SpringerLink (Online service)</source><creator>Parekh, Vishwa S. ; Jacobs, Michael A.</creator><creatorcontrib>Parekh, Vishwa S. ; Jacobs, Michael A.</creatorcontrib><description>Background and purpose
Multiparametric radiological imaging is vital for detection, characterization, and diagnosis of many different diseases. Radiomics provide quantitative metrics from radiological imaging that may infer potential biological meaning of the underlying tissue. However, current methods are limited to regions of interest extracted from a single imaging parameter or modality, which limits the amount of information available within the data. This limitation can directly affect the integration and applicable scope of radiomics into different clinical settings, since single image radiomics are not capable of capturing the true underlying tissue characteristics in the multiparametric radiological imaging space. To that end, we developed a multiparametric imaging radiomic (mpRad) framework for extraction of first and second order radiomic features from multiparametric radiological datasets.
Methods
We developed five different radiomic techniques that extract different aspects of the inter-voxel and inter-parametric relationships within the high-dimensional multiparametric magnetic resonance imaging breast datasets. Our patient cohort consisted of 138 breast patients, where, 97 patients had malignant lesions and 41 patients had benign lesions. Sensitivity, specificity, receiver operating characteristic (ROC) and areas under the curve (AUC) analysis were performed to assess diagnostic performance of the mpRad parameters. Statistical significance was set at
p
< 0.05.
Results
The mpRad features successfully classified malignant from benign breast lesions with excellent sensitivity and specificity of 82.5% and 80.5%, respectively, with Area Under the receiver operating characteristic Curve (AUC) of 0.87 (0.81–0.93). mpRad provided a 9–28% increase in AUC metrics over single radiomic parameters.
Conclusions
We have introduced the mpRad framework that extends radiomic analysis from single images to multiparametric datasets for better characterization of the underlying tissue biology.</description><identifier>ISSN: 0167-6806</identifier><identifier>EISSN: 1573-7217</identifier><identifier>DOI: 10.1007/s10549-020-05533-5</identifier><identifier>PMID: 32020435</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Adult ; Aged ; Aged, 80 and over ; Benign ; Breast - diagnostic imaging ; Breast - pathology ; Breast cancer ; Breast Neoplasms - diagnostic imaging ; Breast Neoplasms - pathology ; Cancer research ; Clinical Trial ; Datasets ; Diagnostic imaging ; Female ; Humans ; Image Interpretation, Computer-Assisted - methods ; Lesions ; Machine Learning ; Magnetic resonance imaging ; Medical colleges ; Medicine ; Medicine & Public Health ; Methods ; Middle Aged ; Multiparametric Magnetic Resonance Imaging - methods ; Oncology ; Radiology - standards ; Radiomics ; Retrospective Studies ; ROC Curve ; Young Adult</subject><ispartof>Breast cancer research and treatment, 2020-04, Vol.180 (2), p.407-421</ispartof><rights>The Author(s) 2020</rights><rights>COPYRIGHT 2020 Springer</rights><rights>Breast Cancer Research and Treatment is a copyright of Springer, (2020). All Rights Reserved. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c638t-cb001058e17b7449cb998b2f0a24e154125591375ca948b96b22751e769c9c23</citedby><cites>FETCH-LOGICAL-c638t-cb001058e17b7449cb998b2f0a24e154125591375ca948b96b22751e769c9c23</cites><orcidid>0000-0002-1125-1644</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10549-020-05533-5$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10549-020-05533-5$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>230,314,780,784,885,27924,27925,41488,42557,51319</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32020435$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Parekh, Vishwa S.</creatorcontrib><creatorcontrib>Jacobs, Michael A.</creatorcontrib><title>Multiparametric radiomics methods for breast cancer tissue characterization using radiological imaging</title><title>Breast cancer research and treatment</title><addtitle>Breast Cancer Res Treat</addtitle><addtitle>Breast Cancer Res Treat</addtitle><description>Background and purpose
Multiparametric radiological imaging is vital for detection, characterization, and diagnosis of many different diseases. Radiomics provide quantitative metrics from radiological imaging that may infer potential biological meaning of the underlying tissue. However, current methods are limited to regions of interest extracted from a single imaging parameter or modality, which limits the amount of information available within the data. This limitation can directly affect the integration and applicable scope of radiomics into different clinical settings, since single image radiomics are not capable of capturing the true underlying tissue characteristics in the multiparametric radiological imaging space. To that end, we developed a multiparametric imaging radiomic (mpRad) framework for extraction of first and second order radiomic features from multiparametric radiological datasets.
Methods
We developed five different radiomic techniques that extract different aspects of the inter-voxel and inter-parametric relationships within the high-dimensional multiparametric magnetic resonance imaging breast datasets. Our patient cohort consisted of 138 breast patients, where, 97 patients had malignant lesions and 41 patients had benign lesions. Sensitivity, specificity, receiver operating characteristic (ROC) and areas under the curve (AUC) analysis were performed to assess diagnostic performance of the mpRad parameters. Statistical significance was set at
p
< 0.05.
Results
The mpRad features successfully classified malignant from benign breast lesions with excellent sensitivity and specificity of 82.5% and 80.5%, respectively, with Area Under the receiver operating characteristic Curve (AUC) of 0.87 (0.81–0.93). mpRad provided a 9–28% increase in AUC metrics over single radiomic parameters.
Conclusions
We have introduced the mpRad framework that extends radiomic analysis from single images to multiparametric datasets for better characterization of the underlying tissue biology.</description><subject>Adult</subject><subject>Aged</subject><subject>Aged, 80 and over</subject><subject>Benign</subject><subject>Breast - diagnostic imaging</subject><subject>Breast - pathology</subject><subject>Breast cancer</subject><subject>Breast Neoplasms - diagnostic imaging</subject><subject>Breast Neoplasms - pathology</subject><subject>Cancer research</subject><subject>Clinical Trial</subject><subject>Datasets</subject><subject>Diagnostic imaging</subject><subject>Female</subject><subject>Humans</subject><subject>Image Interpretation, Computer-Assisted - methods</subject><subject>Lesions</subject><subject>Machine Learning</subject><subject>Magnetic resonance imaging</subject><subject>Medical colleges</subject><subject>Medicine</subject><subject>Medicine & Public Health</subject><subject>Methods</subject><subject>Middle Aged</subject><subject>Multiparametric Magnetic Resonance Imaging - methods</subject><subject>Oncology</subject><subject>Radiology - standards</subject><subject>Radiomics</subject><subject>Retrospective Studies</subject><subject>ROC Curve</subject><subject>Young Adult</subject><issn>0167-6806</issn><issn>1573-7217</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>EIF</sourceid><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp9kk1rFTEUhoMo9nr1D7iQAaG4mXryPdkIpfgFFTfdh0xuZiYlM7kmMwX99c11atsrIlkETp73TU7Oi9BrDGcYQL7PGDhTNRCogXNKa_4EbTCXtJYEy6doA1jIWjQgTtCLnK8BQElQz9EJJUXEKN-g7tsSZr83yYxuTt5Wyex8HL3NVSkMcZerLqaqTc7kubJmsi5Vs895cZUdiszOLvlfZvZxqpbsp351CLH31oTKj6YvxZfoWWdCdq_u9i26-vTx6uJLffn989eL88vaCtrMtW0BSlONw7KVjCnbKtW0pANDmMOcYcK5wlRyaxRrWiVaQiTHTgpllSV0iz6stvulHd3OumlOJuh9Ks9IP3U0Xh-fTH7QfbzREoQgCorBuzuDFH8sLs969Nm6EMzk4pI1oRyzBhPCC_r2L_Q6Lmkq3RVKClCs-D1QvQlO-6mL5V57MNXnAkusgJVBbNHZP6iydq6MIk6u86V-JDh9JBicCfOQY1gOY8jHIFlBm2LOyXX3n4FBH1Kk1xTpEgj9O0X60Nqbx994L_kTmwLQFcjlaOpdeuj9P7a3Vb_RdQ</recordid><startdate>20200401</startdate><enddate>20200401</enddate><creator>Parekh, Vishwa S.</creator><creator>Jacobs, Michael A.</creator><general>Springer US</general><general>Springer</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TO</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H94</scope><scope>K9-</scope><scope>K9.</scope><scope>M0R</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>MBDVC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-1125-1644</orcidid></search><sort><creationdate>20200401</creationdate><title>Multiparametric radiomics methods for breast cancer tissue characterization using radiological imaging</title><author>Parekh, Vishwa S. ; Jacobs, Michael A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c638t-cb001058e17b7449cb998b2f0a24e154125591375ca948b96b22751e769c9c23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Adult</topic><topic>Aged</topic><topic>Aged, 80 and over</topic><topic>Benign</topic><topic>Breast - diagnostic imaging</topic><topic>Breast - pathology</topic><topic>Breast cancer</topic><topic>Breast Neoplasms - diagnostic imaging</topic><topic>Breast Neoplasms - pathology</topic><topic>Cancer research</topic><topic>Clinical Trial</topic><topic>Datasets</topic><topic>Diagnostic imaging</topic><topic>Female</topic><topic>Humans</topic><topic>Image Interpretation, Computer-Assisted - methods</topic><topic>Lesions</topic><topic>Machine Learning</topic><topic>Magnetic resonance imaging</topic><topic>Medical colleges</topic><topic>Medicine</topic><topic>Medicine & Public Health</topic><topic>Methods</topic><topic>Middle Aged</topic><topic>Multiparametric Magnetic Resonance Imaging - methods</topic><topic>Oncology</topic><topic>Radiology - standards</topic><topic>Radiomics</topic><topic>Retrospective Studies</topic><topic>ROC Curve</topic><topic>Young Adult</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Parekh, Vishwa S.</creatorcontrib><creatorcontrib>Jacobs, Michael A.</creatorcontrib><collection>SpringerOpen</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>ProQuest Health and Medical</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>ProQuest Public Health Database</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Consumer Health Database (Alumni Edition)</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Consumer Health Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>ProQuest Research Library</collection><collection>Research Library (Corporate)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Breast cancer research and treatment</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Parekh, Vishwa S.</au><au>Jacobs, Michael A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multiparametric radiomics methods for breast cancer tissue characterization using radiological imaging</atitle><jtitle>Breast cancer research and treatment</jtitle><stitle>Breast Cancer Res Treat</stitle><addtitle>Breast Cancer Res Treat</addtitle><date>2020-04-01</date><risdate>2020</risdate><volume>180</volume><issue>2</issue><spage>407</spage><epage>421</epage><pages>407-421</pages><issn>0167-6806</issn><eissn>1573-7217</eissn><abstract>Background and purpose
Multiparametric radiological imaging is vital for detection, characterization, and diagnosis of many different diseases. Radiomics provide quantitative metrics from radiological imaging that may infer potential biological meaning of the underlying tissue. However, current methods are limited to regions of interest extracted from a single imaging parameter or modality, which limits the amount of information available within the data. This limitation can directly affect the integration and applicable scope of radiomics into different clinical settings, since single image radiomics are not capable of capturing the true underlying tissue characteristics in the multiparametric radiological imaging space. To that end, we developed a multiparametric imaging radiomic (mpRad) framework for extraction of first and second order radiomic features from multiparametric radiological datasets.
Methods
We developed five different radiomic techniques that extract different aspects of the inter-voxel and inter-parametric relationships within the high-dimensional multiparametric magnetic resonance imaging breast datasets. Our patient cohort consisted of 138 breast patients, where, 97 patients had malignant lesions and 41 patients had benign lesions. Sensitivity, specificity, receiver operating characteristic (ROC) and areas under the curve (AUC) analysis were performed to assess diagnostic performance of the mpRad parameters. Statistical significance was set at
p
< 0.05.
Results
The mpRad features successfully classified malignant from benign breast lesions with excellent sensitivity and specificity of 82.5% and 80.5%, respectively, with Area Under the receiver operating characteristic Curve (AUC) of 0.87 (0.81–0.93). mpRad provided a 9–28% increase in AUC metrics over single radiomic parameters.
Conclusions
We have introduced the mpRad framework that extends radiomic analysis from single images to multiparametric datasets for better characterization of the underlying tissue biology.</abstract><cop>New York</cop><pub>Springer US</pub><pmid>32020435</pmid><doi>10.1007/s10549-020-05533-5</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0002-1125-1644</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0167-6806 |
ispartof | Breast cancer research and treatment, 2020-04, Vol.180 (2), p.407-421 |
issn | 0167-6806 1573-7217 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7066290 |
source | MEDLINE; SpringerLink (Online service) |
subjects | Adult Aged Aged, 80 and over Benign Breast - diagnostic imaging Breast - pathology Breast cancer Breast Neoplasms - diagnostic imaging Breast Neoplasms - pathology Cancer research Clinical Trial Datasets Diagnostic imaging Female Humans Image Interpretation, Computer-Assisted - methods Lesions Machine Learning Magnetic resonance imaging Medical colleges Medicine Medicine & Public Health Methods Middle Aged Multiparametric Magnetic Resonance Imaging - methods Oncology Radiology - standards Radiomics Retrospective Studies ROC Curve Young Adult |
title | Multiparametric radiomics methods for breast cancer tissue characterization using radiological imaging |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T09%3A59%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multiparametric%20radiomics%20methods%20for%20breast%20cancer%20tissue%20characterization%20using%20radiological%20imaging&rft.jtitle=Breast%20cancer%20research%20and%20treatment&rft.au=Parekh,%20Vishwa%20S.&rft.date=2020-04-01&rft.volume=180&rft.issue=2&rft.spage=407&rft.epage=421&rft.pages=407-421&rft.issn=0167-6806&rft.eissn=1573-7217&rft_id=info:doi/10.1007/s10549-020-05533-5&rft_dat=%3Cgale_pubme%3EA617190404%3C/gale_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2376094903&rft_id=info:pmid/32020435&rft_galeid=A617190404&rfr_iscdi=true |