Tabu Search and Machine-Learning Classification of Benign and Malignant Proliferative Breast Lesions

Breast cancer is the most diagnosed cancer among women around the world. The development of computer-aided diagnosis tools is essential to help pathologists to accurately interpret and discriminate between malignant and benign tumors. This paper proposes the development of an automated proliferative...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:BioMed research international 2020, Vol.2020 (2020), p.1-10
Hauptverfasser: Al Maghayreh, Eslam, Mahmood, Awais, Rahmany, Ines, Dhahri, Habib, Elkilani, Wail
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 10
container_issue 2020
container_start_page 1
container_title BioMed research international
container_volume 2020
creator Al Maghayreh, Eslam
Mahmood, Awais
Rahmany, Ines
Dhahri, Habib
Elkilani, Wail
description Breast cancer is the most diagnosed cancer among women around the world. The development of computer-aided diagnosis tools is essential to help pathologists to accurately interpret and discriminate between malignant and benign tumors. This paper proposes the development of an automated proliferative breast lesion diagnosis based on machine-learning algorithms. We used Tabu search to select the most significant features. The evaluation of the feature is based on the dependency degree of each attribute in the rough set. The categorization of reduced features was built using five machine-learning algorithms. The proposed models were applied to the BIDMC-MGH and Wisconsin Diagnostic Breast Cancer datasets. The performance measures of the used models were evaluated owing to five criteria. The top performing models were AdaBoost and logistic regression. Comparisons with others works prove the efficiency of the proposed method for superior diagnosis of breast cancer against the reviewed classification techniques.
doi_str_mv 10.1155/2020/4671349
format Article
fullrecord <record><control><sourceid>gale_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7064857</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A624689291</galeid><sourcerecordid>A624689291</sourcerecordid><originalsourceid>FETCH-LOGICAL-c499t-38abe2f34beb4f064005129e43de0e1357dbf6aaa7c35394de12850d78b7044c3</originalsourceid><addsrcrecordid>eNqNkU1v1DAQhiNERavSG2cUiQsShPrbyQWpXfElbQUS5WxNnPGuq6xd7KSIf49Xu2yhp87FI88z78zoraoXlLyjVMpzRhg5F0pTLron1QnjVDSKCvr0kHN-XJ3lfENKtFSRTj2rjjljsqVMnFTDNfRz_R0h2XUNYaivwK59wGZZvoIPq3oxQs7eeQuTj6GOrr7E4FdhT48lhTDV31IcvcNUqDusLxNCnuol5tKTn1dHDsaMZ_v3tPrx8cP14nOz_Prpy-Ji2VjRdVPDW-iROS567IUjShAiKetQ8AEJUi710DsFANpyyTsxIGWtJINue02EsPy0er_TvZ37DQ4Ww5RgNLfJbyD9NhG8-b8S_Nqs4p3RZVgrdRF4vRdI8eeMeTIbny2OIwSMczaMt1pJyQkr6KsH6E2cUyjnFUqX1VWx5Z5awYjGBxfLXLsVNReKCdV2rKOFerujbIo5J3SHlSkxW5_N1mez97ngL_898wD_dbUAb3ZAcXKAX_6RclgYdHBPlzJpNf8DkWS4QQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2374006467</pqid></control><display><type>article</type><title>Tabu Search and Machine-Learning Classification of Benign and Malignant Proliferative Breast Lesions</title><source>MEDLINE</source><source>Wiley Online Library Open Access</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>PubMed Central Open Access</source><creator>Al Maghayreh, Eslam ; Mahmood, Awais ; Rahmany, Ines ; Dhahri, Habib ; Elkilani, Wail</creator><contributor>Wei, Ji-Fu</contributor><creatorcontrib>Al Maghayreh, Eslam ; Mahmood, Awais ; Rahmany, Ines ; Dhahri, Habib ; Elkilani, Wail ; Wei, Ji-Fu</creatorcontrib><description>Breast cancer is the most diagnosed cancer among women around the world. The development of computer-aided diagnosis tools is essential to help pathologists to accurately interpret and discriminate between malignant and benign tumors. This paper proposes the development of an automated proliferative breast lesion diagnosis based on machine-learning algorithms. We used Tabu search to select the most significant features. The evaluation of the feature is based on the dependency degree of each attribute in the rough set. The categorization of reduced features was built using five machine-learning algorithms. The proposed models were applied to the BIDMC-MGH and Wisconsin Diagnostic Breast Cancer datasets. The performance measures of the used models were evaluated owing to five criteria. The top performing models were AdaBoost and logistic regression. Comparisons with others works prove the efficiency of the proposed method for superior diagnosis of breast cancer against the reviewed classification techniques.</description><identifier>ISSN: 2314-6133</identifier><identifier>EISSN: 2314-6141</identifier><identifier>DOI: 10.1155/2020/4671349</identifier><identifier>PMID: 32258124</identifier><language>eng</language><publisher>Cairo, Egypt: Hindawi Publishing Corporation</publisher><subject>Accuracy ; Algorithms ; Benign ; Breast - diagnostic imaging ; Breast - pathology ; Breast cancer ; Breast Neoplasms - classification ; Breast Neoplasms - diagnosis ; Breast Neoplasms - pathology ; Cancer ; Cell Proliferation ; Classification ; Data mining ; Datasets ; Deep learning ; Diagnosis ; Diagnosis, Computer-Assisted - methods ; Diagnostic systems ; Experiments ; Female ; Fibrocystic Breast Disease - classification ; Fibrocystic Breast Disease - diagnosis ; Fibrocystic Breast Disease - pathology ; Fourier transforms ; Gene expression ; Humans ; Image Interpretation, Computer-Assisted - methods ; Learning algorithms ; Lesions ; Machine Learning ; Mammography ; Medical diagnosis ; Metastasis ; Morphology ; Neoplasms - classification ; Neoplasms - diagnosis ; Neoplasms - pathology ; Neural networks ; Principal components analysis ; Regression analysis ; Review ; Support vector machines ; Tabu search ; Tumors ; Ultrasonic imaging ; Wavelet transforms</subject><ispartof>BioMed research international, 2020, Vol.2020 (2020), p.1-10</ispartof><rights>Copyright © 2020 Habib Dhahri et al.</rights><rights>COPYRIGHT 2020 John Wiley &amp; Sons, Inc.</rights><rights>Copyright © 2020 Habib Dhahri et al. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. http://creativecommons.org/licenses/by/4.0</rights><rights>Copyright © 2020 Habib Dhahri et al. 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c499t-38abe2f34beb4f064005129e43de0e1357dbf6aaa7c35394de12850d78b7044c3</citedby><cites>FETCH-LOGICAL-c499t-38abe2f34beb4f064005129e43de0e1357dbf6aaa7c35394de12850d78b7044c3</cites><orcidid>0000-0003-2436-0249 ; 0000-0003-4163-7625 ; 0000-0003-4668-7840 ; 0000-0001-9086-5080</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7064857/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7064857/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,4010,27900,27901,27902,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32258124$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Wei, Ji-Fu</contributor><creatorcontrib>Al Maghayreh, Eslam</creatorcontrib><creatorcontrib>Mahmood, Awais</creatorcontrib><creatorcontrib>Rahmany, Ines</creatorcontrib><creatorcontrib>Dhahri, Habib</creatorcontrib><creatorcontrib>Elkilani, Wail</creatorcontrib><title>Tabu Search and Machine-Learning Classification of Benign and Malignant Proliferative Breast Lesions</title><title>BioMed research international</title><addtitle>Biomed Res Int</addtitle><description>Breast cancer is the most diagnosed cancer among women around the world. The development of computer-aided diagnosis tools is essential to help pathologists to accurately interpret and discriminate between malignant and benign tumors. This paper proposes the development of an automated proliferative breast lesion diagnosis based on machine-learning algorithms. We used Tabu search to select the most significant features. The evaluation of the feature is based on the dependency degree of each attribute in the rough set. The categorization of reduced features was built using five machine-learning algorithms. The proposed models were applied to the BIDMC-MGH and Wisconsin Diagnostic Breast Cancer datasets. The performance measures of the used models were evaluated owing to five criteria. The top performing models were AdaBoost and logistic regression. Comparisons with others works prove the efficiency of the proposed method for superior diagnosis of breast cancer against the reviewed classification techniques.</description><subject>Accuracy</subject><subject>Algorithms</subject><subject>Benign</subject><subject>Breast - diagnostic imaging</subject><subject>Breast - pathology</subject><subject>Breast cancer</subject><subject>Breast Neoplasms - classification</subject><subject>Breast Neoplasms - diagnosis</subject><subject>Breast Neoplasms - pathology</subject><subject>Cancer</subject><subject>Cell Proliferation</subject><subject>Classification</subject><subject>Data mining</subject><subject>Datasets</subject><subject>Deep learning</subject><subject>Diagnosis</subject><subject>Diagnosis, Computer-Assisted - methods</subject><subject>Diagnostic systems</subject><subject>Experiments</subject><subject>Female</subject><subject>Fibrocystic Breast Disease - classification</subject><subject>Fibrocystic Breast Disease - diagnosis</subject><subject>Fibrocystic Breast Disease - pathology</subject><subject>Fourier transforms</subject><subject>Gene expression</subject><subject>Humans</subject><subject>Image Interpretation, Computer-Assisted - methods</subject><subject>Learning algorithms</subject><subject>Lesions</subject><subject>Machine Learning</subject><subject>Mammography</subject><subject>Medical diagnosis</subject><subject>Metastasis</subject><subject>Morphology</subject><subject>Neoplasms - classification</subject><subject>Neoplasms - diagnosis</subject><subject>Neoplasms - pathology</subject><subject>Neural networks</subject><subject>Principal components analysis</subject><subject>Regression analysis</subject><subject>Review</subject><subject>Support vector machines</subject><subject>Tabu search</subject><subject>Tumors</subject><subject>Ultrasonic imaging</subject><subject>Wavelet transforms</subject><issn>2314-6133</issn><issn>2314-6141</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>RHX</sourceid><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><recordid>eNqNkU1v1DAQhiNERavSG2cUiQsShPrbyQWpXfElbQUS5WxNnPGuq6xd7KSIf49Xu2yhp87FI88z78zoraoXlLyjVMpzRhg5F0pTLron1QnjVDSKCvr0kHN-XJ3lfENKtFSRTj2rjjljsqVMnFTDNfRz_R0h2XUNYaivwK59wGZZvoIPq3oxQs7eeQuTj6GOrr7E4FdhT48lhTDV31IcvcNUqDusLxNCnuol5tKTn1dHDsaMZ_v3tPrx8cP14nOz_Prpy-Ji2VjRdVPDW-iROS567IUjShAiKetQ8AEJUi710DsFANpyyTsxIGWtJINue02EsPy0er_TvZ37DQ4Ww5RgNLfJbyD9NhG8-b8S_Nqs4p3RZVgrdRF4vRdI8eeMeTIbny2OIwSMczaMt1pJyQkr6KsH6E2cUyjnFUqX1VWx5Z5awYjGBxfLXLsVNReKCdV2rKOFerujbIo5J3SHlSkxW5_N1mez97ngL_898wD_dbUAb3ZAcXKAX_6RclgYdHBPlzJpNf8DkWS4QQ</recordid><startdate>2020</startdate><enddate>2020</enddate><creator>Al Maghayreh, Eslam</creator><creator>Mahmood, Awais</creator><creator>Rahmany, Ines</creator><creator>Dhahri, Habib</creator><creator>Elkilani, Wail</creator><general>Hindawi Publishing Corporation</general><general>Hindawi</general><general>John Wiley &amp; Sons, Inc</general><general>Hindawi Limited</general><scope>ADJCN</scope><scope>AHFXO</scope><scope>RHU</scope><scope>RHW</scope><scope>RHX</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7QO</scope><scope>7T7</scope><scope>7TK</scope><scope>7U7</scope><scope>7U9</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>CWDGH</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PHGZM</scope><scope>PHGZT</scope><scope>PIMPY</scope><scope>PJZUB</scope><scope>PKEHL</scope><scope>PPXIY</scope><scope>PQEST</scope><scope>PQGLB</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-2436-0249</orcidid><orcidid>https://orcid.org/0000-0003-4163-7625</orcidid><orcidid>https://orcid.org/0000-0003-4668-7840</orcidid><orcidid>https://orcid.org/0000-0001-9086-5080</orcidid></search><sort><creationdate>2020</creationdate><title>Tabu Search and Machine-Learning Classification of Benign and Malignant Proliferative Breast Lesions</title><author>Al Maghayreh, Eslam ; Mahmood, Awais ; Rahmany, Ines ; Dhahri, Habib ; Elkilani, Wail</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c499t-38abe2f34beb4f064005129e43de0e1357dbf6aaa7c35394de12850d78b7044c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Accuracy</topic><topic>Algorithms</topic><topic>Benign</topic><topic>Breast - diagnostic imaging</topic><topic>Breast - pathology</topic><topic>Breast cancer</topic><topic>Breast Neoplasms - classification</topic><topic>Breast Neoplasms - diagnosis</topic><topic>Breast Neoplasms - pathology</topic><topic>Cancer</topic><topic>Cell Proliferation</topic><topic>Classification</topic><topic>Data mining</topic><topic>Datasets</topic><topic>Deep learning</topic><topic>Diagnosis</topic><topic>Diagnosis, Computer-Assisted - methods</topic><topic>Diagnostic systems</topic><topic>Experiments</topic><topic>Female</topic><topic>Fibrocystic Breast Disease - classification</topic><topic>Fibrocystic Breast Disease - diagnosis</topic><topic>Fibrocystic Breast Disease - pathology</topic><topic>Fourier transforms</topic><topic>Gene expression</topic><topic>Humans</topic><topic>Image Interpretation, Computer-Assisted - methods</topic><topic>Learning algorithms</topic><topic>Lesions</topic><topic>Machine Learning</topic><topic>Mammography</topic><topic>Medical diagnosis</topic><topic>Metastasis</topic><topic>Morphology</topic><topic>Neoplasms - classification</topic><topic>Neoplasms - diagnosis</topic><topic>Neoplasms - pathology</topic><topic>Neural networks</topic><topic>Principal components analysis</topic><topic>Regression analysis</topic><topic>Review</topic><topic>Support vector machines</topic><topic>Tabu search</topic><topic>Tumors</topic><topic>Ultrasonic imaging</topic><topic>Wavelet transforms</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Al Maghayreh, Eslam</creatorcontrib><creatorcontrib>Mahmood, Awais</creatorcontrib><creatorcontrib>Rahmany, Ines</creatorcontrib><creatorcontrib>Dhahri, Habib</creatorcontrib><creatorcontrib>Elkilani, Wail</creatorcontrib><collection>الدوريات العلمية والإحصائية - e-Marefa Academic and Statistical Periodicals</collection><collection>معرفة - المحتوى العربي الأكاديمي المتكامل - e-Marefa Academic Complete</collection><collection>Hindawi Publishing Complete</collection><collection>Hindawi Publishing Subscription Journals</collection><collection>Hindawi Publishing Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Neurosciences Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection (ProQuest)</collection><collection>Natural Science Collection (ProQuest)</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>Middle East &amp; Africa Database</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest Central (New)</collection><collection>ProQuest One Academic (New)</collection><collection>Publicly Available Content Database</collection><collection>ProQuest Health &amp; Medical Research Collection</collection><collection>ProQuest One Academic Middle East (New)</collection><collection>ProQuest One Health &amp; Nursing</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Applied &amp; Life Sciences</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>BioMed research international</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Al Maghayreh, Eslam</au><au>Mahmood, Awais</au><au>Rahmany, Ines</au><au>Dhahri, Habib</au><au>Elkilani, Wail</au><au>Wei, Ji-Fu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Tabu Search and Machine-Learning Classification of Benign and Malignant Proliferative Breast Lesions</atitle><jtitle>BioMed research international</jtitle><addtitle>Biomed Res Int</addtitle><date>2020</date><risdate>2020</risdate><volume>2020</volume><issue>2020</issue><spage>1</spage><epage>10</epage><pages>1-10</pages><issn>2314-6133</issn><eissn>2314-6141</eissn><abstract>Breast cancer is the most diagnosed cancer among women around the world. The development of computer-aided diagnosis tools is essential to help pathologists to accurately interpret and discriminate between malignant and benign tumors. This paper proposes the development of an automated proliferative breast lesion diagnosis based on machine-learning algorithms. We used Tabu search to select the most significant features. The evaluation of the feature is based on the dependency degree of each attribute in the rough set. The categorization of reduced features was built using five machine-learning algorithms. The proposed models were applied to the BIDMC-MGH and Wisconsin Diagnostic Breast Cancer datasets. The performance measures of the used models were evaluated owing to five criteria. The top performing models were AdaBoost and logistic regression. Comparisons with others works prove the efficiency of the proposed method for superior diagnosis of breast cancer against the reviewed classification techniques.</abstract><cop>Cairo, Egypt</cop><pub>Hindawi Publishing Corporation</pub><pmid>32258124</pmid><doi>10.1155/2020/4671349</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0003-2436-0249</orcidid><orcidid>https://orcid.org/0000-0003-4163-7625</orcidid><orcidid>https://orcid.org/0000-0003-4668-7840</orcidid><orcidid>https://orcid.org/0000-0001-9086-5080</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2314-6133
ispartof BioMed research international, 2020, Vol.2020 (2020), p.1-10
issn 2314-6133
2314-6141
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7064857
source MEDLINE; Wiley Online Library Open Access; PubMed Central; Alma/SFX Local Collection; PubMed Central Open Access
subjects Accuracy
Algorithms
Benign
Breast - diagnostic imaging
Breast - pathology
Breast cancer
Breast Neoplasms - classification
Breast Neoplasms - diagnosis
Breast Neoplasms - pathology
Cancer
Cell Proliferation
Classification
Data mining
Datasets
Deep learning
Diagnosis
Diagnosis, Computer-Assisted - methods
Diagnostic systems
Experiments
Female
Fibrocystic Breast Disease - classification
Fibrocystic Breast Disease - diagnosis
Fibrocystic Breast Disease - pathology
Fourier transforms
Gene expression
Humans
Image Interpretation, Computer-Assisted - methods
Learning algorithms
Lesions
Machine Learning
Mammography
Medical diagnosis
Metastasis
Morphology
Neoplasms - classification
Neoplasms - diagnosis
Neoplasms - pathology
Neural networks
Principal components analysis
Regression analysis
Review
Support vector machines
Tabu search
Tumors
Ultrasonic imaging
Wavelet transforms
title Tabu Search and Machine-Learning Classification of Benign and Malignant Proliferative Breast Lesions
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-21T18%3A08%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Tabu%20Search%20and%20Machine-Learning%20Classification%20of%20Benign%20and%20Malignant%20Proliferative%20Breast%20Lesions&rft.jtitle=BioMed%20research%20international&rft.au=Al%20Maghayreh,%20Eslam&rft.date=2020&rft.volume=2020&rft.issue=2020&rft.spage=1&rft.epage=10&rft.pages=1-10&rft.issn=2314-6133&rft.eissn=2314-6141&rft_id=info:doi/10.1155/2020/4671349&rft_dat=%3Cgale_pubme%3EA624689291%3C/gale_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2374006467&rft_id=info:pmid/32258124&rft_galeid=A624689291&rfr_iscdi=true