Tabu Search and Machine-Learning Classification of Benign and Malignant Proliferative Breast Lesions
Breast cancer is the most diagnosed cancer among women around the world. The development of computer-aided diagnosis tools is essential to help pathologists to accurately interpret and discriminate between malignant and benign tumors. This paper proposes the development of an automated proliferative...
Gespeichert in:
Veröffentlicht in: | BioMed research international 2020, Vol.2020 (2020), p.1-10 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 10 |
---|---|
container_issue | 2020 |
container_start_page | 1 |
container_title | BioMed research international |
container_volume | 2020 |
creator | Al Maghayreh, Eslam Mahmood, Awais Rahmany, Ines Dhahri, Habib Elkilani, Wail |
description | Breast cancer is the most diagnosed cancer among women around the world. The development of computer-aided diagnosis tools is essential to help pathologists to accurately interpret and discriminate between malignant and benign tumors. This paper proposes the development of an automated proliferative breast lesion diagnosis based on machine-learning algorithms. We used Tabu search to select the most significant features. The evaluation of the feature is based on the dependency degree of each attribute in the rough set. The categorization of reduced features was built using five machine-learning algorithms. The proposed models were applied to the BIDMC-MGH and Wisconsin Diagnostic Breast Cancer datasets. The performance measures of the used models were evaluated owing to five criteria. The top performing models were AdaBoost and logistic regression. Comparisons with others works prove the efficiency of the proposed method for superior diagnosis of breast cancer against the reviewed classification techniques. |
doi_str_mv | 10.1155/2020/4671349 |
format | Article |
fullrecord | <record><control><sourceid>gale_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7064857</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A624689291</galeid><sourcerecordid>A624689291</sourcerecordid><originalsourceid>FETCH-LOGICAL-c499t-38abe2f34beb4f064005129e43de0e1357dbf6aaa7c35394de12850d78b7044c3</originalsourceid><addsrcrecordid>eNqNkU1v1DAQhiNERavSG2cUiQsShPrbyQWpXfElbQUS5WxNnPGuq6xd7KSIf49Xu2yhp87FI88z78zoraoXlLyjVMpzRhg5F0pTLron1QnjVDSKCvr0kHN-XJ3lfENKtFSRTj2rjjljsqVMnFTDNfRz_R0h2XUNYaivwK59wGZZvoIPq3oxQs7eeQuTj6GOrr7E4FdhT48lhTDV31IcvcNUqDusLxNCnuol5tKTn1dHDsaMZ_v3tPrx8cP14nOz_Prpy-Ji2VjRdVPDW-iROS567IUjShAiKetQ8AEJUi710DsFANpyyTsxIGWtJINue02EsPy0er_TvZ37DQ4Ww5RgNLfJbyD9NhG8-b8S_Nqs4p3RZVgrdRF4vRdI8eeMeTIbny2OIwSMczaMt1pJyQkr6KsH6E2cUyjnFUqX1VWx5Z5awYjGBxfLXLsVNReKCdV2rKOFerujbIo5J3SHlSkxW5_N1mez97ngL_898wD_dbUAb3ZAcXKAX_6RclgYdHBPlzJpNf8DkWS4QQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2374006467</pqid></control><display><type>article</type><title>Tabu Search and Machine-Learning Classification of Benign and Malignant Proliferative Breast Lesions</title><source>MEDLINE</source><source>Wiley Online Library Open Access</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>PubMed Central Open Access</source><creator>Al Maghayreh, Eslam ; Mahmood, Awais ; Rahmany, Ines ; Dhahri, Habib ; Elkilani, Wail</creator><contributor>Wei, Ji-Fu</contributor><creatorcontrib>Al Maghayreh, Eslam ; Mahmood, Awais ; Rahmany, Ines ; Dhahri, Habib ; Elkilani, Wail ; Wei, Ji-Fu</creatorcontrib><description>Breast cancer is the most diagnosed cancer among women around the world. The development of computer-aided diagnosis tools is essential to help pathologists to accurately interpret and discriminate between malignant and benign tumors. This paper proposes the development of an automated proliferative breast lesion diagnosis based on machine-learning algorithms. We used Tabu search to select the most significant features. The evaluation of the feature is based on the dependency degree of each attribute in the rough set. The categorization of reduced features was built using five machine-learning algorithms. The proposed models were applied to the BIDMC-MGH and Wisconsin Diagnostic Breast Cancer datasets. The performance measures of the used models were evaluated owing to five criteria. The top performing models were AdaBoost and logistic regression. Comparisons with others works prove the efficiency of the proposed method for superior diagnosis of breast cancer against the reviewed classification techniques.</description><identifier>ISSN: 2314-6133</identifier><identifier>EISSN: 2314-6141</identifier><identifier>DOI: 10.1155/2020/4671349</identifier><identifier>PMID: 32258124</identifier><language>eng</language><publisher>Cairo, Egypt: Hindawi Publishing Corporation</publisher><subject>Accuracy ; Algorithms ; Benign ; Breast - diagnostic imaging ; Breast - pathology ; Breast cancer ; Breast Neoplasms - classification ; Breast Neoplasms - diagnosis ; Breast Neoplasms - pathology ; Cancer ; Cell Proliferation ; Classification ; Data mining ; Datasets ; Deep learning ; Diagnosis ; Diagnosis, Computer-Assisted - methods ; Diagnostic systems ; Experiments ; Female ; Fibrocystic Breast Disease - classification ; Fibrocystic Breast Disease - diagnosis ; Fibrocystic Breast Disease - pathology ; Fourier transforms ; Gene expression ; Humans ; Image Interpretation, Computer-Assisted - methods ; Learning algorithms ; Lesions ; Machine Learning ; Mammography ; Medical diagnosis ; Metastasis ; Morphology ; Neoplasms - classification ; Neoplasms - diagnosis ; Neoplasms - pathology ; Neural networks ; Principal components analysis ; Regression analysis ; Review ; Support vector machines ; Tabu search ; Tumors ; Ultrasonic imaging ; Wavelet transforms</subject><ispartof>BioMed research international, 2020, Vol.2020 (2020), p.1-10</ispartof><rights>Copyright © 2020 Habib Dhahri et al.</rights><rights>COPYRIGHT 2020 John Wiley & Sons, Inc.</rights><rights>Copyright © 2020 Habib Dhahri et al. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. http://creativecommons.org/licenses/by/4.0</rights><rights>Copyright © 2020 Habib Dhahri et al. 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c499t-38abe2f34beb4f064005129e43de0e1357dbf6aaa7c35394de12850d78b7044c3</citedby><cites>FETCH-LOGICAL-c499t-38abe2f34beb4f064005129e43de0e1357dbf6aaa7c35394de12850d78b7044c3</cites><orcidid>0000-0003-2436-0249 ; 0000-0003-4163-7625 ; 0000-0003-4668-7840 ; 0000-0001-9086-5080</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7064857/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7064857/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,4010,27900,27901,27902,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32258124$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Wei, Ji-Fu</contributor><creatorcontrib>Al Maghayreh, Eslam</creatorcontrib><creatorcontrib>Mahmood, Awais</creatorcontrib><creatorcontrib>Rahmany, Ines</creatorcontrib><creatorcontrib>Dhahri, Habib</creatorcontrib><creatorcontrib>Elkilani, Wail</creatorcontrib><title>Tabu Search and Machine-Learning Classification of Benign and Malignant Proliferative Breast Lesions</title><title>BioMed research international</title><addtitle>Biomed Res Int</addtitle><description>Breast cancer is the most diagnosed cancer among women around the world. The development of computer-aided diagnosis tools is essential to help pathologists to accurately interpret and discriminate between malignant and benign tumors. This paper proposes the development of an automated proliferative breast lesion diagnosis based on machine-learning algorithms. We used Tabu search to select the most significant features. The evaluation of the feature is based on the dependency degree of each attribute in the rough set. The categorization of reduced features was built using five machine-learning algorithms. The proposed models were applied to the BIDMC-MGH and Wisconsin Diagnostic Breast Cancer datasets. The performance measures of the used models were evaluated owing to five criteria. The top performing models were AdaBoost and logistic regression. Comparisons with others works prove the efficiency of the proposed method for superior diagnosis of breast cancer against the reviewed classification techniques.</description><subject>Accuracy</subject><subject>Algorithms</subject><subject>Benign</subject><subject>Breast - diagnostic imaging</subject><subject>Breast - pathology</subject><subject>Breast cancer</subject><subject>Breast Neoplasms - classification</subject><subject>Breast Neoplasms - diagnosis</subject><subject>Breast Neoplasms - pathology</subject><subject>Cancer</subject><subject>Cell Proliferation</subject><subject>Classification</subject><subject>Data mining</subject><subject>Datasets</subject><subject>Deep learning</subject><subject>Diagnosis</subject><subject>Diagnosis, Computer-Assisted - methods</subject><subject>Diagnostic systems</subject><subject>Experiments</subject><subject>Female</subject><subject>Fibrocystic Breast Disease - classification</subject><subject>Fibrocystic Breast Disease - diagnosis</subject><subject>Fibrocystic Breast Disease - pathology</subject><subject>Fourier transforms</subject><subject>Gene expression</subject><subject>Humans</subject><subject>Image Interpretation, Computer-Assisted - methods</subject><subject>Learning algorithms</subject><subject>Lesions</subject><subject>Machine Learning</subject><subject>Mammography</subject><subject>Medical diagnosis</subject><subject>Metastasis</subject><subject>Morphology</subject><subject>Neoplasms - classification</subject><subject>Neoplasms - diagnosis</subject><subject>Neoplasms - pathology</subject><subject>Neural networks</subject><subject>Principal components analysis</subject><subject>Regression analysis</subject><subject>Review</subject><subject>Support vector machines</subject><subject>Tabu search</subject><subject>Tumors</subject><subject>Ultrasonic imaging</subject><subject>Wavelet transforms</subject><issn>2314-6133</issn><issn>2314-6141</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>RHX</sourceid><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><recordid>eNqNkU1v1DAQhiNERavSG2cUiQsShPrbyQWpXfElbQUS5WxNnPGuq6xd7KSIf49Xu2yhp87FI88z78zoraoXlLyjVMpzRhg5F0pTLron1QnjVDSKCvr0kHN-XJ3lfENKtFSRTj2rjjljsqVMnFTDNfRz_R0h2XUNYaivwK59wGZZvoIPq3oxQs7eeQuTj6GOrr7E4FdhT48lhTDV31IcvcNUqDusLxNCnuol5tKTn1dHDsaMZ_v3tPrx8cP14nOz_Prpy-Ji2VjRdVPDW-iROS567IUjShAiKetQ8AEJUi710DsFANpyyTsxIGWtJINue02EsPy0er_TvZ37DQ4Ww5RgNLfJbyD9NhG8-b8S_Nqs4p3RZVgrdRF4vRdI8eeMeTIbny2OIwSMczaMt1pJyQkr6KsH6E2cUyjnFUqX1VWx5Z5awYjGBxfLXLsVNReKCdV2rKOFerujbIo5J3SHlSkxW5_N1mez97ngL_898wD_dbUAb3ZAcXKAX_6RclgYdHBPlzJpNf8DkWS4QQ</recordid><startdate>2020</startdate><enddate>2020</enddate><creator>Al Maghayreh, Eslam</creator><creator>Mahmood, Awais</creator><creator>Rahmany, Ines</creator><creator>Dhahri, Habib</creator><creator>Elkilani, Wail</creator><general>Hindawi Publishing Corporation</general><general>Hindawi</general><general>John Wiley & Sons, Inc</general><general>Hindawi Limited</general><scope>ADJCN</scope><scope>AHFXO</scope><scope>RHU</scope><scope>RHW</scope><scope>RHX</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7QO</scope><scope>7T7</scope><scope>7TK</scope><scope>7U7</scope><scope>7U9</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>CWDGH</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PHGZM</scope><scope>PHGZT</scope><scope>PIMPY</scope><scope>PJZUB</scope><scope>PKEHL</scope><scope>PPXIY</scope><scope>PQEST</scope><scope>PQGLB</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-2436-0249</orcidid><orcidid>https://orcid.org/0000-0003-4163-7625</orcidid><orcidid>https://orcid.org/0000-0003-4668-7840</orcidid><orcidid>https://orcid.org/0000-0001-9086-5080</orcidid></search><sort><creationdate>2020</creationdate><title>Tabu Search and Machine-Learning Classification of Benign and Malignant Proliferative Breast Lesions</title><author>Al Maghayreh, Eslam ; Mahmood, Awais ; Rahmany, Ines ; Dhahri, Habib ; Elkilani, Wail</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c499t-38abe2f34beb4f064005129e43de0e1357dbf6aaa7c35394de12850d78b7044c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Accuracy</topic><topic>Algorithms</topic><topic>Benign</topic><topic>Breast - diagnostic imaging</topic><topic>Breast - pathology</topic><topic>Breast cancer</topic><topic>Breast Neoplasms - classification</topic><topic>Breast Neoplasms - diagnosis</topic><topic>Breast Neoplasms - pathology</topic><topic>Cancer</topic><topic>Cell Proliferation</topic><topic>Classification</topic><topic>Data mining</topic><topic>Datasets</topic><topic>Deep learning</topic><topic>Diagnosis</topic><topic>Diagnosis, Computer-Assisted - methods</topic><topic>Diagnostic systems</topic><topic>Experiments</topic><topic>Female</topic><topic>Fibrocystic Breast Disease - classification</topic><topic>Fibrocystic Breast Disease - diagnosis</topic><topic>Fibrocystic Breast Disease - pathology</topic><topic>Fourier transforms</topic><topic>Gene expression</topic><topic>Humans</topic><topic>Image Interpretation, Computer-Assisted - methods</topic><topic>Learning algorithms</topic><topic>Lesions</topic><topic>Machine Learning</topic><topic>Mammography</topic><topic>Medical diagnosis</topic><topic>Metastasis</topic><topic>Morphology</topic><topic>Neoplasms - classification</topic><topic>Neoplasms - diagnosis</topic><topic>Neoplasms - pathology</topic><topic>Neural networks</topic><topic>Principal components analysis</topic><topic>Regression analysis</topic><topic>Review</topic><topic>Support vector machines</topic><topic>Tabu search</topic><topic>Tumors</topic><topic>Ultrasonic imaging</topic><topic>Wavelet transforms</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Al Maghayreh, Eslam</creatorcontrib><creatorcontrib>Mahmood, Awais</creatorcontrib><creatorcontrib>Rahmany, Ines</creatorcontrib><creatorcontrib>Dhahri, Habib</creatorcontrib><creatorcontrib>Elkilani, Wail</creatorcontrib><collection>الدوريات العلمية والإحصائية - e-Marefa Academic and Statistical Periodicals</collection><collection>معرفة - المحتوى العربي الأكاديمي المتكامل - e-Marefa Academic Complete</collection><collection>Hindawi Publishing Complete</collection><collection>Hindawi Publishing Subscription Journals</collection><collection>Hindawi Publishing Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Neurosciences Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection (ProQuest)</collection><collection>Natural Science Collection (ProQuest)</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>Middle East & Africa Database</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest Central (New)</collection><collection>ProQuest One Academic (New)</collection><collection>Publicly Available Content Database</collection><collection>ProQuest Health & Medical Research Collection</collection><collection>ProQuest One Academic Middle East (New)</collection><collection>ProQuest One Health & Nursing</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Applied & Life Sciences</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>BioMed research international</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Al Maghayreh, Eslam</au><au>Mahmood, Awais</au><au>Rahmany, Ines</au><au>Dhahri, Habib</au><au>Elkilani, Wail</au><au>Wei, Ji-Fu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Tabu Search and Machine-Learning Classification of Benign and Malignant Proliferative Breast Lesions</atitle><jtitle>BioMed research international</jtitle><addtitle>Biomed Res Int</addtitle><date>2020</date><risdate>2020</risdate><volume>2020</volume><issue>2020</issue><spage>1</spage><epage>10</epage><pages>1-10</pages><issn>2314-6133</issn><eissn>2314-6141</eissn><abstract>Breast cancer is the most diagnosed cancer among women around the world. The development of computer-aided diagnosis tools is essential to help pathologists to accurately interpret and discriminate between malignant and benign tumors. This paper proposes the development of an automated proliferative breast lesion diagnosis based on machine-learning algorithms. We used Tabu search to select the most significant features. The evaluation of the feature is based on the dependency degree of each attribute in the rough set. The categorization of reduced features was built using five machine-learning algorithms. The proposed models were applied to the BIDMC-MGH and Wisconsin Diagnostic Breast Cancer datasets. The performance measures of the used models were evaluated owing to five criteria. The top performing models were AdaBoost and logistic regression. Comparisons with others works prove the efficiency of the proposed method for superior diagnosis of breast cancer against the reviewed classification techniques.</abstract><cop>Cairo, Egypt</cop><pub>Hindawi Publishing Corporation</pub><pmid>32258124</pmid><doi>10.1155/2020/4671349</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0003-2436-0249</orcidid><orcidid>https://orcid.org/0000-0003-4163-7625</orcidid><orcidid>https://orcid.org/0000-0003-4668-7840</orcidid><orcidid>https://orcid.org/0000-0001-9086-5080</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2314-6133 |
ispartof | BioMed research international, 2020, Vol.2020 (2020), p.1-10 |
issn | 2314-6133 2314-6141 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7064857 |
source | MEDLINE; Wiley Online Library Open Access; PubMed Central; Alma/SFX Local Collection; PubMed Central Open Access |
subjects | Accuracy Algorithms Benign Breast - diagnostic imaging Breast - pathology Breast cancer Breast Neoplasms - classification Breast Neoplasms - diagnosis Breast Neoplasms - pathology Cancer Cell Proliferation Classification Data mining Datasets Deep learning Diagnosis Diagnosis, Computer-Assisted - methods Diagnostic systems Experiments Female Fibrocystic Breast Disease - classification Fibrocystic Breast Disease - diagnosis Fibrocystic Breast Disease - pathology Fourier transforms Gene expression Humans Image Interpretation, Computer-Assisted - methods Learning algorithms Lesions Machine Learning Mammography Medical diagnosis Metastasis Morphology Neoplasms - classification Neoplasms - diagnosis Neoplasms - pathology Neural networks Principal components analysis Regression analysis Review Support vector machines Tabu search Tumors Ultrasonic imaging Wavelet transforms |
title | Tabu Search and Machine-Learning Classification of Benign and Malignant Proliferative Breast Lesions |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-21T18%3A08%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Tabu%20Search%20and%20Machine-Learning%20Classification%20of%20Benign%20and%20Malignant%20Proliferative%20Breast%20Lesions&rft.jtitle=BioMed%20research%20international&rft.au=Al%20Maghayreh,%20Eslam&rft.date=2020&rft.volume=2020&rft.issue=2020&rft.spage=1&rft.epage=10&rft.pages=1-10&rft.issn=2314-6133&rft.eissn=2314-6141&rft_id=info:doi/10.1155/2020/4671349&rft_dat=%3Cgale_pubme%3EA624689291%3C/gale_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2374006467&rft_id=info:pmid/32258124&rft_galeid=A624689291&rfr_iscdi=true |