RESTORE: Robust intEnSiTy nORmalization mEthod for multiplexed imaging

Recent advances in multiplexed imaging technologies promise to improve the understanding of the functional states of individual cells and the interactions between the cells in tissues. This often requires compilation of results from multiple samples. However, quantitative integration of information...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Communications biology 2020-03, Vol.3 (1), p.111-111, Article 111
Hauptverfasser: Chang, Young Hwan, Chin, Koei, Thibault, Guillaume, Eng, Jennifer, Burlingame, Erik, Gray, Joe W.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 111
container_issue 1
container_start_page 111
container_title Communications biology
container_volume 3
creator Chang, Young Hwan
Chin, Koei
Thibault, Guillaume
Eng, Jennifer
Burlingame, Erik
Gray, Joe W.
description Recent advances in multiplexed imaging technologies promise to improve the understanding of the functional states of individual cells and the interactions between the cells in tissues. This often requires compilation of results from multiple samples. However, quantitative integration of information between samples is complicated by variations in staining intensity and background fluorescence that obscure biological variations. Failure to remove these unwanted artifacts will complicate downstream analysis and diminish the value of multiplexed imaging for clinical applications. Here, to compensate for unwanted variations, we automatically identify negative control cells for each marker within the same tissue and use their expression levels to infer background signal level. The intensity profile is normalized by the inferred level of the negative control cells to remove between-sample variation. Using a tissue microarray data and a pair of longitudinal biopsy samples, we demonstrated that the proposed approach can remove unwanted variations effectively and shows robust performance. Chang et al. develop an analytical method called RESTORE to control for variations due to technical artifacts in multiplexed imaging. They test their method on a CycIF stained tissue microarray dataset and biopsies processed at different times. Their method can improve the applicability of imaging techniques in diagnostics and inference using unbiased clustering methods.
doi_str_mv 10.1038/s42003-020-0828-1
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7062831</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2377425895</sourcerecordid><originalsourceid>FETCH-LOGICAL-c536t-79fc2323ebd80ee69e8647793aa208e652c2691e747e44020fe43207cda213933</originalsourceid><addsrcrecordid>eNp1kUFr3DAQhUVpaEKSH5BLMfTSi1tpJEtWD4USnCYQWNhszkJrjzcKtrSV7NLk10fLpmla6EmC-fT03jxCzhj9xCivPycBlPKSAi1pDXXJ3pAj4FqXXAp4--p-SE5TuqeUMq215OIdOeTAKhBCHZGLZXOzWiybL8UyrOc0Fc5Pjb9xq4fCL5ajHdyjnVzwxdhMd6Er-hCLcR4mtx3wF3aFG-3G-c0JOejtkPD0-TwmtxfN6vyyvF58vzr_dl22FZdTqXTfAgeO666miFJjLYVSmlsLtEZZQQtSM1RCoRA5Wo-CA1VtZ4Fxzfkx-brX3c7rEbsW_RTtYLYx-4gPJlhn_p54d2c24adRVELNWRb4-CwQw48Z02RGl1ocBusxzMkAV5WmMm82ox_-Qe_DHH2Ot6OUgKrWVabYnmpjSCli_2KGUbMryuyLMjmN2RVldibev07x8uJ3LRmAPZDyyG8w_vn6_6pPkPacQQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2377425895</pqid></control><display><type>article</type><title>RESTORE: Robust intEnSiTy nORmalization mEthod for multiplexed imaging</title><source>Nature Free</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>Springer Nature OA/Free Journals</source><source>PubMed Central Open Access</source><creator>Chang, Young Hwan ; Chin, Koei ; Thibault, Guillaume ; Eng, Jennifer ; Burlingame, Erik ; Gray, Joe W.</creator><creatorcontrib>Chang, Young Hwan ; Chin, Koei ; Thibault, Guillaume ; Eng, Jennifer ; Burlingame, Erik ; Gray, Joe W.</creatorcontrib><description>Recent advances in multiplexed imaging technologies promise to improve the understanding of the functional states of individual cells and the interactions between the cells in tissues. This often requires compilation of results from multiple samples. However, quantitative integration of information between samples is complicated by variations in staining intensity and background fluorescence that obscure biological variations. Failure to remove these unwanted artifacts will complicate downstream analysis and diminish the value of multiplexed imaging for clinical applications. Here, to compensate for unwanted variations, we automatically identify negative control cells for each marker within the same tissue and use their expression levels to infer background signal level. The intensity profile is normalized by the inferred level of the negative control cells to remove between-sample variation. Using a tissue microarray data and a pair of longitudinal biopsy samples, we demonstrated that the proposed approach can remove unwanted variations effectively and shows robust performance. Chang et al. develop an analytical method called RESTORE to control for variations due to technical artifacts in multiplexed imaging. They test their method on a CycIF stained tissue microarray dataset and biopsies processed at different times. Their method can improve the applicability of imaging techniques in diagnostics and inference using unbiased clustering methods.</description><identifier>ISSN: 2399-3642</identifier><identifier>EISSN: 2399-3642</identifier><identifier>DOI: 10.1038/s42003-020-0828-1</identifier><identifier>PMID: 32152447</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>631/114 ; 631/114/1564 ; Biology ; Biomedical and Life Sciences ; Biopsy ; Life Sciences ; Therapeutic applications ; Variation</subject><ispartof>Communications biology, 2020-03, Vol.3 (1), p.111-111, Article 111</ispartof><rights>The Author(s) 2020</rights><rights>This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c536t-79fc2323ebd80ee69e8647793aa208e652c2691e747e44020fe43207cda213933</citedby><cites>FETCH-LOGICAL-c536t-79fc2323ebd80ee69e8647793aa208e652c2691e747e44020fe43207cda213933</cites><orcidid>0000-0001-8764-1959</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7062831/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7062831/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,27901,27902,41096,42165,51551,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32152447$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Chang, Young Hwan</creatorcontrib><creatorcontrib>Chin, Koei</creatorcontrib><creatorcontrib>Thibault, Guillaume</creatorcontrib><creatorcontrib>Eng, Jennifer</creatorcontrib><creatorcontrib>Burlingame, Erik</creatorcontrib><creatorcontrib>Gray, Joe W.</creatorcontrib><title>RESTORE: Robust intEnSiTy nORmalization mEthod for multiplexed imaging</title><title>Communications biology</title><addtitle>Commun Biol</addtitle><addtitle>Commun Biol</addtitle><description>Recent advances in multiplexed imaging technologies promise to improve the understanding of the functional states of individual cells and the interactions between the cells in tissues. This often requires compilation of results from multiple samples. However, quantitative integration of information between samples is complicated by variations in staining intensity and background fluorescence that obscure biological variations. Failure to remove these unwanted artifacts will complicate downstream analysis and diminish the value of multiplexed imaging for clinical applications. Here, to compensate for unwanted variations, we automatically identify negative control cells for each marker within the same tissue and use their expression levels to infer background signal level. The intensity profile is normalized by the inferred level of the negative control cells to remove between-sample variation. Using a tissue microarray data and a pair of longitudinal biopsy samples, we demonstrated that the proposed approach can remove unwanted variations effectively and shows robust performance. Chang et al. develop an analytical method called RESTORE to control for variations due to technical artifacts in multiplexed imaging. They test their method on a CycIF stained tissue microarray dataset and biopsies processed at different times. Their method can improve the applicability of imaging techniques in diagnostics and inference using unbiased clustering methods.</description><subject>631/114</subject><subject>631/114/1564</subject><subject>Biology</subject><subject>Biomedical and Life Sciences</subject><subject>Biopsy</subject><subject>Life Sciences</subject><subject>Therapeutic applications</subject><subject>Variation</subject><issn>2399-3642</issn><issn>2399-3642</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>BENPR</sourceid><recordid>eNp1kUFr3DAQhUVpaEKSH5BLMfTSi1tpJEtWD4USnCYQWNhszkJrjzcKtrSV7NLk10fLpmla6EmC-fT03jxCzhj9xCivPycBlPKSAi1pDXXJ3pAj4FqXXAp4--p-SE5TuqeUMq215OIdOeTAKhBCHZGLZXOzWiybL8UyrOc0Fc5Pjb9xq4fCL5ajHdyjnVzwxdhMd6Er-hCLcR4mtx3wF3aFG-3G-c0JOejtkPD0-TwmtxfN6vyyvF58vzr_dl22FZdTqXTfAgeO666miFJjLYVSmlsLtEZZQQtSM1RCoRA5Wo-CA1VtZ4Fxzfkx-brX3c7rEbsW_RTtYLYx-4gPJlhn_p54d2c24adRVELNWRb4-CwQw48Z02RGl1ocBusxzMkAV5WmMm82ox_-Qe_DHH2Ot6OUgKrWVabYnmpjSCli_2KGUbMryuyLMjmN2RVldibev07x8uJ3LRmAPZDyyG8w_vn6_6pPkPacQQ</recordid><startdate>20200309</startdate><enddate>20200309</enddate><creator>Chang, Young Hwan</creator><creator>Chin, Koei</creator><creator>Thibault, Guillaume</creator><creator>Eng, Jennifer</creator><creator>Burlingame, Erik</creator><creator>Gray, Joe W.</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>C6C</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7XB</scope><scope>88I</scope><scope>8FE</scope><scope>8FH</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>LK8</scope><scope>M2P</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-8764-1959</orcidid></search><sort><creationdate>20200309</creationdate><title>RESTORE: Robust intEnSiTy nORmalization mEthod for multiplexed imaging</title><author>Chang, Young Hwan ; Chin, Koei ; Thibault, Guillaume ; Eng, Jennifer ; Burlingame, Erik ; Gray, Joe W.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c536t-79fc2323ebd80ee69e8647793aa208e652c2691e747e44020fe43207cda213933</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>631/114</topic><topic>631/114/1564</topic><topic>Biology</topic><topic>Biomedical and Life Sciences</topic><topic>Biopsy</topic><topic>Life Sciences</topic><topic>Therapeutic applications</topic><topic>Variation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chang, Young Hwan</creatorcontrib><creatorcontrib>Chin, Koei</creatorcontrib><creatorcontrib>Thibault, Guillaume</creatorcontrib><creatorcontrib>Eng, Jennifer</creatorcontrib><creatorcontrib>Burlingame, Erik</creatorcontrib><creatorcontrib>Gray, Joe W.</creatorcontrib><collection>Springer Nature OA/Free Journals</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Communications biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chang, Young Hwan</au><au>Chin, Koei</au><au>Thibault, Guillaume</au><au>Eng, Jennifer</au><au>Burlingame, Erik</au><au>Gray, Joe W.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>RESTORE: Robust intEnSiTy nORmalization mEthod for multiplexed imaging</atitle><jtitle>Communications biology</jtitle><stitle>Commun Biol</stitle><addtitle>Commun Biol</addtitle><date>2020-03-09</date><risdate>2020</risdate><volume>3</volume><issue>1</issue><spage>111</spage><epage>111</epage><pages>111-111</pages><artnum>111</artnum><issn>2399-3642</issn><eissn>2399-3642</eissn><abstract>Recent advances in multiplexed imaging technologies promise to improve the understanding of the functional states of individual cells and the interactions between the cells in tissues. This often requires compilation of results from multiple samples. However, quantitative integration of information between samples is complicated by variations in staining intensity and background fluorescence that obscure biological variations. Failure to remove these unwanted artifacts will complicate downstream analysis and diminish the value of multiplexed imaging for clinical applications. Here, to compensate for unwanted variations, we automatically identify negative control cells for each marker within the same tissue and use their expression levels to infer background signal level. The intensity profile is normalized by the inferred level of the negative control cells to remove between-sample variation. Using a tissue microarray data and a pair of longitudinal biopsy samples, we demonstrated that the proposed approach can remove unwanted variations effectively and shows robust performance. Chang et al. develop an analytical method called RESTORE to control for variations due to technical artifacts in multiplexed imaging. They test their method on a CycIF stained tissue microarray dataset and biopsies processed at different times. Their method can improve the applicability of imaging techniques in diagnostics and inference using unbiased clustering methods.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>32152447</pmid><doi>10.1038/s42003-020-0828-1</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0001-8764-1959</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2399-3642
ispartof Communications biology, 2020-03, Vol.3 (1), p.111-111, Article 111
issn 2399-3642
2399-3642
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7062831
source Nature Free; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; Springer Nature OA/Free Journals; PubMed Central Open Access
subjects 631/114
631/114/1564
Biology
Biomedical and Life Sciences
Biopsy
Life Sciences
Therapeutic applications
Variation
title RESTORE: Robust intEnSiTy nORmalization mEthod for multiplexed imaging
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T11%3A46%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=RESTORE:%20Robust%20intEnSiTy%20nORmalization%20mEthod%20for%20multiplexed%20imaging&rft.jtitle=Communications%20biology&rft.au=Chang,%20Young%20Hwan&rft.date=2020-03-09&rft.volume=3&rft.issue=1&rft.spage=111&rft.epage=111&rft.pages=111-111&rft.artnum=111&rft.issn=2399-3642&rft.eissn=2399-3642&rft_id=info:doi/10.1038/s42003-020-0828-1&rft_dat=%3Cproquest_pubme%3E2377425895%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2377425895&rft_id=info:pmid/32152447&rfr_iscdi=true