PhlG mediates the conversion of DAPG to MAPG in Pseudomonas fluorescens 2P24

The antibiotic 2,4-diacetylphoroglucinol (2,4-DAPG), produced by the Gram-negative rod-shaped bacterium Pseudomonas fluorescens 2P24, is active against various soil-borne bacterial and fungal pathogens that cause plant diseases. Biosynthesis of 2,4-DAPG is controlled by regulating expression of the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Scientific reports 2020-03, Vol.10 (1), p.4296-4296, Article 4296
Hauptverfasser: Zhao, Ming-Min, Lyu, Ning, Wang, Dong, Wu, Xiao-Gang, Zhao, Yuan-Zheng, Zhang, Li-Qun, Zhou, Hong-You
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 4296
container_issue 1
container_start_page 4296
container_title Scientific reports
container_volume 10
creator Zhao, Ming-Min
Lyu, Ning
Wang, Dong
Wu, Xiao-Gang
Zhao, Yuan-Zheng
Zhang, Li-Qun
Zhou, Hong-You
description The antibiotic 2,4-diacetylphoroglucinol (2,4-DAPG), produced by the Gram-negative rod-shaped bacterium Pseudomonas fluorescens 2P24, is active against various soil-borne bacterial and fungal pathogens that cause plant diseases. Biosynthesis of 2,4-DAPG is controlled by regulating expression of the phlACBD operon at the post-transcriptional level. The phlG gene is located between the phlF and phlH genes, upstream of the phlACBD biosynthetic operon. Herein, we cloned the phlG gene, generated a phlG deletion mutant, and investigated its regulatory role in 2,4-DAPG biosynthesis. The results showed that deletion of phlG had no effect on the biosynthesis of 2,4-DAPG, but it affected conversion of 2,4-DAPG to its precursor monoacetylphloroglucinol (MAPG). The global regulatory factor encoded by gacS positively regulated expression of phlG , while rsmE negatively regulated its expression. Deleting phlG did not alter the ability of the bacterium to colonise plants or promote plant growth. These results suggest that phlG collaborates with other factors to regulate production of the antibiotic 2,4-DAPG in P. fluorescens 2P24.
doi_str_mv 10.1038/s41598-020-60555-9
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7062750</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2375480329</sourcerecordid><originalsourceid>FETCH-LOGICAL-c511t-1616ac3e20101fcf4cd688225b1d03df8219aebef48a950f7db5992e6fd3084b3</originalsourceid><addsrcrecordid>eNp9kU1PxCAQhonRqFH_gAdD4sVLFQbowsXE-LGarHEPeia0BbemCwrtJv57Wdfvg1yGZJ555528CO1TckwJkyeJU6FkQYAUJRFCFGoNbQPhogAGsP7jv4X2Unoi-QlQnKpNtMWACmBMbqPJdNaN8dw2reltwv3M4jr4hY2pDR4Hhy_OpmPcB3y7rK3H02SHJsyDNwm7bgjRptr6hGEKfBdtONMlu_dRd9DD1eX9-XUxuRvfnJ9NilpQ2he0pKWpmQVCCXW143VTSgkgKtoQ1jgJVBlbWcelUYK4UVMJpcCWrmFE8ortoNOV7vNQZet5fx9Np59jOzfxVQfT6t8d3870Y1joESlhJEgWOPoQiOFlsKnX8zaf0XXG2zAkDWwkZMmzq4we_kGfwhB9Pu-d4pIwUJmCFVXHkFK07ssMJXqZl17lpXNe-j0vvRw6-HnG18hnOhlgKyDlln-08Xv3P7JvisCe6A</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2375480329</pqid></control><display><type>article</type><title>PhlG mediates the conversion of DAPG to MAPG in Pseudomonas fluorescens 2P24</title><source>MEDLINE</source><source>Nature Free</source><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><source>Springer Nature OA Free Journals</source><creator>Zhao, Ming-Min ; Lyu, Ning ; Wang, Dong ; Wu, Xiao-Gang ; Zhao, Yuan-Zheng ; Zhang, Li-Qun ; Zhou, Hong-You</creator><creatorcontrib>Zhao, Ming-Min ; Lyu, Ning ; Wang, Dong ; Wu, Xiao-Gang ; Zhao, Yuan-Zheng ; Zhang, Li-Qun ; Zhou, Hong-You</creatorcontrib><description>The antibiotic 2,4-diacetylphoroglucinol (2,4-DAPG), produced by the Gram-negative rod-shaped bacterium Pseudomonas fluorescens 2P24, is active against various soil-borne bacterial and fungal pathogens that cause plant diseases. Biosynthesis of 2,4-DAPG is controlled by regulating expression of the phlACBD operon at the post-transcriptional level. The phlG gene is located between the phlF and phlH genes, upstream of the phlACBD biosynthetic operon. Herein, we cloned the phlG gene, generated a phlG deletion mutant, and investigated its regulatory role in 2,4-DAPG biosynthesis. The results showed that deletion of phlG had no effect on the biosynthesis of 2,4-DAPG, but it affected conversion of 2,4-DAPG to its precursor monoacetylphloroglucinol (MAPG). The global regulatory factor encoded by gacS positively regulated expression of phlG , while rsmE negatively regulated its expression. Deleting phlG did not alter the ability of the bacterium to colonise plants or promote plant growth. These results suggest that phlG collaborates with other factors to regulate production of the antibiotic 2,4-DAPG in P. fluorescens 2P24.</description><identifier>ISSN: 2045-2322</identifier><identifier>EISSN: 2045-2322</identifier><identifier>DOI: 10.1038/s41598-020-60555-9</identifier><identifier>PMID: 32152338</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>38/77 ; 42/44 ; 42/70 ; 631/326/22 ; 631/326/2522 ; Anti-Bacterial Agents - pharmacology ; Antibiotics ; Bacterial Proteins - genetics ; Bacterial Proteins - metabolism ; Biosynthesis ; Clonal deletion ; Deletion mutant ; Gene deletion ; Humanities and Social Sciences ; multidisciplinary ; Phloroglucinol - analogs &amp; derivatives ; Phloroglucinol - metabolism ; Plant diseases ; Plant Diseases - immunology ; Plant Diseases - microbiology ; Plant growth ; Post-transcription ; Pseudomonas fluorescens ; Pseudomonas fluorescens - growth &amp; development ; Pseudomonas fluorescens - metabolism ; Science ; Science (multidisciplinary) ; Soil microorganisms ; Triticum - drug effects ; Triticum - growth &amp; development ; Triticum - microbiology</subject><ispartof>Scientific reports, 2020-03, Vol.10 (1), p.4296-4296, Article 4296</ispartof><rights>The Author(s) 2020</rights><rights>This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c511t-1616ac3e20101fcf4cd688225b1d03df8219aebef48a950f7db5992e6fd3084b3</citedby><cites>FETCH-LOGICAL-c511t-1616ac3e20101fcf4cd688225b1d03df8219aebef48a950f7db5992e6fd3084b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7062750/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7062750/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,27903,27904,41099,42168,51554,53769,53771</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32152338$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhao, Ming-Min</creatorcontrib><creatorcontrib>Lyu, Ning</creatorcontrib><creatorcontrib>Wang, Dong</creatorcontrib><creatorcontrib>Wu, Xiao-Gang</creatorcontrib><creatorcontrib>Zhao, Yuan-Zheng</creatorcontrib><creatorcontrib>Zhang, Li-Qun</creatorcontrib><creatorcontrib>Zhou, Hong-You</creatorcontrib><title>PhlG mediates the conversion of DAPG to MAPG in Pseudomonas fluorescens 2P24</title><title>Scientific reports</title><addtitle>Sci Rep</addtitle><addtitle>Sci Rep</addtitle><description>The antibiotic 2,4-diacetylphoroglucinol (2,4-DAPG), produced by the Gram-negative rod-shaped bacterium Pseudomonas fluorescens 2P24, is active against various soil-borne bacterial and fungal pathogens that cause plant diseases. Biosynthesis of 2,4-DAPG is controlled by regulating expression of the phlACBD operon at the post-transcriptional level. The phlG gene is located between the phlF and phlH genes, upstream of the phlACBD biosynthetic operon. Herein, we cloned the phlG gene, generated a phlG deletion mutant, and investigated its regulatory role in 2,4-DAPG biosynthesis. The results showed that deletion of phlG had no effect on the biosynthesis of 2,4-DAPG, but it affected conversion of 2,4-DAPG to its precursor monoacetylphloroglucinol (MAPG). The global regulatory factor encoded by gacS positively regulated expression of phlG , while rsmE negatively regulated its expression. Deleting phlG did not alter the ability of the bacterium to colonise plants or promote plant growth. These results suggest that phlG collaborates with other factors to regulate production of the antibiotic 2,4-DAPG in P. fluorescens 2P24.</description><subject>38/77</subject><subject>42/44</subject><subject>42/70</subject><subject>631/326/22</subject><subject>631/326/2522</subject><subject>Anti-Bacterial Agents - pharmacology</subject><subject>Antibiotics</subject><subject>Bacterial Proteins - genetics</subject><subject>Bacterial Proteins - metabolism</subject><subject>Biosynthesis</subject><subject>Clonal deletion</subject><subject>Deletion mutant</subject><subject>Gene deletion</subject><subject>Humanities and Social Sciences</subject><subject>multidisciplinary</subject><subject>Phloroglucinol - analogs &amp; derivatives</subject><subject>Phloroglucinol - metabolism</subject><subject>Plant diseases</subject><subject>Plant Diseases - immunology</subject><subject>Plant Diseases - microbiology</subject><subject>Plant growth</subject><subject>Post-transcription</subject><subject>Pseudomonas fluorescens</subject><subject>Pseudomonas fluorescens - growth &amp; development</subject><subject>Pseudomonas fluorescens - metabolism</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>Soil microorganisms</subject><subject>Triticum - drug effects</subject><subject>Triticum - growth &amp; development</subject><subject>Triticum - microbiology</subject><issn>2045-2322</issn><issn>2045-2322</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><recordid>eNp9kU1PxCAQhonRqFH_gAdD4sVLFQbowsXE-LGarHEPeia0BbemCwrtJv57Wdfvg1yGZJ555528CO1TckwJkyeJU6FkQYAUJRFCFGoNbQPhogAGsP7jv4X2Unoi-QlQnKpNtMWACmBMbqPJdNaN8dw2reltwv3M4jr4hY2pDR4Hhy_OpmPcB3y7rK3H02SHJsyDNwm7bgjRptr6hGEKfBdtONMlu_dRd9DD1eX9-XUxuRvfnJ9NilpQ2he0pKWpmQVCCXW143VTSgkgKtoQ1jgJVBlbWcelUYK4UVMJpcCWrmFE8ortoNOV7vNQZet5fx9Np59jOzfxVQfT6t8d3870Y1joESlhJEgWOPoQiOFlsKnX8zaf0XXG2zAkDWwkZMmzq4we_kGfwhB9Pu-d4pIwUJmCFVXHkFK07ssMJXqZl17lpXNe-j0vvRw6-HnG18hnOhlgKyDlln-08Xv3P7JvisCe6A</recordid><startdate>20200309</startdate><enddate>20200309</enddate><creator>Zhao, Ming-Min</creator><creator>Lyu, Ning</creator><creator>Wang, Dong</creator><creator>Wu, Xiao-Gang</creator><creator>Zhao, Yuan-Zheng</creator><creator>Zhang, Li-Qun</creator><creator>Zhou, Hong-You</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20200309</creationdate><title>PhlG mediates the conversion of DAPG to MAPG in Pseudomonas fluorescens 2P24</title><author>Zhao, Ming-Min ; Lyu, Ning ; Wang, Dong ; Wu, Xiao-Gang ; Zhao, Yuan-Zheng ; Zhang, Li-Qun ; Zhou, Hong-You</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c511t-1616ac3e20101fcf4cd688225b1d03df8219aebef48a950f7db5992e6fd3084b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>38/77</topic><topic>42/44</topic><topic>42/70</topic><topic>631/326/22</topic><topic>631/326/2522</topic><topic>Anti-Bacterial Agents - pharmacology</topic><topic>Antibiotics</topic><topic>Bacterial Proteins - genetics</topic><topic>Bacterial Proteins - metabolism</topic><topic>Biosynthesis</topic><topic>Clonal deletion</topic><topic>Deletion mutant</topic><topic>Gene deletion</topic><topic>Humanities and Social Sciences</topic><topic>multidisciplinary</topic><topic>Phloroglucinol - analogs &amp; derivatives</topic><topic>Phloroglucinol - metabolism</topic><topic>Plant diseases</topic><topic>Plant Diseases - immunology</topic><topic>Plant Diseases - microbiology</topic><topic>Plant growth</topic><topic>Post-transcription</topic><topic>Pseudomonas fluorescens</topic><topic>Pseudomonas fluorescens - growth &amp; development</topic><topic>Pseudomonas fluorescens - metabolism</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>Soil microorganisms</topic><topic>Triticum - drug effects</topic><topic>Triticum - growth &amp; development</topic><topic>Triticum - microbiology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhao, Ming-Min</creatorcontrib><creatorcontrib>Lyu, Ning</creatorcontrib><creatorcontrib>Wang, Dong</creatorcontrib><creatorcontrib>Wu, Xiao-Gang</creatorcontrib><creatorcontrib>Zhao, Yuan-Zheng</creatorcontrib><creatorcontrib>Zhang, Li-Qun</creatorcontrib><creatorcontrib>Zhou, Hong-You</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Scientific reports</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhao, Ming-Min</au><au>Lyu, Ning</au><au>Wang, Dong</au><au>Wu, Xiao-Gang</au><au>Zhao, Yuan-Zheng</au><au>Zhang, Li-Qun</au><au>Zhou, Hong-You</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>PhlG mediates the conversion of DAPG to MAPG in Pseudomonas fluorescens 2P24</atitle><jtitle>Scientific reports</jtitle><stitle>Sci Rep</stitle><addtitle>Sci Rep</addtitle><date>2020-03-09</date><risdate>2020</risdate><volume>10</volume><issue>1</issue><spage>4296</spage><epage>4296</epage><pages>4296-4296</pages><artnum>4296</artnum><issn>2045-2322</issn><eissn>2045-2322</eissn><abstract>The antibiotic 2,4-diacetylphoroglucinol (2,4-DAPG), produced by the Gram-negative rod-shaped bacterium Pseudomonas fluorescens 2P24, is active against various soil-borne bacterial and fungal pathogens that cause plant diseases. Biosynthesis of 2,4-DAPG is controlled by regulating expression of the phlACBD operon at the post-transcriptional level. The phlG gene is located between the phlF and phlH genes, upstream of the phlACBD biosynthetic operon. Herein, we cloned the phlG gene, generated a phlG deletion mutant, and investigated its regulatory role in 2,4-DAPG biosynthesis. The results showed that deletion of phlG had no effect on the biosynthesis of 2,4-DAPG, but it affected conversion of 2,4-DAPG to its precursor monoacetylphloroglucinol (MAPG). The global regulatory factor encoded by gacS positively regulated expression of phlG , while rsmE negatively regulated its expression. Deleting phlG did not alter the ability of the bacterium to colonise plants or promote plant growth. These results suggest that phlG collaborates with other factors to regulate production of the antibiotic 2,4-DAPG in P. fluorescens 2P24.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>32152338</pmid><doi>10.1038/s41598-020-60555-9</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2045-2322
ispartof Scientific reports, 2020-03, Vol.10 (1), p.4296-4296, Article 4296
issn 2045-2322
2045-2322
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7062750
source MEDLINE; Nature Free; DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry; Springer Nature OA Free Journals
subjects 38/77
42/44
42/70
631/326/22
631/326/2522
Anti-Bacterial Agents - pharmacology
Antibiotics
Bacterial Proteins - genetics
Bacterial Proteins - metabolism
Biosynthesis
Clonal deletion
Deletion mutant
Gene deletion
Humanities and Social Sciences
multidisciplinary
Phloroglucinol - analogs & derivatives
Phloroglucinol - metabolism
Plant diseases
Plant Diseases - immunology
Plant Diseases - microbiology
Plant growth
Post-transcription
Pseudomonas fluorescens
Pseudomonas fluorescens - growth & development
Pseudomonas fluorescens - metabolism
Science
Science (multidisciplinary)
Soil microorganisms
Triticum - drug effects
Triticum - growth & development
Triticum - microbiology
title PhlG mediates the conversion of DAPG to MAPG in Pseudomonas fluorescens 2P24
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T16%3A28%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=PhlG%20mediates%20the%20conversion%20of%20DAPG%20to%20MAPG%20in%20Pseudomonas%20fluorescens%202P24&rft.jtitle=Scientific%20reports&rft.au=Zhao,%20Ming-Min&rft.date=2020-03-09&rft.volume=10&rft.issue=1&rft.spage=4296&rft.epage=4296&rft.pages=4296-4296&rft.artnum=4296&rft.issn=2045-2322&rft.eissn=2045-2322&rft_id=info:doi/10.1038/s41598-020-60555-9&rft_dat=%3Cproquest_pubme%3E2375480329%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2375480329&rft_id=info:pmid/32152338&rfr_iscdi=true