PhlG mediates the conversion of DAPG to MAPG in Pseudomonas fluorescens 2P24
The antibiotic 2,4-diacetylphoroglucinol (2,4-DAPG), produced by the Gram-negative rod-shaped bacterium Pseudomonas fluorescens 2P24, is active against various soil-borne bacterial and fungal pathogens that cause plant diseases. Biosynthesis of 2,4-DAPG is controlled by regulating expression of the...
Gespeichert in:
Veröffentlicht in: | Scientific reports 2020-03, Vol.10 (1), p.4296-4296, Article 4296 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 4296 |
---|---|
container_issue | 1 |
container_start_page | 4296 |
container_title | Scientific reports |
container_volume | 10 |
creator | Zhao, Ming-Min Lyu, Ning Wang, Dong Wu, Xiao-Gang Zhao, Yuan-Zheng Zhang, Li-Qun Zhou, Hong-You |
description | The antibiotic 2,4-diacetylphoroglucinol (2,4-DAPG), produced by the Gram-negative rod-shaped bacterium
Pseudomonas fluorescens
2P24, is active against various soil-borne bacterial and fungal pathogens that cause plant diseases. Biosynthesis of 2,4-DAPG is controlled by regulating expression of the
phlACBD
operon at the post-transcriptional level. The
phlG
gene is located between the
phlF
and
phlH
genes, upstream of the
phlACBD
biosynthetic operon. Herein, we cloned the
phlG
gene, generated a
phlG
deletion mutant, and investigated its regulatory role in 2,4-DAPG biosynthesis. The results showed that deletion of
phlG
had no effect on the biosynthesis of 2,4-DAPG, but it affected conversion of 2,4-DAPG to its precursor monoacetylphloroglucinol (MAPG). The global regulatory factor encoded by
gacS
positively regulated expression of
phlG
, while
rsmE
negatively regulated its expression. Deleting
phlG
did not alter the ability of the bacterium to colonise plants or promote plant growth. These results suggest that
phlG
collaborates with other factors to regulate production of the antibiotic 2,4-DAPG in
P. fluorescens
2P24. |
doi_str_mv | 10.1038/s41598-020-60555-9 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7062750</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2375480329</sourcerecordid><originalsourceid>FETCH-LOGICAL-c511t-1616ac3e20101fcf4cd688225b1d03df8219aebef48a950f7db5992e6fd3084b3</originalsourceid><addsrcrecordid>eNp9kU1PxCAQhonRqFH_gAdD4sVLFQbowsXE-LGarHEPeia0BbemCwrtJv57Wdfvg1yGZJ555528CO1TckwJkyeJU6FkQYAUJRFCFGoNbQPhogAGsP7jv4X2Unoi-QlQnKpNtMWACmBMbqPJdNaN8dw2reltwv3M4jr4hY2pDR4Hhy_OpmPcB3y7rK3H02SHJsyDNwm7bgjRptr6hGEKfBdtONMlu_dRd9DD1eX9-XUxuRvfnJ9NilpQ2he0pKWpmQVCCXW143VTSgkgKtoQ1jgJVBlbWcelUYK4UVMJpcCWrmFE8ortoNOV7vNQZet5fx9Np59jOzfxVQfT6t8d3870Y1joESlhJEgWOPoQiOFlsKnX8zaf0XXG2zAkDWwkZMmzq4we_kGfwhB9Pu-d4pIwUJmCFVXHkFK07ssMJXqZl17lpXNe-j0vvRw6-HnG18hnOhlgKyDlln-08Xv3P7JvisCe6A</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2375480329</pqid></control><display><type>article</type><title>PhlG mediates the conversion of DAPG to MAPG in Pseudomonas fluorescens 2P24</title><source>MEDLINE</source><source>Nature Free</source><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><source>Springer Nature OA Free Journals</source><creator>Zhao, Ming-Min ; Lyu, Ning ; Wang, Dong ; Wu, Xiao-Gang ; Zhao, Yuan-Zheng ; Zhang, Li-Qun ; Zhou, Hong-You</creator><creatorcontrib>Zhao, Ming-Min ; Lyu, Ning ; Wang, Dong ; Wu, Xiao-Gang ; Zhao, Yuan-Zheng ; Zhang, Li-Qun ; Zhou, Hong-You</creatorcontrib><description>The antibiotic 2,4-diacetylphoroglucinol (2,4-DAPG), produced by the Gram-negative rod-shaped bacterium
Pseudomonas fluorescens
2P24, is active against various soil-borne bacterial and fungal pathogens that cause plant diseases. Biosynthesis of 2,4-DAPG is controlled by regulating expression of the
phlACBD
operon at the post-transcriptional level. The
phlG
gene is located between the
phlF
and
phlH
genes, upstream of the
phlACBD
biosynthetic operon. Herein, we cloned the
phlG
gene, generated a
phlG
deletion mutant, and investigated its regulatory role in 2,4-DAPG biosynthesis. The results showed that deletion of
phlG
had no effect on the biosynthesis of 2,4-DAPG, but it affected conversion of 2,4-DAPG to its precursor monoacetylphloroglucinol (MAPG). The global regulatory factor encoded by
gacS
positively regulated expression of
phlG
, while
rsmE
negatively regulated its expression. Deleting
phlG
did not alter the ability of the bacterium to colonise plants or promote plant growth. These results suggest that
phlG
collaborates with other factors to regulate production of the antibiotic 2,4-DAPG in
P. fluorescens
2P24.</description><identifier>ISSN: 2045-2322</identifier><identifier>EISSN: 2045-2322</identifier><identifier>DOI: 10.1038/s41598-020-60555-9</identifier><identifier>PMID: 32152338</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>38/77 ; 42/44 ; 42/70 ; 631/326/22 ; 631/326/2522 ; Anti-Bacterial Agents - pharmacology ; Antibiotics ; Bacterial Proteins - genetics ; Bacterial Proteins - metabolism ; Biosynthesis ; Clonal deletion ; Deletion mutant ; Gene deletion ; Humanities and Social Sciences ; multidisciplinary ; Phloroglucinol - analogs & derivatives ; Phloroglucinol - metabolism ; Plant diseases ; Plant Diseases - immunology ; Plant Diseases - microbiology ; Plant growth ; Post-transcription ; Pseudomonas fluorescens ; Pseudomonas fluorescens - growth & development ; Pseudomonas fluorescens - metabolism ; Science ; Science (multidisciplinary) ; Soil microorganisms ; Triticum - drug effects ; Triticum - growth & development ; Triticum - microbiology</subject><ispartof>Scientific reports, 2020-03, Vol.10 (1), p.4296-4296, Article 4296</ispartof><rights>The Author(s) 2020</rights><rights>This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c511t-1616ac3e20101fcf4cd688225b1d03df8219aebef48a950f7db5992e6fd3084b3</citedby><cites>FETCH-LOGICAL-c511t-1616ac3e20101fcf4cd688225b1d03df8219aebef48a950f7db5992e6fd3084b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7062750/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7062750/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,27903,27904,41099,42168,51554,53769,53771</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32152338$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhao, Ming-Min</creatorcontrib><creatorcontrib>Lyu, Ning</creatorcontrib><creatorcontrib>Wang, Dong</creatorcontrib><creatorcontrib>Wu, Xiao-Gang</creatorcontrib><creatorcontrib>Zhao, Yuan-Zheng</creatorcontrib><creatorcontrib>Zhang, Li-Qun</creatorcontrib><creatorcontrib>Zhou, Hong-You</creatorcontrib><title>PhlG mediates the conversion of DAPG to MAPG in Pseudomonas fluorescens 2P24</title><title>Scientific reports</title><addtitle>Sci Rep</addtitle><addtitle>Sci Rep</addtitle><description>The antibiotic 2,4-diacetylphoroglucinol (2,4-DAPG), produced by the Gram-negative rod-shaped bacterium
Pseudomonas fluorescens
2P24, is active against various soil-borne bacterial and fungal pathogens that cause plant diseases. Biosynthesis of 2,4-DAPG is controlled by regulating expression of the
phlACBD
operon at the post-transcriptional level. The
phlG
gene is located between the
phlF
and
phlH
genes, upstream of the
phlACBD
biosynthetic operon. Herein, we cloned the
phlG
gene, generated a
phlG
deletion mutant, and investigated its regulatory role in 2,4-DAPG biosynthesis. The results showed that deletion of
phlG
had no effect on the biosynthesis of 2,4-DAPG, but it affected conversion of 2,4-DAPG to its precursor monoacetylphloroglucinol (MAPG). The global regulatory factor encoded by
gacS
positively regulated expression of
phlG
, while
rsmE
negatively regulated its expression. Deleting
phlG
did not alter the ability of the bacterium to colonise plants or promote plant growth. These results suggest that
phlG
collaborates with other factors to regulate production of the antibiotic 2,4-DAPG in
P. fluorescens
2P24.</description><subject>38/77</subject><subject>42/44</subject><subject>42/70</subject><subject>631/326/22</subject><subject>631/326/2522</subject><subject>Anti-Bacterial Agents - pharmacology</subject><subject>Antibiotics</subject><subject>Bacterial Proteins - genetics</subject><subject>Bacterial Proteins - metabolism</subject><subject>Biosynthesis</subject><subject>Clonal deletion</subject><subject>Deletion mutant</subject><subject>Gene deletion</subject><subject>Humanities and Social Sciences</subject><subject>multidisciplinary</subject><subject>Phloroglucinol - analogs & derivatives</subject><subject>Phloroglucinol - metabolism</subject><subject>Plant diseases</subject><subject>Plant Diseases - immunology</subject><subject>Plant Diseases - microbiology</subject><subject>Plant growth</subject><subject>Post-transcription</subject><subject>Pseudomonas fluorescens</subject><subject>Pseudomonas fluorescens - growth & development</subject><subject>Pseudomonas fluorescens - metabolism</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>Soil microorganisms</subject><subject>Triticum - drug effects</subject><subject>Triticum - growth & development</subject><subject>Triticum - microbiology</subject><issn>2045-2322</issn><issn>2045-2322</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><recordid>eNp9kU1PxCAQhonRqFH_gAdD4sVLFQbowsXE-LGarHEPeia0BbemCwrtJv57Wdfvg1yGZJ555528CO1TckwJkyeJU6FkQYAUJRFCFGoNbQPhogAGsP7jv4X2Unoi-QlQnKpNtMWACmBMbqPJdNaN8dw2reltwv3M4jr4hY2pDR4Hhy_OpmPcB3y7rK3H02SHJsyDNwm7bgjRptr6hGEKfBdtONMlu_dRd9DD1eX9-XUxuRvfnJ9NilpQ2he0pKWpmQVCCXW143VTSgkgKtoQ1jgJVBlbWcelUYK4UVMJpcCWrmFE8ortoNOV7vNQZet5fx9Np59jOzfxVQfT6t8d3870Y1joESlhJEgWOPoQiOFlsKnX8zaf0XXG2zAkDWwkZMmzq4we_kGfwhB9Pu-d4pIwUJmCFVXHkFK07ssMJXqZl17lpXNe-j0vvRw6-HnG18hnOhlgKyDlln-08Xv3P7JvisCe6A</recordid><startdate>20200309</startdate><enddate>20200309</enddate><creator>Zhao, Ming-Min</creator><creator>Lyu, Ning</creator><creator>Wang, Dong</creator><creator>Wu, Xiao-Gang</creator><creator>Zhao, Yuan-Zheng</creator><creator>Zhang, Li-Qun</creator><creator>Zhou, Hong-You</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20200309</creationdate><title>PhlG mediates the conversion of DAPG to MAPG in Pseudomonas fluorescens 2P24</title><author>Zhao, Ming-Min ; Lyu, Ning ; Wang, Dong ; Wu, Xiao-Gang ; Zhao, Yuan-Zheng ; Zhang, Li-Qun ; Zhou, Hong-You</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c511t-1616ac3e20101fcf4cd688225b1d03df8219aebef48a950f7db5992e6fd3084b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>38/77</topic><topic>42/44</topic><topic>42/70</topic><topic>631/326/22</topic><topic>631/326/2522</topic><topic>Anti-Bacterial Agents - pharmacology</topic><topic>Antibiotics</topic><topic>Bacterial Proteins - genetics</topic><topic>Bacterial Proteins - metabolism</topic><topic>Biosynthesis</topic><topic>Clonal deletion</topic><topic>Deletion mutant</topic><topic>Gene deletion</topic><topic>Humanities and Social Sciences</topic><topic>multidisciplinary</topic><topic>Phloroglucinol - analogs & derivatives</topic><topic>Phloroglucinol - metabolism</topic><topic>Plant diseases</topic><topic>Plant Diseases - immunology</topic><topic>Plant Diseases - microbiology</topic><topic>Plant growth</topic><topic>Post-transcription</topic><topic>Pseudomonas fluorescens</topic><topic>Pseudomonas fluorescens - growth & development</topic><topic>Pseudomonas fluorescens - metabolism</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>Soil microorganisms</topic><topic>Triticum - drug effects</topic><topic>Triticum - growth & development</topic><topic>Triticum - microbiology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhao, Ming-Min</creatorcontrib><creatorcontrib>Lyu, Ning</creatorcontrib><creatorcontrib>Wang, Dong</creatorcontrib><creatorcontrib>Wu, Xiao-Gang</creatorcontrib><creatorcontrib>Zhao, Yuan-Zheng</creatorcontrib><creatorcontrib>Zhang, Li-Qun</creatorcontrib><creatorcontrib>Zhou, Hong-You</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Scientific reports</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhao, Ming-Min</au><au>Lyu, Ning</au><au>Wang, Dong</au><au>Wu, Xiao-Gang</au><au>Zhao, Yuan-Zheng</au><au>Zhang, Li-Qun</au><au>Zhou, Hong-You</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>PhlG mediates the conversion of DAPG to MAPG in Pseudomonas fluorescens 2P24</atitle><jtitle>Scientific reports</jtitle><stitle>Sci Rep</stitle><addtitle>Sci Rep</addtitle><date>2020-03-09</date><risdate>2020</risdate><volume>10</volume><issue>1</issue><spage>4296</spage><epage>4296</epage><pages>4296-4296</pages><artnum>4296</artnum><issn>2045-2322</issn><eissn>2045-2322</eissn><abstract>The antibiotic 2,4-diacetylphoroglucinol (2,4-DAPG), produced by the Gram-negative rod-shaped bacterium
Pseudomonas fluorescens
2P24, is active against various soil-borne bacterial and fungal pathogens that cause plant diseases. Biosynthesis of 2,4-DAPG is controlled by regulating expression of the
phlACBD
operon at the post-transcriptional level. The
phlG
gene is located between the
phlF
and
phlH
genes, upstream of the
phlACBD
biosynthetic operon. Herein, we cloned the
phlG
gene, generated a
phlG
deletion mutant, and investigated its regulatory role in 2,4-DAPG biosynthesis. The results showed that deletion of
phlG
had no effect on the biosynthesis of 2,4-DAPG, but it affected conversion of 2,4-DAPG to its precursor monoacetylphloroglucinol (MAPG). The global regulatory factor encoded by
gacS
positively regulated expression of
phlG
, while
rsmE
negatively regulated its expression. Deleting
phlG
did not alter the ability of the bacterium to colonise plants or promote plant growth. These results suggest that
phlG
collaborates with other factors to regulate production of the antibiotic 2,4-DAPG in
P. fluorescens
2P24.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>32152338</pmid><doi>10.1038/s41598-020-60555-9</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2045-2322 |
ispartof | Scientific reports, 2020-03, Vol.10 (1), p.4296-4296, Article 4296 |
issn | 2045-2322 2045-2322 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7062750 |
source | MEDLINE; Nature Free; DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry; Springer Nature OA Free Journals |
subjects | 38/77 42/44 42/70 631/326/22 631/326/2522 Anti-Bacterial Agents - pharmacology Antibiotics Bacterial Proteins - genetics Bacterial Proteins - metabolism Biosynthesis Clonal deletion Deletion mutant Gene deletion Humanities and Social Sciences multidisciplinary Phloroglucinol - analogs & derivatives Phloroglucinol - metabolism Plant diseases Plant Diseases - immunology Plant Diseases - microbiology Plant growth Post-transcription Pseudomonas fluorescens Pseudomonas fluorescens - growth & development Pseudomonas fluorescens - metabolism Science Science (multidisciplinary) Soil microorganisms Triticum - drug effects Triticum - growth & development Triticum - microbiology |
title | PhlG mediates the conversion of DAPG to MAPG in Pseudomonas fluorescens 2P24 |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T16%3A28%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=PhlG%20mediates%20the%20conversion%20of%20DAPG%20to%20MAPG%20in%20Pseudomonas%20fluorescens%202P24&rft.jtitle=Scientific%20reports&rft.au=Zhao,%20Ming-Min&rft.date=2020-03-09&rft.volume=10&rft.issue=1&rft.spage=4296&rft.epage=4296&rft.pages=4296-4296&rft.artnum=4296&rft.issn=2045-2322&rft.eissn=2045-2322&rft_id=info:doi/10.1038/s41598-020-60555-9&rft_dat=%3Cproquest_pubme%3E2375480329%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2375480329&rft_id=info:pmid/32152338&rfr_iscdi=true |