Health assessment of patients with achondroplasia, pseudoachondroplasia,and rickets based on 3D non-linear diagnostics
The goal of this study was to analyze diminishment of the functional status of the skeleton, parts of organs, regions of the brain, connective tissues, and chondrocytes in patients with achondroplasia (ACH), pseudoachondroplasia (PSACH), and rickets. Three-dimensional non-linear scanning (3D-NLS) wa...
Gespeichert in:
Veröffentlicht in: | Intractable & Rare Diseases Research 2020/02/29, Vol.9(1), pp.35-39 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 39 |
---|---|
container_issue | 1 |
container_start_page | 35 |
container_title | Intractable & Rare Diseases Research |
container_volume | 9 |
creator | Zhang, Jian Lu, Yanqin Wang, Yanzhou Li, Tianyou Peng, Chuanming Zhang, Shie Gao, Qingxia Li, Wei Liu, Chunshang Han, Jinxiang |
description | The goal of this study was to analyze diminishment of the functional status of the skeleton, parts of organs, regions of the brain, connective tissues, and chondrocytes in patients with achondroplasia (ACH), pseudoachondroplasia (PSACH), and rickets. Three-dimensional non-linear scanning (3D-NLS) was used to analyze the functional status of patients with genetic bone disorders, including 7 patients with ACH, 3 patients with PSACH, and 3 patients with rickets. Results indicated that the percentage of patients with long bones in the decompensatory phase did not differ depending on whether they had ACH, PSACH, or rickets. Joints in the decompensatory phase did not differ in patients with ACH except for the right hip (16.67%). Various joints were in the decompensatory phase (16.7-33.3%) in patients with rickets. The thoracic vertebrae, lumbar vertebrae, and liver were in the decompensatory phase in all 3 groups of patients. Connective tissues were in the decompensatory phase in 33.33% of patients with ACH. None of the patients with PSACH had chondrocytes in the decompensatory phase but 66.67% of patients with ACH or rickets did. Regions of the brain in the decompensatory phase were most prevalent in patients with rickets or ACH but not in patients with PSACH. In conclusion, diagnosis based on 3D-NLS was able to identify the functional status of genetic bone disorders. Some areas of decompensation were common to the 3 diseases studied but other areas were specific to a given disease. |
doi_str_mv | 10.5582/irdr.2020.01019 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7062601</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2381849522</sourcerecordid><originalsourceid>FETCH-LOGICAL-c427t-bdd46827845b9bb404dcfcb8503e86f5edcdb885601f1762ee8348dc8f854a13</originalsourceid><addsrcrecordid>eNpdkUtr3DAUhU1paEKSdXdFyy7qiZ62vCmU6SOFQDZZZCdk6XpGqUdydT0J_ffVdFL3IRC66Hz36HGq6jWjK6U0vwrZ5xWnnK4oo6x7UZ1xpptaNOz-5VJLeVpdIj7QMlrKVSdfVaeCc8qaVpxVj9dgx3lLLCIg7iDOJA1ksnMoJZKncNDcNkWf0zRaDPYdmRD2Pv23a6MnObhvULp6i-BJikR8JDHFegwRbCY-2E1MOAeHF9XJYEeEy-f1vLr7_OlufV3f3H75uv5wUzvJ27nuvZeN5q2Wqu_6XlLp3eB6ragA3QwKvPO91qqhbGBtwwG0kNo7PWglLRPn1fuj7bTvdwUub8p2NFMOO5t_mGSD-VeJYWs26dG0tOHFtBi8fTbI6fsecDa7gA7G0UZIezRcaKZlpzgv6NURdTkhZhiWYxg1h7zMIS9zyMv8yqt0vPn7dgv_O50CrI_AA852Awtgc_nDEY6GnWFl_rFdVLe12UAUPwGH7a1D</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2381849522</pqid></control><display><type>article</type><title>Health assessment of patients with achondroplasia, pseudoachondroplasia,and rickets based on 3D non-linear diagnostics</title><source>J-STAGE Free</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><creator>Zhang, Jian ; Lu, Yanqin ; Wang, Yanzhou ; Li, Tianyou ; Peng, Chuanming ; Zhang, Shie ; Gao, Qingxia ; Li, Wei ; Liu, Chunshang ; Han, Jinxiang</creator><creatorcontrib>Zhang, Jian ; Lu, Yanqin ; Wang, Yanzhou ; Li, Tianyou ; Peng, Chuanming ; Zhang, Shie ; Gao, Qingxia ; Li, Wei ; Liu, Chunshang ; Han, Jinxiang</creatorcontrib><description>The goal of this study was to analyze diminishment of the functional status of the skeleton, parts of organs, regions of the brain, connective tissues, and chondrocytes in patients with achondroplasia (ACH), pseudoachondroplasia (PSACH), and rickets. Three-dimensional non-linear scanning (3D-NLS) was used to analyze the functional status of patients with genetic bone disorders, including 7 patients with ACH, 3 patients with PSACH, and 3 patients with rickets. Results indicated that the percentage of patients with long bones in the decompensatory phase did not differ depending on whether they had ACH, PSACH, or rickets. Joints in the decompensatory phase did not differ in patients with ACH except for the right hip (16.67%). Various joints were in the decompensatory phase (16.7-33.3%) in patients with rickets. The thoracic vertebrae, lumbar vertebrae, and liver were in the decompensatory phase in all 3 groups of patients. Connective tissues were in the decompensatory phase in 33.33% of patients with ACH. None of the patients with PSACH had chondrocytes in the decompensatory phase but 66.67% of patients with ACH or rickets did. Regions of the brain in the decompensatory phase were most prevalent in patients with rickets or ACH but not in patients with PSACH. In conclusion, diagnosis based on 3D-NLS was able to identify the functional status of genetic bone disorders. Some areas of decompensation were common to the 3 diseases studied but other areas were specific to a given disease.</description><identifier>ISSN: 2186-3644</identifier><identifier>EISSN: 2186-361X</identifier><identifier>DOI: 10.5582/irdr.2020.01019</identifier><identifier>PMID: 32201673</identifier><language>eng</language><publisher>Japan: International Research and Cooperation Association for Bio & Socio-Sciences Advancement</publisher><subject>3-D non-linear scanning technology ; achondroplasia ; health assessment ; Original ; pseudoachondroplasia ; rickets</subject><ispartof>Intractable & Rare Diseases Research, 2020/02/29, Vol.9(1), pp.35-39</ispartof><rights>2020 International Research and Cooperation Association for Bio & Socio-Sciences Advancement</rights><rights>2020, International Research and Cooperation Association for Bio & Socio - Sciences Advancement.</rights><rights>2020, International Research and Cooperation Association for Bio & Socio - Sciences Advancement 2020</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c427t-bdd46827845b9bb404dcfcb8503e86f5edcdb885601f1762ee8348dc8f854a13</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7062601/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7062601/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,315,728,781,785,886,1884,27926,27927,53793,53795</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32201673$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhang, Jian</creatorcontrib><creatorcontrib>Lu, Yanqin</creatorcontrib><creatorcontrib>Wang, Yanzhou</creatorcontrib><creatorcontrib>Li, Tianyou</creatorcontrib><creatorcontrib>Peng, Chuanming</creatorcontrib><creatorcontrib>Zhang, Shie</creatorcontrib><creatorcontrib>Gao, Qingxia</creatorcontrib><creatorcontrib>Li, Wei</creatorcontrib><creatorcontrib>Liu, Chunshang</creatorcontrib><creatorcontrib>Han, Jinxiang</creatorcontrib><title>Health assessment of patients with achondroplasia, pseudoachondroplasia,and rickets based on 3D non-linear diagnostics</title><title>Intractable & Rare Diseases Research</title><addtitle>IRDR</addtitle><description>The goal of this study was to analyze diminishment of the functional status of the skeleton, parts of organs, regions of the brain, connective tissues, and chondrocytes in patients with achondroplasia (ACH), pseudoachondroplasia (PSACH), and rickets. Three-dimensional non-linear scanning (3D-NLS) was used to analyze the functional status of patients with genetic bone disorders, including 7 patients with ACH, 3 patients with PSACH, and 3 patients with rickets. Results indicated that the percentage of patients with long bones in the decompensatory phase did not differ depending on whether they had ACH, PSACH, or rickets. Joints in the decompensatory phase did not differ in patients with ACH except for the right hip (16.67%). Various joints were in the decompensatory phase (16.7-33.3%) in patients with rickets. The thoracic vertebrae, lumbar vertebrae, and liver were in the decompensatory phase in all 3 groups of patients. Connective tissues were in the decompensatory phase in 33.33% of patients with ACH. None of the patients with PSACH had chondrocytes in the decompensatory phase but 66.67% of patients with ACH or rickets did. Regions of the brain in the decompensatory phase were most prevalent in patients with rickets or ACH but not in patients with PSACH. In conclusion, diagnosis based on 3D-NLS was able to identify the functional status of genetic bone disorders. Some areas of decompensation were common to the 3 diseases studied but other areas were specific to a given disease.</description><subject>3-D non-linear scanning technology</subject><subject>achondroplasia</subject><subject>health assessment</subject><subject>Original</subject><subject>pseudoachondroplasia</subject><subject>rickets</subject><issn>2186-3644</issn><issn>2186-361X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNpdkUtr3DAUhU1paEKSdXdFyy7qiZ62vCmU6SOFQDZZZCdk6XpGqUdydT0J_ffVdFL3IRC66Hz36HGq6jWjK6U0vwrZ5xWnnK4oo6x7UZ1xpptaNOz-5VJLeVpdIj7QMlrKVSdfVaeCc8qaVpxVj9dgx3lLLCIg7iDOJA1ksnMoJZKncNDcNkWf0zRaDPYdmRD2Pv23a6MnObhvULp6i-BJikR8JDHFegwRbCY-2E1MOAeHF9XJYEeEy-f1vLr7_OlufV3f3H75uv5wUzvJ27nuvZeN5q2Wqu_6XlLp3eB6ragA3QwKvPO91qqhbGBtwwG0kNo7PWglLRPn1fuj7bTvdwUub8p2NFMOO5t_mGSD-VeJYWs26dG0tOHFtBi8fTbI6fsecDa7gA7G0UZIezRcaKZlpzgv6NURdTkhZhiWYxg1h7zMIS9zyMv8yqt0vPn7dgv_O50CrI_AA852Awtgc_nDEY6GnWFl_rFdVLe12UAUPwGH7a1D</recordid><startdate>20200201</startdate><enddate>20200201</enddate><creator>Zhang, Jian</creator><creator>Lu, Yanqin</creator><creator>Wang, Yanzhou</creator><creator>Li, Tianyou</creator><creator>Peng, Chuanming</creator><creator>Zhang, Shie</creator><creator>Gao, Qingxia</creator><creator>Li, Wei</creator><creator>Liu, Chunshang</creator><creator>Han, Jinxiang</creator><general>International Research and Cooperation Association for Bio & Socio-Sciences Advancement</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20200201</creationdate><title>Health assessment of patients with achondroplasia, pseudoachondroplasia,and rickets based on 3D non-linear diagnostics</title><author>Zhang, Jian ; Lu, Yanqin ; Wang, Yanzhou ; Li, Tianyou ; Peng, Chuanming ; Zhang, Shie ; Gao, Qingxia ; Li, Wei ; Liu, Chunshang ; Han, Jinxiang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c427t-bdd46827845b9bb404dcfcb8503e86f5edcdb885601f1762ee8348dc8f854a13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>3-D non-linear scanning technology</topic><topic>achondroplasia</topic><topic>health assessment</topic><topic>Original</topic><topic>pseudoachondroplasia</topic><topic>rickets</topic><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Jian</creatorcontrib><creatorcontrib>Lu, Yanqin</creatorcontrib><creatorcontrib>Wang, Yanzhou</creatorcontrib><creatorcontrib>Li, Tianyou</creatorcontrib><creatorcontrib>Peng, Chuanming</creatorcontrib><creatorcontrib>Zhang, Shie</creatorcontrib><creatorcontrib>Gao, Qingxia</creatorcontrib><creatorcontrib>Li, Wei</creatorcontrib><creatorcontrib>Liu, Chunshang</creatorcontrib><creatorcontrib>Han, Jinxiang</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Intractable & Rare Diseases Research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Jian</au><au>Lu, Yanqin</au><au>Wang, Yanzhou</au><au>Li, Tianyou</au><au>Peng, Chuanming</au><au>Zhang, Shie</au><au>Gao, Qingxia</au><au>Li, Wei</au><au>Liu, Chunshang</au><au>Han, Jinxiang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Health assessment of patients with achondroplasia, pseudoachondroplasia,and rickets based on 3D non-linear diagnostics</atitle><jtitle>Intractable & Rare Diseases Research</jtitle><addtitle>IRDR</addtitle><date>2020-02-01</date><risdate>2020</risdate><volume>9</volume><issue>1</issue><spage>35</spage><epage>39</epage><pages>35-39</pages><issn>2186-3644</issn><eissn>2186-361X</eissn><abstract>The goal of this study was to analyze diminishment of the functional status of the skeleton, parts of organs, regions of the brain, connective tissues, and chondrocytes in patients with achondroplasia (ACH), pseudoachondroplasia (PSACH), and rickets. Three-dimensional non-linear scanning (3D-NLS) was used to analyze the functional status of patients with genetic bone disorders, including 7 patients with ACH, 3 patients with PSACH, and 3 patients with rickets. Results indicated that the percentage of patients with long bones in the decompensatory phase did not differ depending on whether they had ACH, PSACH, or rickets. Joints in the decompensatory phase did not differ in patients with ACH except for the right hip (16.67%). Various joints were in the decompensatory phase (16.7-33.3%) in patients with rickets. The thoracic vertebrae, lumbar vertebrae, and liver were in the decompensatory phase in all 3 groups of patients. Connective tissues were in the decompensatory phase in 33.33% of patients with ACH. None of the patients with PSACH had chondrocytes in the decompensatory phase but 66.67% of patients with ACH or rickets did. Regions of the brain in the decompensatory phase were most prevalent in patients with rickets or ACH but not in patients with PSACH. In conclusion, diagnosis based on 3D-NLS was able to identify the functional status of genetic bone disorders. Some areas of decompensation were common to the 3 diseases studied but other areas were specific to a given disease.</abstract><cop>Japan</cop><pub>International Research and Cooperation Association for Bio & Socio-Sciences Advancement</pub><pmid>32201673</pmid><doi>10.5582/irdr.2020.01019</doi><tpages>5</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2186-3644 |
ispartof | Intractable & Rare Diseases Research, 2020/02/29, Vol.9(1), pp.35-39 |
issn | 2186-3644 2186-361X |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7062601 |
source | J-STAGE Free; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central |
subjects | 3-D non-linear scanning technology achondroplasia health assessment Original pseudoachondroplasia rickets |
title | Health assessment of patients with achondroplasia, pseudoachondroplasia,and rickets based on 3D non-linear diagnostics |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-18T10%3A41%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Health%20assessment%20of%20patients%20with%20achondroplasia,%20pseudoachondroplasia,and%20rickets%20based%20on%203D%20non-linear%20diagnostics&rft.jtitle=Intractable%20&%20Rare%20Diseases%20Research&rft.au=Zhang,%20Jian&rft.date=2020-02-01&rft.volume=9&rft.issue=1&rft.spage=35&rft.epage=39&rft.pages=35-39&rft.issn=2186-3644&rft.eissn=2186-361X&rft_id=info:doi/10.5582/irdr.2020.01019&rft_dat=%3Cproquest_pubme%3E2381849522%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2381849522&rft_id=info:pmid/32201673&rfr_iscdi=true |