Metformin lowers glucose 6-phosphate in hepatocytes by activation of glycolysis downstream of glucose phosphorylation

The chronic effects of metformin on liver gluconeogenesis involve repression of the G6pc gene, which is regulated by the carbohydrate-response element–binding protein through raised cellular intermediates of glucose metabolism. In this study we determined the candidate mechanisms by which metformin...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of biological chemistry 2020-03, Vol.295 (10), p.3330-3346
Hauptverfasser: Moonira, Tabassum, Chachra, Shruti S., Ford, Brian E., Marin, Silvia, Alshawi, Ahmed, Adam-Primus, Natasha S., Arden, Catherine, Al-Oanzi, Ziad H., Foretz, Marc, Viollet, Benoit, Cascante, Marta, Agius, Loranne
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3346
container_issue 10
container_start_page 3330
container_title The Journal of biological chemistry
container_volume 295
creator Moonira, Tabassum
Chachra, Shruti S.
Ford, Brian E.
Marin, Silvia
Alshawi, Ahmed
Adam-Primus, Natasha S.
Arden, Catherine
Al-Oanzi, Ziad H.
Foretz, Marc
Viollet, Benoit
Cascante, Marta
Agius, Loranne
description The chronic effects of metformin on liver gluconeogenesis involve repression of the G6pc gene, which is regulated by the carbohydrate-response element–binding protein through raised cellular intermediates of glucose metabolism. In this study we determined the candidate mechanisms by which metformin lowers glucose 6-phosphate (G6P) in mouse and rat hepatocytes challenged with high glucose or gluconeogenic precursors. Cell metformin loads in the therapeutic range lowered cell G6P but not ATP and decreased G6pc mRNA at high glucose. The G6P lowering by metformin was mimicked by a complex 1 inhibitor (rotenone) and an uncoupler (dinitrophenol) and by overexpression of mGPDH, which lowers glycerol 3-phosphate and G6P and also mimics the G6pc repression by metformin. In contrast, direct allosteric activators of AMPK (A-769662, 991, and C-13) had opposite effects from metformin on glycolysis, gluconeogenesis, and cell G6P. The G6P lowering by metformin, which also occurs in hepatocytes from AMPK knockout mice, is best explained by allosteric regulation of phosphofructokinase-1 and/or fructose bisphosphatase-1, as supported by increased metabolism of [3-3H]glucose relative to [2-3H]glucose; by an increase in the lactate m2/m1 isotopolog ratio from [1,2-13C2]glucose; by lowering of glycerol 3-phosphate an allosteric inhibitor of phosphofructokinase-1; and by marked G6P elevation by selective inhibition of phosphofructokinase-1; but not by a more reduced cytoplasmic NADH/NAD redox state. We conclude that therapeutically relevant doses of metformin lower G6P in hepatocytes challenged with high glucose by stimulation of glycolysis by an AMP-activated protein kinase–independent mechanism through changes in allosteric effectors of phosphofructokinase-1 and fructose bisphosphatase-1, including AMP, Pi, and glycerol 3-phosphate.
doi_str_mv 10.1074/jbc.RA120.012533
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7062158</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0021925817495305</els_id><sourcerecordid>2344274715</sourcerecordid><originalsourceid>FETCH-LOGICAL-c481t-275efc95d01b012c70b5e924d78817deae6b3302624509520dc24d25652380743</originalsourceid><addsrcrecordid>eNp1kd9r1TAcxYM43HX67pP00T30Lj-b1gfhMnQb3DEQBd9Cmn67ZrRNTdI7-t-brXOoYF4COed8vnxzEHpH8JZgyc_uarP9uiMUbzGhgrEXaENwyXImyI-XaIMxJXlFRXmMXodwh9PhFXmFjhmpJCeF2KD5GmLr_GDHrHf34EN228_GBciKfOpcmDodIUtqB5OOziwRQlYvmTbRHnS0bsxcmzKLcf0SbMgadz-G6EEPq7DCVpTzS_-YeYOOWt0HePt0n6DvXz5_O7_M9zcXV-e7fW54SWJOpYDWVKLBpE4LGolrARXljSxLIhvQUNSMYVpQLnAlKG5MEqkoBGVl-h92gj6t3GmuB2gMjNHrXk3eDtovymmr_lZG26lbd1ASF5SIMgFOV0D3T-xyt1cPbziNF4LgA0neD0_DvPs5Q4hqsMFA3-sR3BwUZZxTySURyYpXq_EuBA_tM5tg9dCsSs2qx2bV2myKvP9zlefA7yqT4eNqgPShBwteBWNhNNBYDyaqxtn_038BKeW02w</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2344274715</pqid></control><display><type>article</type><title>Metformin lowers glucose 6-phosphate in hepatocytes by activation of glycolysis downstream of glucose phosphorylation</title><source>MEDLINE</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><creator>Moonira, Tabassum ; Chachra, Shruti S. ; Ford, Brian E. ; Marin, Silvia ; Alshawi, Ahmed ; Adam-Primus, Natasha S. ; Arden, Catherine ; Al-Oanzi, Ziad H. ; Foretz, Marc ; Viollet, Benoit ; Cascante, Marta ; Agius, Loranne</creator><creatorcontrib>Moonira, Tabassum ; Chachra, Shruti S. ; Ford, Brian E. ; Marin, Silvia ; Alshawi, Ahmed ; Adam-Primus, Natasha S. ; Arden, Catherine ; Al-Oanzi, Ziad H. ; Foretz, Marc ; Viollet, Benoit ; Cascante, Marta ; Agius, Loranne</creatorcontrib><description>The chronic effects of metformin on liver gluconeogenesis involve repression of the G6pc gene, which is regulated by the carbohydrate-response element–binding protein through raised cellular intermediates of glucose metabolism. In this study we determined the candidate mechanisms by which metformin lowers glucose 6-phosphate (G6P) in mouse and rat hepatocytes challenged with high glucose or gluconeogenic precursors. Cell metformin loads in the therapeutic range lowered cell G6P but not ATP and decreased G6pc mRNA at high glucose. The G6P lowering by metformin was mimicked by a complex 1 inhibitor (rotenone) and an uncoupler (dinitrophenol) and by overexpression of mGPDH, which lowers glycerol 3-phosphate and G6P and also mimics the G6pc repression by metformin. In contrast, direct allosteric activators of AMPK (A-769662, 991, and C-13) had opposite effects from metformin on glycolysis, gluconeogenesis, and cell G6P. The G6P lowering by metformin, which also occurs in hepatocytes from AMPK knockout mice, is best explained by allosteric regulation of phosphofructokinase-1 and/or fructose bisphosphatase-1, as supported by increased metabolism of [3-3H]glucose relative to [2-3H]glucose; by an increase in the lactate m2/m1 isotopolog ratio from [1,2-13C2]glucose; by lowering of glycerol 3-phosphate an allosteric inhibitor of phosphofructokinase-1; and by marked G6P elevation by selective inhibition of phosphofructokinase-1; but not by a more reduced cytoplasmic NADH/NAD redox state. We conclude that therapeutically relevant doses of metformin lower G6P in hepatocytes challenged with high glucose by stimulation of glycolysis by an AMP-activated protein kinase–independent mechanism through changes in allosteric effectors of phosphofructokinase-1 and fructose bisphosphatase-1, including AMP, Pi, and glycerol 3-phosphate.</description><identifier>ISSN: 0021-9258</identifier><identifier>EISSN: 1083-351X</identifier><identifier>DOI: 10.1074/jbc.RA120.012533</identifier><identifier>PMID: 31974165</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Adenosine Triphosphate ; Adenosine Triphosphate - metabolism ; AMP-Activated Protein Kinases ; AMP-Activated Protein Kinases - deficiency ; AMP-Activated Protein Kinases - genetics ; Animals ; Biochemistry ; Biochemistry, Molecular Biology ; Dihydroxyacetone ; Dihydroxyacetone - pharmacology ; Endocrinology and metabolism ; Gluconeogenesis ; Gluconeogenesis - drug effects ; Glucose ; Glucose - metabolism ; Glucose - pharmacology ; Glucose-6-Phosphate ; Glucose-6-Phosphate - metabolism ; Glycerolphosphate Dehydrogenase ; Glycerolphosphate Dehydrogenase - genetics ; Glycerolphosphate Dehydrogenase - metabolism ; Glycolysis ; Glycolysis - drug effects ; hepatocyte ; Hepatocytes ; Hepatocytes - cytology ; Hepatocytes - drug effects ; Hepatocytes - metabolism ; Human health and pathology ; Life Sciences ; liver ; Male ; Metabolism ; Metformin ; Metformin - metabolism ; Metformin - pharmacology ; Mice ; Mice, Inbred C57BL ; Mice, Knockout ; Molecular biology ; phosphofructokinase ; Phosphofructokinase-1 ; Phosphofructokinase-1 - antagonists &amp; inhibitors ; Phosphofructokinase-1 - metabolism ; Phosphorylation ; Phosphorylation - drug effects ; Rats ; Rats, Wistar ; Rotenone ; Rotenone - pharmacology</subject><ispartof>The Journal of biological chemistry, 2020-03, Vol.295 (10), p.3330-3346</ispartof><rights>2020 © 2020 Moonira et al.</rights><rights>2020 Moonira et al.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><rights>2020 Moonira et al. 2020 Moonira et al.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c481t-275efc95d01b012c70b5e924d78817deae6b3302624509520dc24d25652380743</citedby><cites>FETCH-LOGICAL-c481t-275efc95d01b012c70b5e924d78817deae6b3302624509520dc24d25652380743</cites><orcidid>0000-0003-0693-2207 ; 0000-0001-7017-9032 ; 0000-0003-0543-4978 ; 0000-0002-6419-6503 ; 0000-0002-0121-0224</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7062158/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7062158/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,27901,27902,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31974165$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-03025510$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Moonira, Tabassum</creatorcontrib><creatorcontrib>Chachra, Shruti S.</creatorcontrib><creatorcontrib>Ford, Brian E.</creatorcontrib><creatorcontrib>Marin, Silvia</creatorcontrib><creatorcontrib>Alshawi, Ahmed</creatorcontrib><creatorcontrib>Adam-Primus, Natasha S.</creatorcontrib><creatorcontrib>Arden, Catherine</creatorcontrib><creatorcontrib>Al-Oanzi, Ziad H.</creatorcontrib><creatorcontrib>Foretz, Marc</creatorcontrib><creatorcontrib>Viollet, Benoit</creatorcontrib><creatorcontrib>Cascante, Marta</creatorcontrib><creatorcontrib>Agius, Loranne</creatorcontrib><title>Metformin lowers glucose 6-phosphate in hepatocytes by activation of glycolysis downstream of glucose phosphorylation</title><title>The Journal of biological chemistry</title><addtitle>J Biol Chem</addtitle><description>The chronic effects of metformin on liver gluconeogenesis involve repression of the G6pc gene, which is regulated by the carbohydrate-response element–binding protein through raised cellular intermediates of glucose metabolism. In this study we determined the candidate mechanisms by which metformin lowers glucose 6-phosphate (G6P) in mouse and rat hepatocytes challenged with high glucose or gluconeogenic precursors. Cell metformin loads in the therapeutic range lowered cell G6P but not ATP and decreased G6pc mRNA at high glucose. The G6P lowering by metformin was mimicked by a complex 1 inhibitor (rotenone) and an uncoupler (dinitrophenol) and by overexpression of mGPDH, which lowers glycerol 3-phosphate and G6P and also mimics the G6pc repression by metformin. In contrast, direct allosteric activators of AMPK (A-769662, 991, and C-13) had opposite effects from metformin on glycolysis, gluconeogenesis, and cell G6P. The G6P lowering by metformin, which also occurs in hepatocytes from AMPK knockout mice, is best explained by allosteric regulation of phosphofructokinase-1 and/or fructose bisphosphatase-1, as supported by increased metabolism of [3-3H]glucose relative to [2-3H]glucose; by an increase in the lactate m2/m1 isotopolog ratio from [1,2-13C2]glucose; by lowering of glycerol 3-phosphate an allosteric inhibitor of phosphofructokinase-1; and by marked G6P elevation by selective inhibition of phosphofructokinase-1; but not by a more reduced cytoplasmic NADH/NAD redox state. We conclude that therapeutically relevant doses of metformin lower G6P in hepatocytes challenged with high glucose by stimulation of glycolysis by an AMP-activated protein kinase–independent mechanism through changes in allosteric effectors of phosphofructokinase-1 and fructose bisphosphatase-1, including AMP, Pi, and glycerol 3-phosphate.</description><subject>Adenosine Triphosphate</subject><subject>Adenosine Triphosphate - metabolism</subject><subject>AMP-Activated Protein Kinases</subject><subject>AMP-Activated Protein Kinases - deficiency</subject><subject>AMP-Activated Protein Kinases - genetics</subject><subject>Animals</subject><subject>Biochemistry</subject><subject>Biochemistry, Molecular Biology</subject><subject>Dihydroxyacetone</subject><subject>Dihydroxyacetone - pharmacology</subject><subject>Endocrinology and metabolism</subject><subject>Gluconeogenesis</subject><subject>Gluconeogenesis - drug effects</subject><subject>Glucose</subject><subject>Glucose - metabolism</subject><subject>Glucose - pharmacology</subject><subject>Glucose-6-Phosphate</subject><subject>Glucose-6-Phosphate - metabolism</subject><subject>Glycerolphosphate Dehydrogenase</subject><subject>Glycerolphosphate Dehydrogenase - genetics</subject><subject>Glycerolphosphate Dehydrogenase - metabolism</subject><subject>Glycolysis</subject><subject>Glycolysis - drug effects</subject><subject>hepatocyte</subject><subject>Hepatocytes</subject><subject>Hepatocytes - cytology</subject><subject>Hepatocytes - drug effects</subject><subject>Hepatocytes - metabolism</subject><subject>Human health and pathology</subject><subject>Life Sciences</subject><subject>liver</subject><subject>Male</subject><subject>Metabolism</subject><subject>Metformin</subject><subject>Metformin - metabolism</subject><subject>Metformin - pharmacology</subject><subject>Mice</subject><subject>Mice, Inbred C57BL</subject><subject>Mice, Knockout</subject><subject>Molecular biology</subject><subject>phosphofructokinase</subject><subject>Phosphofructokinase-1</subject><subject>Phosphofructokinase-1 - antagonists &amp; inhibitors</subject><subject>Phosphofructokinase-1 - metabolism</subject><subject>Phosphorylation</subject><subject>Phosphorylation - drug effects</subject><subject>Rats</subject><subject>Rats, Wistar</subject><subject>Rotenone</subject><subject>Rotenone - pharmacology</subject><issn>0021-9258</issn><issn>1083-351X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp1kd9r1TAcxYM43HX67pP00T30Lj-b1gfhMnQb3DEQBd9Cmn67ZrRNTdI7-t-brXOoYF4COed8vnxzEHpH8JZgyc_uarP9uiMUbzGhgrEXaENwyXImyI-XaIMxJXlFRXmMXodwh9PhFXmFjhmpJCeF2KD5GmLr_GDHrHf34EN228_GBciKfOpcmDodIUtqB5OOziwRQlYvmTbRHnS0bsxcmzKLcf0SbMgadz-G6EEPq7DCVpTzS_-YeYOOWt0HePt0n6DvXz5_O7_M9zcXV-e7fW54SWJOpYDWVKLBpE4LGolrARXljSxLIhvQUNSMYVpQLnAlKG5MEqkoBGVl-h92gj6t3GmuB2gMjNHrXk3eDtovymmr_lZG26lbd1ASF5SIMgFOV0D3T-xyt1cPbziNF4LgA0neD0_DvPs5Q4hqsMFA3-sR3BwUZZxTySURyYpXq_EuBA_tM5tg9dCsSs2qx2bV2myKvP9zlefA7yqT4eNqgPShBwteBWNhNNBYDyaqxtn_038BKeW02w</recordid><startdate>20200306</startdate><enddate>20200306</enddate><creator>Moonira, Tabassum</creator><creator>Chachra, Shruti S.</creator><creator>Ford, Brian E.</creator><creator>Marin, Silvia</creator><creator>Alshawi, Ahmed</creator><creator>Adam-Primus, Natasha S.</creator><creator>Arden, Catherine</creator><creator>Al-Oanzi, Ziad H.</creator><creator>Foretz, Marc</creator><creator>Viollet, Benoit</creator><creator>Cascante, Marta</creator><creator>Agius, Loranne</creator><general>Elsevier Inc</general><general>American Society for Biochemistry and Molecular Biology</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>1XC</scope><scope>VOOES</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-0693-2207</orcidid><orcidid>https://orcid.org/0000-0001-7017-9032</orcidid><orcidid>https://orcid.org/0000-0003-0543-4978</orcidid><orcidid>https://orcid.org/0000-0002-6419-6503</orcidid><orcidid>https://orcid.org/0000-0002-0121-0224</orcidid></search><sort><creationdate>20200306</creationdate><title>Metformin lowers glucose 6-phosphate in hepatocytes by activation of glycolysis downstream of glucose phosphorylation</title><author>Moonira, Tabassum ; Chachra, Shruti S. ; Ford, Brian E. ; Marin, Silvia ; Alshawi, Ahmed ; Adam-Primus, Natasha S. ; Arden, Catherine ; Al-Oanzi, Ziad H. ; Foretz, Marc ; Viollet, Benoit ; Cascante, Marta ; Agius, Loranne</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c481t-275efc95d01b012c70b5e924d78817deae6b3302624509520dc24d25652380743</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Adenosine Triphosphate</topic><topic>Adenosine Triphosphate - metabolism</topic><topic>AMP-Activated Protein Kinases</topic><topic>AMP-Activated Protein Kinases - deficiency</topic><topic>AMP-Activated Protein Kinases - genetics</topic><topic>Animals</topic><topic>Biochemistry</topic><topic>Biochemistry, Molecular Biology</topic><topic>Dihydroxyacetone</topic><topic>Dihydroxyacetone - pharmacology</topic><topic>Endocrinology and metabolism</topic><topic>Gluconeogenesis</topic><topic>Gluconeogenesis - drug effects</topic><topic>Glucose</topic><topic>Glucose - metabolism</topic><topic>Glucose - pharmacology</topic><topic>Glucose-6-Phosphate</topic><topic>Glucose-6-Phosphate - metabolism</topic><topic>Glycerolphosphate Dehydrogenase</topic><topic>Glycerolphosphate Dehydrogenase - genetics</topic><topic>Glycerolphosphate Dehydrogenase - metabolism</topic><topic>Glycolysis</topic><topic>Glycolysis - drug effects</topic><topic>hepatocyte</topic><topic>Hepatocytes</topic><topic>Hepatocytes - cytology</topic><topic>Hepatocytes - drug effects</topic><topic>Hepatocytes - metabolism</topic><topic>Human health and pathology</topic><topic>Life Sciences</topic><topic>liver</topic><topic>Male</topic><topic>Metabolism</topic><topic>Metformin</topic><topic>Metformin - metabolism</topic><topic>Metformin - pharmacology</topic><topic>Mice</topic><topic>Mice, Inbred C57BL</topic><topic>Mice, Knockout</topic><topic>Molecular biology</topic><topic>phosphofructokinase</topic><topic>Phosphofructokinase-1</topic><topic>Phosphofructokinase-1 - antagonists &amp; inhibitors</topic><topic>Phosphofructokinase-1 - metabolism</topic><topic>Phosphorylation</topic><topic>Phosphorylation - drug effects</topic><topic>Rats</topic><topic>Rats, Wistar</topic><topic>Rotenone</topic><topic>Rotenone - pharmacology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Moonira, Tabassum</creatorcontrib><creatorcontrib>Chachra, Shruti S.</creatorcontrib><creatorcontrib>Ford, Brian E.</creatorcontrib><creatorcontrib>Marin, Silvia</creatorcontrib><creatorcontrib>Alshawi, Ahmed</creatorcontrib><creatorcontrib>Adam-Primus, Natasha S.</creatorcontrib><creatorcontrib>Arden, Catherine</creatorcontrib><creatorcontrib>Al-Oanzi, Ziad H.</creatorcontrib><creatorcontrib>Foretz, Marc</creatorcontrib><creatorcontrib>Viollet, Benoit</creatorcontrib><creatorcontrib>Cascante, Marta</creatorcontrib><creatorcontrib>Agius, Loranne</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>The Journal of biological chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Moonira, Tabassum</au><au>Chachra, Shruti S.</au><au>Ford, Brian E.</au><au>Marin, Silvia</au><au>Alshawi, Ahmed</au><au>Adam-Primus, Natasha S.</au><au>Arden, Catherine</au><au>Al-Oanzi, Ziad H.</au><au>Foretz, Marc</au><au>Viollet, Benoit</au><au>Cascante, Marta</au><au>Agius, Loranne</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Metformin lowers glucose 6-phosphate in hepatocytes by activation of glycolysis downstream of glucose phosphorylation</atitle><jtitle>The Journal of biological chemistry</jtitle><addtitle>J Biol Chem</addtitle><date>2020-03-06</date><risdate>2020</risdate><volume>295</volume><issue>10</issue><spage>3330</spage><epage>3346</epage><pages>3330-3346</pages><issn>0021-9258</issn><eissn>1083-351X</eissn><abstract>The chronic effects of metformin on liver gluconeogenesis involve repression of the G6pc gene, which is regulated by the carbohydrate-response element–binding protein through raised cellular intermediates of glucose metabolism. In this study we determined the candidate mechanisms by which metformin lowers glucose 6-phosphate (G6P) in mouse and rat hepatocytes challenged with high glucose or gluconeogenic precursors. Cell metformin loads in the therapeutic range lowered cell G6P but not ATP and decreased G6pc mRNA at high glucose. The G6P lowering by metformin was mimicked by a complex 1 inhibitor (rotenone) and an uncoupler (dinitrophenol) and by overexpression of mGPDH, which lowers glycerol 3-phosphate and G6P and also mimics the G6pc repression by metformin. In contrast, direct allosteric activators of AMPK (A-769662, 991, and C-13) had opposite effects from metformin on glycolysis, gluconeogenesis, and cell G6P. The G6P lowering by metformin, which also occurs in hepatocytes from AMPK knockout mice, is best explained by allosteric regulation of phosphofructokinase-1 and/or fructose bisphosphatase-1, as supported by increased metabolism of [3-3H]glucose relative to [2-3H]glucose; by an increase in the lactate m2/m1 isotopolog ratio from [1,2-13C2]glucose; by lowering of glycerol 3-phosphate an allosteric inhibitor of phosphofructokinase-1; and by marked G6P elevation by selective inhibition of phosphofructokinase-1; but not by a more reduced cytoplasmic NADH/NAD redox state. We conclude that therapeutically relevant doses of metformin lower G6P in hepatocytes challenged with high glucose by stimulation of glycolysis by an AMP-activated protein kinase–independent mechanism through changes in allosteric effectors of phosphofructokinase-1 and fructose bisphosphatase-1, including AMP, Pi, and glycerol 3-phosphate.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>31974165</pmid><doi>10.1074/jbc.RA120.012533</doi><tpages>17</tpages><orcidid>https://orcid.org/0000-0003-0693-2207</orcidid><orcidid>https://orcid.org/0000-0001-7017-9032</orcidid><orcidid>https://orcid.org/0000-0003-0543-4978</orcidid><orcidid>https://orcid.org/0000-0002-6419-6503</orcidid><orcidid>https://orcid.org/0000-0002-0121-0224</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0021-9258
ispartof The Journal of biological chemistry, 2020-03, Vol.295 (10), p.3330-3346
issn 0021-9258
1083-351X
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7062158
source MEDLINE; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; Alma/SFX Local Collection
subjects Adenosine Triphosphate
Adenosine Triphosphate - metabolism
AMP-Activated Protein Kinases
AMP-Activated Protein Kinases - deficiency
AMP-Activated Protein Kinases - genetics
Animals
Biochemistry
Biochemistry, Molecular Biology
Dihydroxyacetone
Dihydroxyacetone - pharmacology
Endocrinology and metabolism
Gluconeogenesis
Gluconeogenesis - drug effects
Glucose
Glucose - metabolism
Glucose - pharmacology
Glucose-6-Phosphate
Glucose-6-Phosphate - metabolism
Glycerolphosphate Dehydrogenase
Glycerolphosphate Dehydrogenase - genetics
Glycerolphosphate Dehydrogenase - metabolism
Glycolysis
Glycolysis - drug effects
hepatocyte
Hepatocytes
Hepatocytes - cytology
Hepatocytes - drug effects
Hepatocytes - metabolism
Human health and pathology
Life Sciences
liver
Male
Metabolism
Metformin
Metformin - metabolism
Metformin - pharmacology
Mice
Mice, Inbred C57BL
Mice, Knockout
Molecular biology
phosphofructokinase
Phosphofructokinase-1
Phosphofructokinase-1 - antagonists & inhibitors
Phosphofructokinase-1 - metabolism
Phosphorylation
Phosphorylation - drug effects
Rats
Rats, Wistar
Rotenone
Rotenone - pharmacology
title Metformin lowers glucose 6-phosphate in hepatocytes by activation of glycolysis downstream of glucose phosphorylation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T20%3A37%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Metformin%20lowers%20glucose%206-phosphate%20in%20hepatocytes%20by%20activation%20of%20glycolysis%20downstream%20of%20glucose%20phosphorylation&rft.jtitle=The%20Journal%20of%20biological%20chemistry&rft.au=Moonira,%20Tabassum&rft.date=2020-03-06&rft.volume=295&rft.issue=10&rft.spage=3330&rft.epage=3346&rft.pages=3330-3346&rft.issn=0021-9258&rft.eissn=1083-351X&rft_id=info:doi/10.1074/jbc.RA120.012533&rft_dat=%3Cproquest_pubme%3E2344274715%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2344274715&rft_id=info:pmid/31974165&rft_els_id=S0021925817495305&rfr_iscdi=true