Metformin lowers glucose 6-phosphate in hepatocytes by activation of glycolysis downstream of glucose phosphorylation
The chronic effects of metformin on liver gluconeogenesis involve repression of the G6pc gene, which is regulated by the carbohydrate-response element–binding protein through raised cellular intermediates of glucose metabolism. In this study we determined the candidate mechanisms by which metformin...
Gespeichert in:
Veröffentlicht in: | The Journal of biological chemistry 2020-03, Vol.295 (10), p.3330-3346 |
---|---|
Hauptverfasser: | , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 3346 |
---|---|
container_issue | 10 |
container_start_page | 3330 |
container_title | The Journal of biological chemistry |
container_volume | 295 |
creator | Moonira, Tabassum Chachra, Shruti S. Ford, Brian E. Marin, Silvia Alshawi, Ahmed Adam-Primus, Natasha S. Arden, Catherine Al-Oanzi, Ziad H. Foretz, Marc Viollet, Benoit Cascante, Marta Agius, Loranne |
description | The chronic effects of metformin on liver gluconeogenesis involve repression of the G6pc gene, which is regulated by the carbohydrate-response element–binding protein through raised cellular intermediates of glucose metabolism. In this study we determined the candidate mechanisms by which metformin lowers glucose 6-phosphate (G6P) in mouse and rat hepatocytes challenged with high glucose or gluconeogenic precursors. Cell metformin loads in the therapeutic range lowered cell G6P but not ATP and decreased G6pc mRNA at high glucose. The G6P lowering by metformin was mimicked by a complex 1 inhibitor (rotenone) and an uncoupler (dinitrophenol) and by overexpression of mGPDH, which lowers glycerol 3-phosphate and G6P and also mimics the G6pc repression by metformin. In contrast, direct allosteric activators of AMPK (A-769662, 991, and C-13) had opposite effects from metformin on glycolysis, gluconeogenesis, and cell G6P. The G6P lowering by metformin, which also occurs in hepatocytes from AMPK knockout mice, is best explained by allosteric regulation of phosphofructokinase-1 and/or fructose bisphosphatase-1, as supported by increased metabolism of [3-3H]glucose relative to [2-3H]glucose; by an increase in the lactate m2/m1 isotopolog ratio from [1,2-13C2]glucose; by lowering of glycerol 3-phosphate an allosteric inhibitor of phosphofructokinase-1; and by marked G6P elevation by selective inhibition of phosphofructokinase-1; but not by a more reduced cytoplasmic NADH/NAD redox state. We conclude that therapeutically relevant doses of metformin lower G6P in hepatocytes challenged with high glucose by stimulation of glycolysis by an AMP-activated protein kinase–independent mechanism through changes in allosteric effectors of phosphofructokinase-1 and fructose bisphosphatase-1, including AMP, Pi, and glycerol 3-phosphate. |
doi_str_mv | 10.1074/jbc.RA120.012533 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7062158</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0021925817495305</els_id><sourcerecordid>2344274715</sourcerecordid><originalsourceid>FETCH-LOGICAL-c481t-275efc95d01b012c70b5e924d78817deae6b3302624509520dc24d25652380743</originalsourceid><addsrcrecordid>eNp1kd9r1TAcxYM43HX67pP00T30Lj-b1gfhMnQb3DEQBd9Cmn67ZrRNTdI7-t-brXOoYF4COed8vnxzEHpH8JZgyc_uarP9uiMUbzGhgrEXaENwyXImyI-XaIMxJXlFRXmMXodwh9PhFXmFjhmpJCeF2KD5GmLr_GDHrHf34EN228_GBciKfOpcmDodIUtqB5OOziwRQlYvmTbRHnS0bsxcmzKLcf0SbMgadz-G6EEPq7DCVpTzS_-YeYOOWt0HePt0n6DvXz5_O7_M9zcXV-e7fW54SWJOpYDWVKLBpE4LGolrARXljSxLIhvQUNSMYVpQLnAlKG5MEqkoBGVl-h92gj6t3GmuB2gMjNHrXk3eDtovymmr_lZG26lbd1ASF5SIMgFOV0D3T-xyt1cPbziNF4LgA0neD0_DvPs5Q4hqsMFA3-sR3BwUZZxTySURyYpXq_EuBA_tM5tg9dCsSs2qx2bV2myKvP9zlefA7yqT4eNqgPShBwteBWNhNNBYDyaqxtn_038BKeW02w</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2344274715</pqid></control><display><type>article</type><title>Metformin lowers glucose 6-phosphate in hepatocytes by activation of glycolysis downstream of glucose phosphorylation</title><source>MEDLINE</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><creator>Moonira, Tabassum ; Chachra, Shruti S. ; Ford, Brian E. ; Marin, Silvia ; Alshawi, Ahmed ; Adam-Primus, Natasha S. ; Arden, Catherine ; Al-Oanzi, Ziad H. ; Foretz, Marc ; Viollet, Benoit ; Cascante, Marta ; Agius, Loranne</creator><creatorcontrib>Moonira, Tabassum ; Chachra, Shruti S. ; Ford, Brian E. ; Marin, Silvia ; Alshawi, Ahmed ; Adam-Primus, Natasha S. ; Arden, Catherine ; Al-Oanzi, Ziad H. ; Foretz, Marc ; Viollet, Benoit ; Cascante, Marta ; Agius, Loranne</creatorcontrib><description>The chronic effects of metformin on liver gluconeogenesis involve repression of the G6pc gene, which is regulated by the carbohydrate-response element–binding protein through raised cellular intermediates of glucose metabolism. In this study we determined the candidate mechanisms by which metformin lowers glucose 6-phosphate (G6P) in mouse and rat hepatocytes challenged with high glucose or gluconeogenic precursors. Cell metformin loads in the therapeutic range lowered cell G6P but not ATP and decreased G6pc mRNA at high glucose. The G6P lowering by metformin was mimicked by a complex 1 inhibitor (rotenone) and an uncoupler (dinitrophenol) and by overexpression of mGPDH, which lowers glycerol 3-phosphate and G6P and also mimics the G6pc repression by metformin. In contrast, direct allosteric activators of AMPK (A-769662, 991, and C-13) had opposite effects from metformin on glycolysis, gluconeogenesis, and cell G6P. The G6P lowering by metformin, which also occurs in hepatocytes from AMPK knockout mice, is best explained by allosteric regulation of phosphofructokinase-1 and/or fructose bisphosphatase-1, as supported by increased metabolism of [3-3H]glucose relative to [2-3H]glucose; by an increase in the lactate m2/m1 isotopolog ratio from [1,2-13C2]glucose; by lowering of glycerol 3-phosphate an allosteric inhibitor of phosphofructokinase-1; and by marked G6P elevation by selective inhibition of phosphofructokinase-1; but not by a more reduced cytoplasmic NADH/NAD redox state. We conclude that therapeutically relevant doses of metformin lower G6P in hepatocytes challenged with high glucose by stimulation of glycolysis by an AMP-activated protein kinase–independent mechanism through changes in allosteric effectors of phosphofructokinase-1 and fructose bisphosphatase-1, including AMP, Pi, and glycerol 3-phosphate.</description><identifier>ISSN: 0021-9258</identifier><identifier>EISSN: 1083-351X</identifier><identifier>DOI: 10.1074/jbc.RA120.012533</identifier><identifier>PMID: 31974165</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Adenosine Triphosphate ; Adenosine Triphosphate - metabolism ; AMP-Activated Protein Kinases ; AMP-Activated Protein Kinases - deficiency ; AMP-Activated Protein Kinases - genetics ; Animals ; Biochemistry ; Biochemistry, Molecular Biology ; Dihydroxyacetone ; Dihydroxyacetone - pharmacology ; Endocrinology and metabolism ; Gluconeogenesis ; Gluconeogenesis - drug effects ; Glucose ; Glucose - metabolism ; Glucose - pharmacology ; Glucose-6-Phosphate ; Glucose-6-Phosphate - metabolism ; Glycerolphosphate Dehydrogenase ; Glycerolphosphate Dehydrogenase - genetics ; Glycerolphosphate Dehydrogenase - metabolism ; Glycolysis ; Glycolysis - drug effects ; hepatocyte ; Hepatocytes ; Hepatocytes - cytology ; Hepatocytes - drug effects ; Hepatocytes - metabolism ; Human health and pathology ; Life Sciences ; liver ; Male ; Metabolism ; Metformin ; Metformin - metabolism ; Metformin - pharmacology ; Mice ; Mice, Inbred C57BL ; Mice, Knockout ; Molecular biology ; phosphofructokinase ; Phosphofructokinase-1 ; Phosphofructokinase-1 - antagonists & inhibitors ; Phosphofructokinase-1 - metabolism ; Phosphorylation ; Phosphorylation - drug effects ; Rats ; Rats, Wistar ; Rotenone ; Rotenone - pharmacology</subject><ispartof>The Journal of biological chemistry, 2020-03, Vol.295 (10), p.3330-3346</ispartof><rights>2020 © 2020 Moonira et al.</rights><rights>2020 Moonira et al.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><rights>2020 Moonira et al. 2020 Moonira et al.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c481t-275efc95d01b012c70b5e924d78817deae6b3302624509520dc24d25652380743</citedby><cites>FETCH-LOGICAL-c481t-275efc95d01b012c70b5e924d78817deae6b3302624509520dc24d25652380743</cites><orcidid>0000-0003-0693-2207 ; 0000-0001-7017-9032 ; 0000-0003-0543-4978 ; 0000-0002-6419-6503 ; 0000-0002-0121-0224</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7062158/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7062158/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,27901,27902,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31974165$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-03025510$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Moonira, Tabassum</creatorcontrib><creatorcontrib>Chachra, Shruti S.</creatorcontrib><creatorcontrib>Ford, Brian E.</creatorcontrib><creatorcontrib>Marin, Silvia</creatorcontrib><creatorcontrib>Alshawi, Ahmed</creatorcontrib><creatorcontrib>Adam-Primus, Natasha S.</creatorcontrib><creatorcontrib>Arden, Catherine</creatorcontrib><creatorcontrib>Al-Oanzi, Ziad H.</creatorcontrib><creatorcontrib>Foretz, Marc</creatorcontrib><creatorcontrib>Viollet, Benoit</creatorcontrib><creatorcontrib>Cascante, Marta</creatorcontrib><creatorcontrib>Agius, Loranne</creatorcontrib><title>Metformin lowers glucose 6-phosphate in hepatocytes by activation of glycolysis downstream of glucose phosphorylation</title><title>The Journal of biological chemistry</title><addtitle>J Biol Chem</addtitle><description>The chronic effects of metformin on liver gluconeogenesis involve repression of the G6pc gene, which is regulated by the carbohydrate-response element–binding protein through raised cellular intermediates of glucose metabolism. In this study we determined the candidate mechanisms by which metformin lowers glucose 6-phosphate (G6P) in mouse and rat hepatocytes challenged with high glucose or gluconeogenic precursors. Cell metformin loads in the therapeutic range lowered cell G6P but not ATP and decreased G6pc mRNA at high glucose. The G6P lowering by metformin was mimicked by a complex 1 inhibitor (rotenone) and an uncoupler (dinitrophenol) and by overexpression of mGPDH, which lowers glycerol 3-phosphate and G6P and also mimics the G6pc repression by metformin. In contrast, direct allosteric activators of AMPK (A-769662, 991, and C-13) had opposite effects from metformin on glycolysis, gluconeogenesis, and cell G6P. The G6P lowering by metformin, which also occurs in hepatocytes from AMPK knockout mice, is best explained by allosteric regulation of phosphofructokinase-1 and/or fructose bisphosphatase-1, as supported by increased metabolism of [3-3H]glucose relative to [2-3H]glucose; by an increase in the lactate m2/m1 isotopolog ratio from [1,2-13C2]glucose; by lowering of glycerol 3-phosphate an allosteric inhibitor of phosphofructokinase-1; and by marked G6P elevation by selective inhibition of phosphofructokinase-1; but not by a more reduced cytoplasmic NADH/NAD redox state. We conclude that therapeutically relevant doses of metformin lower G6P in hepatocytes challenged with high glucose by stimulation of glycolysis by an AMP-activated protein kinase–independent mechanism through changes in allosteric effectors of phosphofructokinase-1 and fructose bisphosphatase-1, including AMP, Pi, and glycerol 3-phosphate.</description><subject>Adenosine Triphosphate</subject><subject>Adenosine Triphosphate - metabolism</subject><subject>AMP-Activated Protein Kinases</subject><subject>AMP-Activated Protein Kinases - deficiency</subject><subject>AMP-Activated Protein Kinases - genetics</subject><subject>Animals</subject><subject>Biochemistry</subject><subject>Biochemistry, Molecular Biology</subject><subject>Dihydroxyacetone</subject><subject>Dihydroxyacetone - pharmacology</subject><subject>Endocrinology and metabolism</subject><subject>Gluconeogenesis</subject><subject>Gluconeogenesis - drug effects</subject><subject>Glucose</subject><subject>Glucose - metabolism</subject><subject>Glucose - pharmacology</subject><subject>Glucose-6-Phosphate</subject><subject>Glucose-6-Phosphate - metabolism</subject><subject>Glycerolphosphate Dehydrogenase</subject><subject>Glycerolphosphate Dehydrogenase - genetics</subject><subject>Glycerolphosphate Dehydrogenase - metabolism</subject><subject>Glycolysis</subject><subject>Glycolysis - drug effects</subject><subject>hepatocyte</subject><subject>Hepatocytes</subject><subject>Hepatocytes - cytology</subject><subject>Hepatocytes - drug effects</subject><subject>Hepatocytes - metabolism</subject><subject>Human health and pathology</subject><subject>Life Sciences</subject><subject>liver</subject><subject>Male</subject><subject>Metabolism</subject><subject>Metformin</subject><subject>Metformin - metabolism</subject><subject>Metformin - pharmacology</subject><subject>Mice</subject><subject>Mice, Inbred C57BL</subject><subject>Mice, Knockout</subject><subject>Molecular biology</subject><subject>phosphofructokinase</subject><subject>Phosphofructokinase-1</subject><subject>Phosphofructokinase-1 - antagonists & inhibitors</subject><subject>Phosphofructokinase-1 - metabolism</subject><subject>Phosphorylation</subject><subject>Phosphorylation - drug effects</subject><subject>Rats</subject><subject>Rats, Wistar</subject><subject>Rotenone</subject><subject>Rotenone - pharmacology</subject><issn>0021-9258</issn><issn>1083-351X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp1kd9r1TAcxYM43HX67pP00T30Lj-b1gfhMnQb3DEQBd9Cmn67ZrRNTdI7-t-brXOoYF4COed8vnxzEHpH8JZgyc_uarP9uiMUbzGhgrEXaENwyXImyI-XaIMxJXlFRXmMXodwh9PhFXmFjhmpJCeF2KD5GmLr_GDHrHf34EN228_GBciKfOpcmDodIUtqB5OOziwRQlYvmTbRHnS0bsxcmzKLcf0SbMgadz-G6EEPq7DCVpTzS_-YeYOOWt0HePt0n6DvXz5_O7_M9zcXV-e7fW54SWJOpYDWVKLBpE4LGolrARXljSxLIhvQUNSMYVpQLnAlKG5MEqkoBGVl-h92gj6t3GmuB2gMjNHrXk3eDtovymmr_lZG26lbd1ASF5SIMgFOV0D3T-xyt1cPbziNF4LgA0neD0_DvPs5Q4hqsMFA3-sR3BwUZZxTySURyYpXq_EuBA_tM5tg9dCsSs2qx2bV2myKvP9zlefA7yqT4eNqgPShBwteBWNhNNBYDyaqxtn_038BKeW02w</recordid><startdate>20200306</startdate><enddate>20200306</enddate><creator>Moonira, Tabassum</creator><creator>Chachra, Shruti S.</creator><creator>Ford, Brian E.</creator><creator>Marin, Silvia</creator><creator>Alshawi, Ahmed</creator><creator>Adam-Primus, Natasha S.</creator><creator>Arden, Catherine</creator><creator>Al-Oanzi, Ziad H.</creator><creator>Foretz, Marc</creator><creator>Viollet, Benoit</creator><creator>Cascante, Marta</creator><creator>Agius, Loranne</creator><general>Elsevier Inc</general><general>American Society for Biochemistry and Molecular Biology</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>1XC</scope><scope>VOOES</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-0693-2207</orcidid><orcidid>https://orcid.org/0000-0001-7017-9032</orcidid><orcidid>https://orcid.org/0000-0003-0543-4978</orcidid><orcidid>https://orcid.org/0000-0002-6419-6503</orcidid><orcidid>https://orcid.org/0000-0002-0121-0224</orcidid></search><sort><creationdate>20200306</creationdate><title>Metformin lowers glucose 6-phosphate in hepatocytes by activation of glycolysis downstream of glucose phosphorylation</title><author>Moonira, Tabassum ; Chachra, Shruti S. ; Ford, Brian E. ; Marin, Silvia ; Alshawi, Ahmed ; Adam-Primus, Natasha S. ; Arden, Catherine ; Al-Oanzi, Ziad H. ; Foretz, Marc ; Viollet, Benoit ; Cascante, Marta ; Agius, Loranne</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c481t-275efc95d01b012c70b5e924d78817deae6b3302624509520dc24d25652380743</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Adenosine Triphosphate</topic><topic>Adenosine Triphosphate - metabolism</topic><topic>AMP-Activated Protein Kinases</topic><topic>AMP-Activated Protein Kinases - deficiency</topic><topic>AMP-Activated Protein Kinases - genetics</topic><topic>Animals</topic><topic>Biochemistry</topic><topic>Biochemistry, Molecular Biology</topic><topic>Dihydroxyacetone</topic><topic>Dihydroxyacetone - pharmacology</topic><topic>Endocrinology and metabolism</topic><topic>Gluconeogenesis</topic><topic>Gluconeogenesis - drug effects</topic><topic>Glucose</topic><topic>Glucose - metabolism</topic><topic>Glucose - pharmacology</topic><topic>Glucose-6-Phosphate</topic><topic>Glucose-6-Phosphate - metabolism</topic><topic>Glycerolphosphate Dehydrogenase</topic><topic>Glycerolphosphate Dehydrogenase - genetics</topic><topic>Glycerolphosphate Dehydrogenase - metabolism</topic><topic>Glycolysis</topic><topic>Glycolysis - drug effects</topic><topic>hepatocyte</topic><topic>Hepatocytes</topic><topic>Hepatocytes - cytology</topic><topic>Hepatocytes - drug effects</topic><topic>Hepatocytes - metabolism</topic><topic>Human health and pathology</topic><topic>Life Sciences</topic><topic>liver</topic><topic>Male</topic><topic>Metabolism</topic><topic>Metformin</topic><topic>Metformin - metabolism</topic><topic>Metformin - pharmacology</topic><topic>Mice</topic><topic>Mice, Inbred C57BL</topic><topic>Mice, Knockout</topic><topic>Molecular biology</topic><topic>phosphofructokinase</topic><topic>Phosphofructokinase-1</topic><topic>Phosphofructokinase-1 - antagonists & inhibitors</topic><topic>Phosphofructokinase-1 - metabolism</topic><topic>Phosphorylation</topic><topic>Phosphorylation - drug effects</topic><topic>Rats</topic><topic>Rats, Wistar</topic><topic>Rotenone</topic><topic>Rotenone - pharmacology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Moonira, Tabassum</creatorcontrib><creatorcontrib>Chachra, Shruti S.</creatorcontrib><creatorcontrib>Ford, Brian E.</creatorcontrib><creatorcontrib>Marin, Silvia</creatorcontrib><creatorcontrib>Alshawi, Ahmed</creatorcontrib><creatorcontrib>Adam-Primus, Natasha S.</creatorcontrib><creatorcontrib>Arden, Catherine</creatorcontrib><creatorcontrib>Al-Oanzi, Ziad H.</creatorcontrib><creatorcontrib>Foretz, Marc</creatorcontrib><creatorcontrib>Viollet, Benoit</creatorcontrib><creatorcontrib>Cascante, Marta</creatorcontrib><creatorcontrib>Agius, Loranne</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>The Journal of biological chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Moonira, Tabassum</au><au>Chachra, Shruti S.</au><au>Ford, Brian E.</au><au>Marin, Silvia</au><au>Alshawi, Ahmed</au><au>Adam-Primus, Natasha S.</au><au>Arden, Catherine</au><au>Al-Oanzi, Ziad H.</au><au>Foretz, Marc</au><au>Viollet, Benoit</au><au>Cascante, Marta</au><au>Agius, Loranne</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Metformin lowers glucose 6-phosphate in hepatocytes by activation of glycolysis downstream of glucose phosphorylation</atitle><jtitle>The Journal of biological chemistry</jtitle><addtitle>J Biol Chem</addtitle><date>2020-03-06</date><risdate>2020</risdate><volume>295</volume><issue>10</issue><spage>3330</spage><epage>3346</epage><pages>3330-3346</pages><issn>0021-9258</issn><eissn>1083-351X</eissn><abstract>The chronic effects of metformin on liver gluconeogenesis involve repression of the G6pc gene, which is regulated by the carbohydrate-response element–binding protein through raised cellular intermediates of glucose metabolism. In this study we determined the candidate mechanisms by which metformin lowers glucose 6-phosphate (G6P) in mouse and rat hepatocytes challenged with high glucose or gluconeogenic precursors. Cell metformin loads in the therapeutic range lowered cell G6P but not ATP and decreased G6pc mRNA at high glucose. The G6P lowering by metformin was mimicked by a complex 1 inhibitor (rotenone) and an uncoupler (dinitrophenol) and by overexpression of mGPDH, which lowers glycerol 3-phosphate and G6P and also mimics the G6pc repression by metformin. In contrast, direct allosteric activators of AMPK (A-769662, 991, and C-13) had opposite effects from metformin on glycolysis, gluconeogenesis, and cell G6P. The G6P lowering by metformin, which also occurs in hepatocytes from AMPK knockout mice, is best explained by allosteric regulation of phosphofructokinase-1 and/or fructose bisphosphatase-1, as supported by increased metabolism of [3-3H]glucose relative to [2-3H]glucose; by an increase in the lactate m2/m1 isotopolog ratio from [1,2-13C2]glucose; by lowering of glycerol 3-phosphate an allosteric inhibitor of phosphofructokinase-1; and by marked G6P elevation by selective inhibition of phosphofructokinase-1; but not by a more reduced cytoplasmic NADH/NAD redox state. We conclude that therapeutically relevant doses of metformin lower G6P in hepatocytes challenged with high glucose by stimulation of glycolysis by an AMP-activated protein kinase–independent mechanism through changes in allosteric effectors of phosphofructokinase-1 and fructose bisphosphatase-1, including AMP, Pi, and glycerol 3-phosphate.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>31974165</pmid><doi>10.1074/jbc.RA120.012533</doi><tpages>17</tpages><orcidid>https://orcid.org/0000-0003-0693-2207</orcidid><orcidid>https://orcid.org/0000-0001-7017-9032</orcidid><orcidid>https://orcid.org/0000-0003-0543-4978</orcidid><orcidid>https://orcid.org/0000-0002-6419-6503</orcidid><orcidid>https://orcid.org/0000-0002-0121-0224</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0021-9258 |
ispartof | The Journal of biological chemistry, 2020-03, Vol.295 (10), p.3330-3346 |
issn | 0021-9258 1083-351X |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7062158 |
source | MEDLINE; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; Alma/SFX Local Collection |
subjects | Adenosine Triphosphate Adenosine Triphosphate - metabolism AMP-Activated Protein Kinases AMP-Activated Protein Kinases - deficiency AMP-Activated Protein Kinases - genetics Animals Biochemistry Biochemistry, Molecular Biology Dihydroxyacetone Dihydroxyacetone - pharmacology Endocrinology and metabolism Gluconeogenesis Gluconeogenesis - drug effects Glucose Glucose - metabolism Glucose - pharmacology Glucose-6-Phosphate Glucose-6-Phosphate - metabolism Glycerolphosphate Dehydrogenase Glycerolphosphate Dehydrogenase - genetics Glycerolphosphate Dehydrogenase - metabolism Glycolysis Glycolysis - drug effects hepatocyte Hepatocytes Hepatocytes - cytology Hepatocytes - drug effects Hepatocytes - metabolism Human health and pathology Life Sciences liver Male Metabolism Metformin Metformin - metabolism Metformin - pharmacology Mice Mice, Inbred C57BL Mice, Knockout Molecular biology phosphofructokinase Phosphofructokinase-1 Phosphofructokinase-1 - antagonists & inhibitors Phosphofructokinase-1 - metabolism Phosphorylation Phosphorylation - drug effects Rats Rats, Wistar Rotenone Rotenone - pharmacology |
title | Metformin lowers glucose 6-phosphate in hepatocytes by activation of glycolysis downstream of glucose phosphorylation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T20%3A37%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Metformin%20lowers%20glucose%206-phosphate%20in%20hepatocytes%20by%20activation%20of%20glycolysis%20downstream%20of%20glucose%20phosphorylation&rft.jtitle=The%20Journal%20of%20biological%20chemistry&rft.au=Moonira,%20Tabassum&rft.date=2020-03-06&rft.volume=295&rft.issue=10&rft.spage=3330&rft.epage=3346&rft.pages=3330-3346&rft.issn=0021-9258&rft.eissn=1083-351X&rft_id=info:doi/10.1074/jbc.RA120.012533&rft_dat=%3Cproquest_pubme%3E2344274715%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2344274715&rft_id=info:pmid/31974165&rft_els_id=S0021925817495305&rfr_iscdi=true |