Evidence of Cosmic Impact at Abu Hureyra, Syria at the Younger Dryas Onset (~12.8 ka): High-temperature melting at >2200 °C

At Abu Hureyra (AH), Syria, the 12,800-year-old Younger Dryas boundary layer (YDB) contains peak abundances in meltglass, nanodiamonds, microspherules, and charcoal. AH meltglass comprises 1.6 wt.% of bulk sediment, and crossed polarizers indicate that the meltglass is isotropic. High YDB concentrat...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Scientific reports 2020-03, Vol.10 (1), p.4185-4185, Article 4185
Hauptverfasser: Moore, Andrew M. T., Kennett, James P., Napier, William M., Bunch, Ted E., Weaver, James C., LeCompte, Malcolm, Adedeji, A. Victor, Hackley, Paul, Kletetschka, Gunther, Hermes, Robert E., Wittke, James H., Razink, Joshua J., Gaultois, Michael W., West, Allen
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 4185
container_issue 1
container_start_page 4185
container_title Scientific reports
container_volume 10
creator Moore, Andrew M. T.
Kennett, James P.
Napier, William M.
Bunch, Ted E.
Weaver, James C.
LeCompte, Malcolm
Adedeji, A. Victor
Hackley, Paul
Kletetschka, Gunther
Hermes, Robert E.
Wittke, James H.
Razink, Joshua J.
Gaultois, Michael W.
West, Allen
description At Abu Hureyra (AH), Syria, the 12,800-year-old Younger Dryas boundary layer (YDB) contains peak abundances in meltglass, nanodiamonds, microspherules, and charcoal. AH meltglass comprises 1.6 wt.% of bulk sediment, and crossed polarizers indicate that the meltglass is isotropic. High YDB concentrations of iridium, platinum, nickel, and cobalt suggest mixing of melted local sediment with small quantities of meteoritic material. Approximately 40% of AH glass display carbon-infused, siliceous plant imprints that laboratory experiments show formed at a minimum of 1200°–1300 °C; however, reflectance-inferred temperatures for the encapsulated carbon were lower by up to 1000 °C. Alternately, melted grains of quartz, chromferide, and magnetite in AH glass suggest exposure to minimum temperatures of 1720 °C ranging to >2200 °C. This argues against formation of AH meltglass in thatched hut fires at 1100°–1200 °C, and low values of remanent magnetism indicate the meltglass was not created by lightning. Low meltglass water content (0.02–0.05% H 2 O) is consistent with a formation process similar to that of tektites and inconsistent with volcanism and anthropogenesis. The wide range of evidence supports the hypothesis that a cosmic event occurred at Abu Hureyra ~12,800 years ago, coeval with impacts that deposited high-temperature meltglass, melted microspherules, and/or platinum at other YDB sites on four continents.
doi_str_mv 10.1038/s41598-020-60867-w
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7060197</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2372862723</sourcerecordid><originalsourceid>FETCH-LOGICAL-c491t-d1c11c34fcf37f825fecdd92e0b30f11219ea4cb2e3068e5e605391d5c04e8183</originalsourceid><addsrcrecordid>eNp9kb9uFDEQh1cIRKKQF6BAlmiCxAZ7bO_aFJGiI3CRIqUACirL552927B_LrY30TURLW_DM_AoPAleLoRAgRtbnm9-9ujLsqeMHjLK1asgmNQqp0DzgqqizK8fZLtAhcyBAzy8d97J9kO4oGlJ0ILpx9kOByYE13I3uzm5airsHZKhJrMhdI0jp93aukhsJMeLkcxHjxtvX5L3G9_Y6TaukHwaxn6JnrzxGxvIeR8wkoMbBoeKfLYvXpN5s1zlEbs1ehtTAumwjU2_nPqPACj98eXr92-zJ9mj2rYB92_3vezj25MPs3l-dv7udHZ8ljuhWcwr5hhzXNSu5mWtQNboqkoD0gWnNWPANFrhFoCcFgolFlRyzSrpqEDFFN_Ljra563HRYeWwj962Zu2bzvqNGWxj_q70zcoshytT0oIyXaaAg9sAP1yOGKLpmuCwbW2PwxgM8FJwWfJSJvT5P-jFMPo-jTdRoAoogScKtpTzQwge67vPMGomw2Zr2CTD5pdhc52ant0f467lt88E8C0QUmkS9Oft_8T-BIcdsbU</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2372862723</pqid></control><display><type>article</type><title>Evidence of Cosmic Impact at Abu Hureyra, Syria at the Younger Dryas Onset (~12.8 ka): High-temperature melting at &gt;2200 °C</title><source>Nature Open Access</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Springer Nature OA Free Journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Moore, Andrew M. T. ; Kennett, James P. ; Napier, William M. ; Bunch, Ted E. ; Weaver, James C. ; LeCompte, Malcolm ; Adedeji, A. Victor ; Hackley, Paul ; Kletetschka, Gunther ; Hermes, Robert E. ; Wittke, James H. ; Razink, Joshua J. ; Gaultois, Michael W. ; West, Allen</creator><creatorcontrib>Moore, Andrew M. T. ; Kennett, James P. ; Napier, William M. ; Bunch, Ted E. ; Weaver, James C. ; LeCompte, Malcolm ; Adedeji, A. Victor ; Hackley, Paul ; Kletetschka, Gunther ; Hermes, Robert E. ; Wittke, James H. ; Razink, Joshua J. ; Gaultois, Michael W. ; West, Allen</creatorcontrib><description>At Abu Hureyra (AH), Syria, the 12,800-year-old Younger Dryas boundary layer (YDB) contains peak abundances in meltglass, nanodiamonds, microspherules, and charcoal. AH meltglass comprises 1.6 wt.% of bulk sediment, and crossed polarizers indicate that the meltglass is isotropic. High YDB concentrations of iridium, platinum, nickel, and cobalt suggest mixing of melted local sediment with small quantities of meteoritic material. Approximately 40% of AH glass display carbon-infused, siliceous plant imprints that laboratory experiments show formed at a minimum of 1200°–1300 °C; however, reflectance-inferred temperatures for the encapsulated carbon were lower by up to 1000 °C. Alternately, melted grains of quartz, chromferide, and magnetite in AH glass suggest exposure to minimum temperatures of 1720 °C ranging to &gt;2200 °C. This argues against formation of AH meltglass in thatched hut fires at 1100°–1200 °C, and low values of remanent magnetism indicate the meltglass was not created by lightning. Low meltglass water content (0.02–0.05% H 2 O) is consistent with a formation process similar to that of tektites and inconsistent with volcanism and anthropogenesis. The wide range of evidence supports the hypothesis that a cosmic event occurred at Abu Hureyra ~12,800 years ago, coeval with impacts that deposited high-temperature meltglass, melted microspherules, and/or platinum at other YDB sites on four continents.</description><identifier>ISSN: 2045-2322</identifier><identifier>EISSN: 2045-2322</identifier><identifier>DOI: 10.1038/s41598-020-60867-w</identifier><identifier>PMID: 32144395</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>639/33/34 ; 639/33/445/209 ; Boundary layers ; Carbon ; Charcoal ; Cobalt ; Fourier transforms ; Humanities and Social Sciences ; Hypotheses ; Investigations ; Laboratories ; Magnetite ; Minerals ; multidisciplinary ; Nickel ; Platinum ; Scanning electron microscopy ; Science ; Science (multidisciplinary) ; Sediments ; Water content</subject><ispartof>Scientific reports, 2020-03, Vol.10 (1), p.4185-4185, Article 4185</ispartof><rights>The Author(s) 2020</rights><rights>This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c491t-d1c11c34fcf37f825fecdd92e0b30f11219ea4cb2e3068e5e605391d5c04e8183</cites><orcidid>0000-0002-2734-3869 ; 0000-0003-2172-2507 ; 0000-0002-0645-9037</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7060197/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7060197/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,27923,27924,41119,42188,51575,53790,53792</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32144395$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Moore, Andrew M. T.</creatorcontrib><creatorcontrib>Kennett, James P.</creatorcontrib><creatorcontrib>Napier, William M.</creatorcontrib><creatorcontrib>Bunch, Ted E.</creatorcontrib><creatorcontrib>Weaver, James C.</creatorcontrib><creatorcontrib>LeCompte, Malcolm</creatorcontrib><creatorcontrib>Adedeji, A. Victor</creatorcontrib><creatorcontrib>Hackley, Paul</creatorcontrib><creatorcontrib>Kletetschka, Gunther</creatorcontrib><creatorcontrib>Hermes, Robert E.</creatorcontrib><creatorcontrib>Wittke, James H.</creatorcontrib><creatorcontrib>Razink, Joshua J.</creatorcontrib><creatorcontrib>Gaultois, Michael W.</creatorcontrib><creatorcontrib>West, Allen</creatorcontrib><title>Evidence of Cosmic Impact at Abu Hureyra, Syria at the Younger Dryas Onset (~12.8 ka): High-temperature melting at &gt;2200 °C</title><title>Scientific reports</title><addtitle>Sci Rep</addtitle><addtitle>Sci Rep</addtitle><description>At Abu Hureyra (AH), Syria, the 12,800-year-old Younger Dryas boundary layer (YDB) contains peak abundances in meltglass, nanodiamonds, microspherules, and charcoal. AH meltglass comprises 1.6 wt.% of bulk sediment, and crossed polarizers indicate that the meltglass is isotropic. High YDB concentrations of iridium, platinum, nickel, and cobalt suggest mixing of melted local sediment with small quantities of meteoritic material. Approximately 40% of AH glass display carbon-infused, siliceous plant imprints that laboratory experiments show formed at a minimum of 1200°–1300 °C; however, reflectance-inferred temperatures for the encapsulated carbon were lower by up to 1000 °C. Alternately, melted grains of quartz, chromferide, and magnetite in AH glass suggest exposure to minimum temperatures of 1720 °C ranging to &gt;2200 °C. This argues against formation of AH meltglass in thatched hut fires at 1100°–1200 °C, and low values of remanent magnetism indicate the meltglass was not created by lightning. Low meltglass water content (0.02–0.05% H 2 O) is consistent with a formation process similar to that of tektites and inconsistent with volcanism and anthropogenesis. The wide range of evidence supports the hypothesis that a cosmic event occurred at Abu Hureyra ~12,800 years ago, coeval with impacts that deposited high-temperature meltglass, melted microspherules, and/or platinum at other YDB sites on four continents.</description><subject>639/33/34</subject><subject>639/33/445/209</subject><subject>Boundary layers</subject><subject>Carbon</subject><subject>Charcoal</subject><subject>Cobalt</subject><subject>Fourier transforms</subject><subject>Humanities and Social Sciences</subject><subject>Hypotheses</subject><subject>Investigations</subject><subject>Laboratories</subject><subject>Magnetite</subject><subject>Minerals</subject><subject>multidisciplinary</subject><subject>Nickel</subject><subject>Platinum</subject><subject>Scanning electron microscopy</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>Sediments</subject><subject>Water content</subject><issn>2045-2322</issn><issn>2045-2322</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kb9uFDEQh1cIRKKQF6BAlmiCxAZ7bO_aFJGiI3CRIqUACirL552927B_LrY30TURLW_DM_AoPAleLoRAgRtbnm9-9ujLsqeMHjLK1asgmNQqp0DzgqqizK8fZLtAhcyBAzy8d97J9kO4oGlJ0ILpx9kOByYE13I3uzm5airsHZKhJrMhdI0jp93aukhsJMeLkcxHjxtvX5L3G9_Y6TaukHwaxn6JnrzxGxvIeR8wkoMbBoeKfLYvXpN5s1zlEbs1ehtTAumwjU2_nPqPACj98eXr92-zJ9mj2rYB92_3vezj25MPs3l-dv7udHZ8ljuhWcwr5hhzXNSu5mWtQNboqkoD0gWnNWPANFrhFoCcFgolFlRyzSrpqEDFFN_Ljra563HRYeWwj962Zu2bzvqNGWxj_q70zcoshytT0oIyXaaAg9sAP1yOGKLpmuCwbW2PwxgM8FJwWfJSJvT5P-jFMPo-jTdRoAoogScKtpTzQwge67vPMGomw2Zr2CTD5pdhc52ant0f467lt88E8C0QUmkS9Oft_8T-BIcdsbU</recordid><startdate>20200306</startdate><enddate>20200306</enddate><creator>Moore, Andrew M. T.</creator><creator>Kennett, James P.</creator><creator>Napier, William M.</creator><creator>Bunch, Ted E.</creator><creator>Weaver, James C.</creator><creator>LeCompte, Malcolm</creator><creator>Adedeji, A. Victor</creator><creator>Hackley, Paul</creator><creator>Kletetschka, Gunther</creator><creator>Hermes, Robert E.</creator><creator>Wittke, James H.</creator><creator>Razink, Joshua J.</creator><creator>Gaultois, Michael W.</creator><creator>West, Allen</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>C6C</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-2734-3869</orcidid><orcidid>https://orcid.org/0000-0003-2172-2507</orcidid><orcidid>https://orcid.org/0000-0002-0645-9037</orcidid></search><sort><creationdate>20200306</creationdate><title>Evidence of Cosmic Impact at Abu Hureyra, Syria at the Younger Dryas Onset (~12.8 ka): High-temperature melting at &gt;2200 °C</title><author>Moore, Andrew M. T. ; Kennett, James P. ; Napier, William M. ; Bunch, Ted E. ; Weaver, James C. ; LeCompte, Malcolm ; Adedeji, A. Victor ; Hackley, Paul ; Kletetschka, Gunther ; Hermes, Robert E. ; Wittke, James H. ; Razink, Joshua J. ; Gaultois, Michael W. ; West, Allen</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c491t-d1c11c34fcf37f825fecdd92e0b30f11219ea4cb2e3068e5e605391d5c04e8183</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>639/33/34</topic><topic>639/33/445/209</topic><topic>Boundary layers</topic><topic>Carbon</topic><topic>Charcoal</topic><topic>Cobalt</topic><topic>Fourier transforms</topic><topic>Humanities and Social Sciences</topic><topic>Hypotheses</topic><topic>Investigations</topic><topic>Laboratories</topic><topic>Magnetite</topic><topic>Minerals</topic><topic>multidisciplinary</topic><topic>Nickel</topic><topic>Platinum</topic><topic>Scanning electron microscopy</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>Sediments</topic><topic>Water content</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Moore, Andrew M. T.</creatorcontrib><creatorcontrib>Kennett, James P.</creatorcontrib><creatorcontrib>Napier, William M.</creatorcontrib><creatorcontrib>Bunch, Ted E.</creatorcontrib><creatorcontrib>Weaver, James C.</creatorcontrib><creatorcontrib>LeCompte, Malcolm</creatorcontrib><creatorcontrib>Adedeji, A. Victor</creatorcontrib><creatorcontrib>Hackley, Paul</creatorcontrib><creatorcontrib>Kletetschka, Gunther</creatorcontrib><creatorcontrib>Hermes, Robert E.</creatorcontrib><creatorcontrib>Wittke, James H.</creatorcontrib><creatorcontrib>Razink, Joshua J.</creatorcontrib><creatorcontrib>Gaultois, Michael W.</creatorcontrib><creatorcontrib>West, Allen</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Scientific reports</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Moore, Andrew M. T.</au><au>Kennett, James P.</au><au>Napier, William M.</au><au>Bunch, Ted E.</au><au>Weaver, James C.</au><au>LeCompte, Malcolm</au><au>Adedeji, A. Victor</au><au>Hackley, Paul</au><au>Kletetschka, Gunther</au><au>Hermes, Robert E.</au><au>Wittke, James H.</au><au>Razink, Joshua J.</au><au>Gaultois, Michael W.</au><au>West, Allen</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Evidence of Cosmic Impact at Abu Hureyra, Syria at the Younger Dryas Onset (~12.8 ka): High-temperature melting at &gt;2200 °C</atitle><jtitle>Scientific reports</jtitle><stitle>Sci Rep</stitle><addtitle>Sci Rep</addtitle><date>2020-03-06</date><risdate>2020</risdate><volume>10</volume><issue>1</issue><spage>4185</spage><epage>4185</epage><pages>4185-4185</pages><artnum>4185</artnum><issn>2045-2322</issn><eissn>2045-2322</eissn><abstract>At Abu Hureyra (AH), Syria, the 12,800-year-old Younger Dryas boundary layer (YDB) contains peak abundances in meltglass, nanodiamonds, microspherules, and charcoal. AH meltglass comprises 1.6 wt.% of bulk sediment, and crossed polarizers indicate that the meltglass is isotropic. High YDB concentrations of iridium, platinum, nickel, and cobalt suggest mixing of melted local sediment with small quantities of meteoritic material. Approximately 40% of AH glass display carbon-infused, siliceous plant imprints that laboratory experiments show formed at a minimum of 1200°–1300 °C; however, reflectance-inferred temperatures for the encapsulated carbon were lower by up to 1000 °C. Alternately, melted grains of quartz, chromferide, and magnetite in AH glass suggest exposure to minimum temperatures of 1720 °C ranging to &gt;2200 °C. This argues against formation of AH meltglass in thatched hut fires at 1100°–1200 °C, and low values of remanent magnetism indicate the meltglass was not created by lightning. Low meltglass water content (0.02–0.05% H 2 O) is consistent with a formation process similar to that of tektites and inconsistent with volcanism and anthropogenesis. The wide range of evidence supports the hypothesis that a cosmic event occurred at Abu Hureyra ~12,800 years ago, coeval with impacts that deposited high-temperature meltglass, melted microspherules, and/or platinum at other YDB sites on four continents.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>32144395</pmid><doi>10.1038/s41598-020-60867-w</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0002-2734-3869</orcidid><orcidid>https://orcid.org/0000-0003-2172-2507</orcidid><orcidid>https://orcid.org/0000-0002-0645-9037</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2045-2322
ispartof Scientific reports, 2020-03, Vol.10 (1), p.4185-4185, Article 4185
issn 2045-2322
2045-2322
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7060197
source Nature Open Access; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Springer Nature OA Free Journals; PubMed Central; Free Full-Text Journals in Chemistry
subjects 639/33/34
639/33/445/209
Boundary layers
Carbon
Charcoal
Cobalt
Fourier transforms
Humanities and Social Sciences
Hypotheses
Investigations
Laboratories
Magnetite
Minerals
multidisciplinary
Nickel
Platinum
Scanning electron microscopy
Science
Science (multidisciplinary)
Sediments
Water content
title Evidence of Cosmic Impact at Abu Hureyra, Syria at the Younger Dryas Onset (~12.8 ka): High-temperature melting at >2200 °C
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T11%3A16%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Evidence%20of%20Cosmic%20Impact%20at%20Abu%20Hureyra,%20Syria%20at%20the%20Younger%20Dryas%20Onset%20(~12.8%20ka):%20High-temperature%20melting%20at%20%3E2200%E2%80%89%C2%B0C&rft.jtitle=Scientific%20reports&rft.au=Moore,%20Andrew%20M.%20T.&rft.date=2020-03-06&rft.volume=10&rft.issue=1&rft.spage=4185&rft.epage=4185&rft.pages=4185-4185&rft.artnum=4185&rft.issn=2045-2322&rft.eissn=2045-2322&rft_id=info:doi/10.1038/s41598-020-60867-w&rft_dat=%3Cproquest_pubme%3E2372862723%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2372862723&rft_id=info:pmid/32144395&rfr_iscdi=true