The position of the target site for engineered nucleases improves the aberrant mRNA clearance in in vivo genome editing

Engineered nucleases are widely used for creating frameshift or nonsense mutations in the target genes to eliminate gene functions. The resulting mRNAs carrying premature termination codons can be eliminated by nonsense-mediated mRNA decay. However, it is unclear how effective this process would be...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Scientific reports 2020-03, Vol.10 (1), p.4173-4173, Article 4173
Hauptverfasser: Lee, Jae Hoon, Yu, Sungsook, Nam, Tae Wook, Roh, Jae-il, Jin, Young, Han, Jeong Pil, Cha, Ji-Young, Kim, Yoon Ki, Yeom, Su-Cheong, Nam, Ki Taek, Lee, Han-Woong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 4173
container_issue 1
container_start_page 4173
container_title Scientific reports
container_volume 10
creator Lee, Jae Hoon
Yu, Sungsook
Nam, Tae Wook
Roh, Jae-il
Jin, Young
Han, Jeong Pil
Cha, Ji-Young
Kim, Yoon Ki
Yeom, Su-Cheong
Nam, Ki Taek
Lee, Han-Woong
description Engineered nucleases are widely used for creating frameshift or nonsense mutations in the target genes to eliminate gene functions. The resulting mRNAs carrying premature termination codons can be eliminated by nonsense-mediated mRNA decay. However, it is unclear how effective this process would be in vivo . Here, we found that the nonsense-mediated decay was unable to remove the mutant mRNAs in twelve out of sixteen homozygous mutant mice with frameshift mutations generated using engineered nucleases, which is far beyond what we expected. The frameshift mutant proteins translated by a single nucleotide deletion within the coding region were also detected in the p53 mutant mice. Furthermore, we showed that targeting the exons present downstream of the exons with a start codon or distant from ATG is relatively effective for eliminating mutant mRNAs in vivo , whereas the exons with a start codon are targeted to express the mutant mRNAs. Of the sixteen mutant mice generated, only four mutant mice targeting the downstream exons exhibited over 80% clearance of mutant mRNAs. Since the abnormal products, either mutant RNAs or mutant proteins, expressed by the target alleles might obscure the outcome of genome editing, these findings will provide insights in the improved performance of engineered nucleases when they are applied in vivo .
doi_str_mv 10.1038/s41598-020-61154-4
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7060192</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2372859083</sourcerecordid><originalsourceid>FETCH-LOGICAL-c511t-3b294d7b585d055dba45b684a41d9ea6a4f7dc0735b75c89bad35de89d06b60e3</originalsourceid><addsrcrecordid>eNp9kUtLHTEUx4O0qFi_QBcS6Kab0TznsRFEfIFYKHYdksmZMTKTXJOZK357M17ro4uGQM7J-Z0Xf4S-U3JICa-PkqCyqQvCSFFSKkUhttAuI0IWjDP25YO9g_ZTuif5SNYI2myjHc6oELziu-jx9g7wKiQ3ueBx6PCU_UnHHiacPwF3IWLwvfMAESz2czuATpCwG1cxrLOxZGgDMWo_4fH3zQlekOy1gJ1f7tqtA-7BhxEw2NzK99_Q104PCfZf3z305_zs9vSyuP51cXV6cl20ktKp4CaPbCsja2mJlNZoIU1ZCy2obUCXWnSVbUnFpalkWzdGWy4t1I0lpSkJ8D10vKm7ms0ItgU_RT2oVXSjjk8qaKc-R7y7U31Yq4qUhDYsF_j5WiCGhxnSpEaXWhgG7SHMSTFeCS4JL8uM_vgHvQ9z9Hm9hWK1bEjNM8U2VBtDShG6t2EoUYu0aiOtytKqF2mVyEkHH9d4S_krZAb4Bkg55HuI773_U_YZbtSwpA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2372859083</pqid></control><display><type>article</type><title>The position of the target site for engineered nucleases improves the aberrant mRNA clearance in in vivo genome editing</title><source>Nature Open Access</source><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>Springer Nature OA/Free Journals</source><source>Free Full-Text Journals in Chemistry</source><creator>Lee, Jae Hoon ; Yu, Sungsook ; Nam, Tae Wook ; Roh, Jae-il ; Jin, Young ; Han, Jeong Pil ; Cha, Ji-Young ; Kim, Yoon Ki ; Yeom, Su-Cheong ; Nam, Ki Taek ; Lee, Han-Woong</creator><creatorcontrib>Lee, Jae Hoon ; Yu, Sungsook ; Nam, Tae Wook ; Roh, Jae-il ; Jin, Young ; Han, Jeong Pil ; Cha, Ji-Young ; Kim, Yoon Ki ; Yeom, Su-Cheong ; Nam, Ki Taek ; Lee, Han-Woong</creatorcontrib><description>Engineered nucleases are widely used for creating frameshift or nonsense mutations in the target genes to eliminate gene functions. The resulting mRNAs carrying premature termination codons can be eliminated by nonsense-mediated mRNA decay. However, it is unclear how effective this process would be in vivo . Here, we found that the nonsense-mediated decay was unable to remove the mutant mRNAs in twelve out of sixteen homozygous mutant mice with frameshift mutations generated using engineered nucleases, which is far beyond what we expected. The frameshift mutant proteins translated by a single nucleotide deletion within the coding region were also detected in the p53 mutant mice. Furthermore, we showed that targeting the exons present downstream of the exons with a start codon or distant from ATG is relatively effective for eliminating mutant mRNAs in vivo , whereas the exons with a start codon are targeted to express the mutant mRNAs. Of the sixteen mutant mice generated, only four mutant mice targeting the downstream exons exhibited over 80% clearance of mutant mRNAs. Since the abnormal products, either mutant RNAs or mutant proteins, expressed by the target alleles might obscure the outcome of genome editing, these findings will provide insights in the improved performance of engineered nucleases when they are applied in vivo .</description><identifier>ISSN: 2045-2322</identifier><identifier>EISSN: 2045-2322</identifier><identifier>DOI: 10.1038/s41598-020-61154-4</identifier><identifier>PMID: 32144373</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>42/41 ; 45/22 ; 45/23 ; 45/90 ; 631/208/199 ; 631/61/17/1511 ; 64/110 ; Animals ; Blotting, Western ; Codons ; Decay ; Deoxyribonucleases - genetics ; Deoxyribonucleases - metabolism ; Exons ; Female ; Frameshift mutation ; Gene deletion ; Gene Editing ; Genome editing ; Genomes ; Genotype ; Humanities and Social Sciences ; Humans ; Immunohistochemistry ; In Situ Hybridization ; Male ; Mice ; Mice, Inbred C57BL ; mRNA turnover ; multidisciplinary ; Mutation ; Nonsense-mediated mRNA decay ; Nuclease ; p53 Protein ; Peptide Initiation Factors - genetics ; Reverse Transcriptase Polymerase Chain Reaction ; RNA, Messenger - genetics ; Rodents ; Science ; Science (multidisciplinary)</subject><ispartof>Scientific reports, 2020-03, Vol.10 (1), p.4173-4173, Article 4173</ispartof><rights>The Author(s) 2020</rights><rights>This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c511t-3b294d7b585d055dba45b684a41d9ea6a4f7dc0735b75c89bad35de89d06b60e3</citedby><cites>FETCH-LOGICAL-c511t-3b294d7b585d055dba45b684a41d9ea6a4f7dc0735b75c89bad35de89d06b60e3</cites><orcidid>0000-0002-9491-5740 ; 0000-0003-1303-072X ; 0000-0001-5292-1280</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7060192/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7060192/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,27924,27925,41120,42189,51576,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32144373$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Lee, Jae Hoon</creatorcontrib><creatorcontrib>Yu, Sungsook</creatorcontrib><creatorcontrib>Nam, Tae Wook</creatorcontrib><creatorcontrib>Roh, Jae-il</creatorcontrib><creatorcontrib>Jin, Young</creatorcontrib><creatorcontrib>Han, Jeong Pil</creatorcontrib><creatorcontrib>Cha, Ji-Young</creatorcontrib><creatorcontrib>Kim, Yoon Ki</creatorcontrib><creatorcontrib>Yeom, Su-Cheong</creatorcontrib><creatorcontrib>Nam, Ki Taek</creatorcontrib><creatorcontrib>Lee, Han-Woong</creatorcontrib><title>The position of the target site for engineered nucleases improves the aberrant mRNA clearance in in vivo genome editing</title><title>Scientific reports</title><addtitle>Sci Rep</addtitle><addtitle>Sci Rep</addtitle><description>Engineered nucleases are widely used for creating frameshift or nonsense mutations in the target genes to eliminate gene functions. The resulting mRNAs carrying premature termination codons can be eliminated by nonsense-mediated mRNA decay. However, it is unclear how effective this process would be in vivo . Here, we found that the nonsense-mediated decay was unable to remove the mutant mRNAs in twelve out of sixteen homozygous mutant mice with frameshift mutations generated using engineered nucleases, which is far beyond what we expected. The frameshift mutant proteins translated by a single nucleotide deletion within the coding region were also detected in the p53 mutant mice. Furthermore, we showed that targeting the exons present downstream of the exons with a start codon or distant from ATG is relatively effective for eliminating mutant mRNAs in vivo , whereas the exons with a start codon are targeted to express the mutant mRNAs. Of the sixteen mutant mice generated, only four mutant mice targeting the downstream exons exhibited over 80% clearance of mutant mRNAs. Since the abnormal products, either mutant RNAs or mutant proteins, expressed by the target alleles might obscure the outcome of genome editing, these findings will provide insights in the improved performance of engineered nucleases when they are applied in vivo .</description><subject>42/41</subject><subject>45/22</subject><subject>45/23</subject><subject>45/90</subject><subject>631/208/199</subject><subject>631/61/17/1511</subject><subject>64/110</subject><subject>Animals</subject><subject>Blotting, Western</subject><subject>Codons</subject><subject>Decay</subject><subject>Deoxyribonucleases - genetics</subject><subject>Deoxyribonucleases - metabolism</subject><subject>Exons</subject><subject>Female</subject><subject>Frameshift mutation</subject><subject>Gene deletion</subject><subject>Gene Editing</subject><subject>Genome editing</subject><subject>Genomes</subject><subject>Genotype</subject><subject>Humanities and Social Sciences</subject><subject>Humans</subject><subject>Immunohistochemistry</subject><subject>In Situ Hybridization</subject><subject>Male</subject><subject>Mice</subject><subject>Mice, Inbred C57BL</subject><subject>mRNA turnover</subject><subject>multidisciplinary</subject><subject>Mutation</subject><subject>Nonsense-mediated mRNA decay</subject><subject>Nuclease</subject><subject>p53 Protein</subject><subject>Peptide Initiation Factors - genetics</subject><subject>Reverse Transcriptase Polymerase Chain Reaction</subject><subject>RNA, Messenger - genetics</subject><subject>Rodents</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><issn>2045-2322</issn><issn>2045-2322</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kUtLHTEUx4O0qFi_QBcS6Kab0TznsRFEfIFYKHYdksmZMTKTXJOZK357M17ro4uGQM7J-Z0Xf4S-U3JICa-PkqCyqQvCSFFSKkUhttAuI0IWjDP25YO9g_ZTuif5SNYI2myjHc6oELziu-jx9g7wKiQ3ueBx6PCU_UnHHiacPwF3IWLwvfMAESz2czuATpCwG1cxrLOxZGgDMWo_4fH3zQlekOy1gJ1f7tqtA-7BhxEw2NzK99_Q104PCfZf3z305_zs9vSyuP51cXV6cl20ktKp4CaPbCsja2mJlNZoIU1ZCy2obUCXWnSVbUnFpalkWzdGWy4t1I0lpSkJ8D10vKm7ms0ItgU_RT2oVXSjjk8qaKc-R7y7U31Yq4qUhDYsF_j5WiCGhxnSpEaXWhgG7SHMSTFeCS4JL8uM_vgHvQ9z9Hm9hWK1bEjNM8U2VBtDShG6t2EoUYu0aiOtytKqF2mVyEkHH9d4S_krZAb4Bkg55HuI773_U_YZbtSwpA</recordid><startdate>20200306</startdate><enddate>20200306</enddate><creator>Lee, Jae Hoon</creator><creator>Yu, Sungsook</creator><creator>Nam, Tae Wook</creator><creator>Roh, Jae-il</creator><creator>Jin, Young</creator><creator>Han, Jeong Pil</creator><creator>Cha, Ji-Young</creator><creator>Kim, Yoon Ki</creator><creator>Yeom, Su-Cheong</creator><creator>Nam, Ki Taek</creator><creator>Lee, Han-Woong</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-9491-5740</orcidid><orcidid>https://orcid.org/0000-0003-1303-072X</orcidid><orcidid>https://orcid.org/0000-0001-5292-1280</orcidid></search><sort><creationdate>20200306</creationdate><title>The position of the target site for engineered nucleases improves the aberrant mRNA clearance in in vivo genome editing</title><author>Lee, Jae Hoon ; Yu, Sungsook ; Nam, Tae Wook ; Roh, Jae-il ; Jin, Young ; Han, Jeong Pil ; Cha, Ji-Young ; Kim, Yoon Ki ; Yeom, Su-Cheong ; Nam, Ki Taek ; Lee, Han-Woong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c511t-3b294d7b585d055dba45b684a41d9ea6a4f7dc0735b75c89bad35de89d06b60e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>42/41</topic><topic>45/22</topic><topic>45/23</topic><topic>45/90</topic><topic>631/208/199</topic><topic>631/61/17/1511</topic><topic>64/110</topic><topic>Animals</topic><topic>Blotting, Western</topic><topic>Codons</topic><topic>Decay</topic><topic>Deoxyribonucleases - genetics</topic><topic>Deoxyribonucleases - metabolism</topic><topic>Exons</topic><topic>Female</topic><topic>Frameshift mutation</topic><topic>Gene deletion</topic><topic>Gene Editing</topic><topic>Genome editing</topic><topic>Genomes</topic><topic>Genotype</topic><topic>Humanities and Social Sciences</topic><topic>Humans</topic><topic>Immunohistochemistry</topic><topic>In Situ Hybridization</topic><topic>Male</topic><topic>Mice</topic><topic>Mice, Inbred C57BL</topic><topic>mRNA turnover</topic><topic>multidisciplinary</topic><topic>Mutation</topic><topic>Nonsense-mediated mRNA decay</topic><topic>Nuclease</topic><topic>p53 Protein</topic><topic>Peptide Initiation Factors - genetics</topic><topic>Reverse Transcriptase Polymerase Chain Reaction</topic><topic>RNA, Messenger - genetics</topic><topic>Rodents</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lee, Jae Hoon</creatorcontrib><creatorcontrib>Yu, Sungsook</creatorcontrib><creatorcontrib>Nam, Tae Wook</creatorcontrib><creatorcontrib>Roh, Jae-il</creatorcontrib><creatorcontrib>Jin, Young</creatorcontrib><creatorcontrib>Han, Jeong Pil</creatorcontrib><creatorcontrib>Cha, Ji-Young</creatorcontrib><creatorcontrib>Kim, Yoon Ki</creatorcontrib><creatorcontrib>Yeom, Su-Cheong</creatorcontrib><creatorcontrib>Nam, Ki Taek</creatorcontrib><creatorcontrib>Lee, Han-Woong</creatorcontrib><collection>Springer Nature OA/Free Journals</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Scientific reports</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lee, Jae Hoon</au><au>Yu, Sungsook</au><au>Nam, Tae Wook</au><au>Roh, Jae-il</au><au>Jin, Young</au><au>Han, Jeong Pil</au><au>Cha, Ji-Young</au><au>Kim, Yoon Ki</au><au>Yeom, Su-Cheong</au><au>Nam, Ki Taek</au><au>Lee, Han-Woong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The position of the target site for engineered nucleases improves the aberrant mRNA clearance in in vivo genome editing</atitle><jtitle>Scientific reports</jtitle><stitle>Sci Rep</stitle><addtitle>Sci Rep</addtitle><date>2020-03-06</date><risdate>2020</risdate><volume>10</volume><issue>1</issue><spage>4173</spage><epage>4173</epage><pages>4173-4173</pages><artnum>4173</artnum><issn>2045-2322</issn><eissn>2045-2322</eissn><abstract>Engineered nucleases are widely used for creating frameshift or nonsense mutations in the target genes to eliminate gene functions. The resulting mRNAs carrying premature termination codons can be eliminated by nonsense-mediated mRNA decay. However, it is unclear how effective this process would be in vivo . Here, we found that the nonsense-mediated decay was unable to remove the mutant mRNAs in twelve out of sixteen homozygous mutant mice with frameshift mutations generated using engineered nucleases, which is far beyond what we expected. The frameshift mutant proteins translated by a single nucleotide deletion within the coding region were also detected in the p53 mutant mice. Furthermore, we showed that targeting the exons present downstream of the exons with a start codon or distant from ATG is relatively effective for eliminating mutant mRNAs in vivo , whereas the exons with a start codon are targeted to express the mutant mRNAs. Of the sixteen mutant mice generated, only four mutant mice targeting the downstream exons exhibited over 80% clearance of mutant mRNAs. Since the abnormal products, either mutant RNAs or mutant proteins, expressed by the target alleles might obscure the outcome of genome editing, these findings will provide insights in the improved performance of engineered nucleases when they are applied in vivo .</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>32144373</pmid><doi>10.1038/s41598-020-61154-4</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0002-9491-5740</orcidid><orcidid>https://orcid.org/0000-0003-1303-072X</orcidid><orcidid>https://orcid.org/0000-0001-5292-1280</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2045-2322
ispartof Scientific reports, 2020-03, Vol.10 (1), p.4173-4173, Article 4173
issn 2045-2322
2045-2322
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7060192
source Nature Open Access; MEDLINE; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; Springer Nature OA/Free Journals; Free Full-Text Journals in Chemistry
subjects 42/41
45/22
45/23
45/90
631/208/199
631/61/17/1511
64/110
Animals
Blotting, Western
Codons
Decay
Deoxyribonucleases - genetics
Deoxyribonucleases - metabolism
Exons
Female
Frameshift mutation
Gene deletion
Gene Editing
Genome editing
Genomes
Genotype
Humanities and Social Sciences
Humans
Immunohistochemistry
In Situ Hybridization
Male
Mice
Mice, Inbred C57BL
mRNA turnover
multidisciplinary
Mutation
Nonsense-mediated mRNA decay
Nuclease
p53 Protein
Peptide Initiation Factors - genetics
Reverse Transcriptase Polymerase Chain Reaction
RNA, Messenger - genetics
Rodents
Science
Science (multidisciplinary)
title The position of the target site for engineered nucleases improves the aberrant mRNA clearance in in vivo genome editing
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-21T09%3A26%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20position%20of%20the%20target%20site%20for%20engineered%20nucleases%20improves%20the%20aberrant%20mRNA%20clearance%20in%20in%20vivo%20genome%20editing&rft.jtitle=Scientific%20reports&rft.au=Lee,%20Jae%20Hoon&rft.date=2020-03-06&rft.volume=10&rft.issue=1&rft.spage=4173&rft.epage=4173&rft.pages=4173-4173&rft.artnum=4173&rft.issn=2045-2322&rft.eissn=2045-2322&rft_id=info:doi/10.1038/s41598-020-61154-4&rft_dat=%3Cproquest_pubme%3E2372859083%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2372859083&rft_id=info:pmid/32144373&rfr_iscdi=true