Candidate genes and gene markers for the resistance to porcine pleuropneumonia

Actinobacillus ( A .) pleuropneumoniae is one of the most important respiratory pathogens in global pig production. Antimicrobial treatment and vaccination provide only limited protection, but genetic disease resistance is a very promising alternative for sustainable prophylaxis. Previous studies ha...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mammalian genome 2020-02, Vol.31 (1-2), p.54-67
Hauptverfasser: Nietfeld, Florian, Höltig, Doris, Willems, Hermann, Valentin-Weigand, Peter, Wurmser, Christine, Waldmann, Karl-Heinz, Fries, Ruedi, Reiner, Gerald
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Actinobacillus ( A .) pleuropneumoniae is one of the most important respiratory pathogens in global pig production. Antimicrobial treatment and vaccination provide only limited protection, but genetic disease resistance is a very promising alternative for sustainable prophylaxis. Previous studies have discovered multiple QTL that may explain up to 30% of phenotypic variance. Based on these findings, the aim of the present study was to use genomic sequencing to identify genetic markers for resistance to pleuropneumonia in a segregating commercial German Landrace line. 163 pigs were infected with A. pleuropneumoniae Serotype 7 through a standardized aerosol infection method. Phenotypes were accurately defined on a clinical, pathological and microbiological basis. The 58 pigs with the most extreme phenotypes were genotyped by sequencing (next-generation sequencing). SNPs were used in a genome-wide association study. The study identified genome-wide associated SNPs on three chromosomes, two of which were chromosomes of QTL which had been mapped in a recent experiment. Each variant explained up to 20% of the total phenotypic variance. Combined, the three variants explained 52.8% of the variance. The SNPs are located in genes involved in the pathomechanism of pleuropneumonia. This study confirms the genetic background for the host’s resistance to pleuropneumonia and indicates a potential role of three candidates on SSC2, SSC12 and SSC15. Favorable gene variants are segregating in commercial populations. Further work is needed to verify the results in a controlled study and to identify the functional QTN.
ISSN:0938-8990
1432-1777
DOI:10.1007/s00335-019-09825-0