Cortical Synaptic AMPA Receptor Plasticity during Motor Learning

Modulation of synaptic strength through trafficking of AMPA receptors (AMPARs) is a fundamental mechanism underlying synaptic plasticity, learning, and memory. However, the dynamics of AMPAR trafficking in vivo and its correlation with learning have not been resolved. Here, we used in vivo two-photo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Neuron (Cambridge, Mass.) Mass.), 2020-03, Vol.105 (5), p.895-908.e5
Hauptverfasser: Roth, Richard H., Cudmore, Robert H., Tan, Han L., Hong, Ingie, Zhang, Yong, Huganir, Richard L.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 908.e5
container_issue 5
container_start_page 895
container_title Neuron (Cambridge, Mass.)
container_volume 105
creator Roth, Richard H.
Cudmore, Robert H.
Tan, Han L.
Hong, Ingie
Zhang, Yong
Huganir, Richard L.
description Modulation of synaptic strength through trafficking of AMPA receptors (AMPARs) is a fundamental mechanism underlying synaptic plasticity, learning, and memory. However, the dynamics of AMPAR trafficking in vivo and its correlation with learning have not been resolved. Here, we used in vivo two-photon microscopy to visualize surface AMPARs in mouse cortex during the acquisition of a forelimb reaching task. Daily training leads to an increase in AMPAR levels at a subset of spatially clustered dendritic spines in the motor cortex. Surprisingly, we also observed increases in spine AMPAR levels in the visual cortex. There, synaptic potentiation depends on the availability of visual input during motor training, and optogenetic inhibition of visual cortex activity impairs task performance. These results indicate that motor learning induces widespread cortical synaptic potentiation by increasing the net trafficking of AMPARs into spines, including in non-motor brain regions. •In vivo imaging of AMPA receptors reveals high dynamics at individual synapses•Motor learning induces potentiation of a clustered subset of dendritic spines•Motor learning increases AMPA receptor levels in motor and visual cortex•Plasticity of visual cortex during learning depends on visual input Through in vivo imaging of synaptic AMPA receptors in mice, Roth et al. show that motor learning potentiates synapses in both motor and visual cortex. Recruitment and potentiation of the visual cortex require visual stimuli during motor training.
doi_str_mv 10.1016/j.neuron.2019.12.005
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7060107</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0896627319310475</els_id><sourcerecordid>2333929925</sourcerecordid><originalsourceid>FETCH-LOGICAL-c491t-c40cac282df8f90db3de6283df4680669cf018b2794388fb6a2fed4c75a0e2a63</originalsourceid><addsrcrecordid>eNp9kUtvGyEUhVHUKHGT_oOoGqmbbDy5wAwzbKJaVptWctQobdcIw50UawwOzETyvy-W8-yiGx6Xcw8cPkLOKJQUqLhYlR7HGHzJgMqSshKgPiATCrKZVlTKd2QCrRRTwRp-TN6ntAKgVS3pETnmVALlwCfk8zzEwRndFz-3Xm_ysphd38yKWzS4GUIsbnqdctUN28KO0fm74jrs6gvU0eftKTnsdJ_ww-N8Qn5__fJr_m26-HH1fT5bTE0l6ZBHMNqwltmu7STYJbcoWMttV4kWhJCmA9ouWSMr3rbdUmjWoa1MU2tApgU_IZd73824XKM16Ieoe7WJbq3jVgXt1NsT7_6ou_CgGhBAockG548GMdyPmAa1dslg32uPYUyKcc4lk5LVWfrpH-kqjNHneIpVrBaCCs6yqtqrTAwpReyeH0NB7RCpldojUjtEijKVEeW2j6-DPDc9MXlJivk7HxxGlYxDb9C6iGZQNrj_3_AX98CkfA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2425661632</pqid></control><display><type>article</type><title>Cortical Synaptic AMPA Receptor Plasticity during Motor Learning</title><source>MEDLINE</source><source>Cell Press Free Archives</source><source>Elsevier ScienceDirect Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Roth, Richard H. ; Cudmore, Robert H. ; Tan, Han L. ; Hong, Ingie ; Zhang, Yong ; Huganir, Richard L.</creator><creatorcontrib>Roth, Richard H. ; Cudmore, Robert H. ; Tan, Han L. ; Hong, Ingie ; Zhang, Yong ; Huganir, Richard L.</creatorcontrib><description>Modulation of synaptic strength through trafficking of AMPA receptors (AMPARs) is a fundamental mechanism underlying synaptic plasticity, learning, and memory. However, the dynamics of AMPAR trafficking in vivo and its correlation with learning have not been resolved. Here, we used in vivo two-photon microscopy to visualize surface AMPARs in mouse cortex during the acquisition of a forelimb reaching task. Daily training leads to an increase in AMPAR levels at a subset of spatially clustered dendritic spines in the motor cortex. Surprisingly, we also observed increases in spine AMPAR levels in the visual cortex. There, synaptic potentiation depends on the availability of visual input during motor training, and optogenetic inhibition of visual cortex activity impairs task performance. These results indicate that motor learning induces widespread cortical synaptic potentiation by increasing the net trafficking of AMPARs into spines, including in non-motor brain regions. •In vivo imaging of AMPA receptors reveals high dynamics at individual synapses•Motor learning induces potentiation of a clustered subset of dendritic spines•Motor learning increases AMPA receptor levels in motor and visual cortex•Plasticity of visual cortex during learning depends on visual input Through in vivo imaging of synaptic AMPA receptors in mice, Roth et al. show that motor learning potentiates synapses in both motor and visual cortex. Recruitment and potentiation of the visual cortex require visual stimuli during motor training.</description><identifier>ISSN: 0896-6273</identifier><identifier>EISSN: 1097-4199</identifier><identifier>DOI: 10.1016/j.neuron.2019.12.005</identifier><identifier>PMID: 31901303</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>AMPA receptors ; Animals ; Cortex (motor) ; Dendritic spines ; Dendritic Spines - metabolism ; Food ; Forelimb ; Intravital Microscopy ; Learning ; long-term potentiation ; Mice ; Microscopy, Fluorescence ; Motor Activity ; motor cortex ; Motor Cortex - metabolism ; motor learning ; Motor skill learning ; Neuronal Plasticity ; Neurons - metabolism ; Neuroplasticity ; Optogenetics ; Potentiation ; Protein Transport ; Psychomotor Performance ; Receptors, AMPA - metabolism ; Sensorimotor integration ; Spatio-Temporal Analysis ; synaptic clustering ; Synaptic plasticity ; Synaptic strength ; two-photon imaging ; Visual cortex ; Visual Cortex - metabolism ; α-Amino-3-hydroxy-5-methyl-4-isoxazole propionic acid ; α-Amino-3-hydroxy-5-methyl-4-isoxazole propionic acid receptors</subject><ispartof>Neuron (Cambridge, Mass.), 2020-03, Vol.105 (5), p.895-908.e5</ispartof><rights>2019 Elsevier Inc.</rights><rights>Copyright © 2019 Elsevier Inc. All rights reserved.</rights><rights>2019. Elsevier Inc.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c491t-c40cac282df8f90db3de6283df4680669cf018b2794388fb6a2fed4c75a0e2a63</citedby><cites>FETCH-LOGICAL-c491t-c40cac282df8f90db3de6283df4680669cf018b2794388fb6a2fed4c75a0e2a63</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0896627319310475$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,776,780,881,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31901303$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Roth, Richard H.</creatorcontrib><creatorcontrib>Cudmore, Robert H.</creatorcontrib><creatorcontrib>Tan, Han L.</creatorcontrib><creatorcontrib>Hong, Ingie</creatorcontrib><creatorcontrib>Zhang, Yong</creatorcontrib><creatorcontrib>Huganir, Richard L.</creatorcontrib><title>Cortical Synaptic AMPA Receptor Plasticity during Motor Learning</title><title>Neuron (Cambridge, Mass.)</title><addtitle>Neuron</addtitle><description>Modulation of synaptic strength through trafficking of AMPA receptors (AMPARs) is a fundamental mechanism underlying synaptic plasticity, learning, and memory. However, the dynamics of AMPAR trafficking in vivo and its correlation with learning have not been resolved. Here, we used in vivo two-photon microscopy to visualize surface AMPARs in mouse cortex during the acquisition of a forelimb reaching task. Daily training leads to an increase in AMPAR levels at a subset of spatially clustered dendritic spines in the motor cortex. Surprisingly, we also observed increases in spine AMPAR levels in the visual cortex. There, synaptic potentiation depends on the availability of visual input during motor training, and optogenetic inhibition of visual cortex activity impairs task performance. These results indicate that motor learning induces widespread cortical synaptic potentiation by increasing the net trafficking of AMPARs into spines, including in non-motor brain regions. •In vivo imaging of AMPA receptors reveals high dynamics at individual synapses•Motor learning induces potentiation of a clustered subset of dendritic spines•Motor learning increases AMPA receptor levels in motor and visual cortex•Plasticity of visual cortex during learning depends on visual input Through in vivo imaging of synaptic AMPA receptors in mice, Roth et al. show that motor learning potentiates synapses in both motor and visual cortex. Recruitment and potentiation of the visual cortex require visual stimuli during motor training.</description><subject>AMPA receptors</subject><subject>Animals</subject><subject>Cortex (motor)</subject><subject>Dendritic spines</subject><subject>Dendritic Spines - metabolism</subject><subject>Food</subject><subject>Forelimb</subject><subject>Intravital Microscopy</subject><subject>Learning</subject><subject>long-term potentiation</subject><subject>Mice</subject><subject>Microscopy, Fluorescence</subject><subject>Motor Activity</subject><subject>motor cortex</subject><subject>Motor Cortex - metabolism</subject><subject>motor learning</subject><subject>Motor skill learning</subject><subject>Neuronal Plasticity</subject><subject>Neurons - metabolism</subject><subject>Neuroplasticity</subject><subject>Optogenetics</subject><subject>Potentiation</subject><subject>Protein Transport</subject><subject>Psychomotor Performance</subject><subject>Receptors, AMPA - metabolism</subject><subject>Sensorimotor integration</subject><subject>Spatio-Temporal Analysis</subject><subject>synaptic clustering</subject><subject>Synaptic plasticity</subject><subject>Synaptic strength</subject><subject>two-photon imaging</subject><subject>Visual cortex</subject><subject>Visual Cortex - metabolism</subject><subject>α-Amino-3-hydroxy-5-methyl-4-isoxazole propionic acid</subject><subject>α-Amino-3-hydroxy-5-methyl-4-isoxazole propionic acid receptors</subject><issn>0896-6273</issn><issn>1097-4199</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kUtvGyEUhVHUKHGT_oOoGqmbbDy5wAwzbKJaVptWctQobdcIw50UawwOzETyvy-W8-yiGx6Xcw8cPkLOKJQUqLhYlR7HGHzJgMqSshKgPiATCrKZVlTKd2QCrRRTwRp-TN6ntAKgVS3pETnmVALlwCfk8zzEwRndFz-3Xm_ysphd38yKWzS4GUIsbnqdctUN28KO0fm74jrs6gvU0eftKTnsdJ_ww-N8Qn5__fJr_m26-HH1fT5bTE0l6ZBHMNqwltmu7STYJbcoWMttV4kWhJCmA9ouWSMr3rbdUmjWoa1MU2tApgU_IZd73824XKM16Ieoe7WJbq3jVgXt1NsT7_6ou_CgGhBAockG548GMdyPmAa1dslg32uPYUyKcc4lk5LVWfrpH-kqjNHneIpVrBaCCs6yqtqrTAwpReyeH0NB7RCpldojUjtEijKVEeW2j6-DPDc9MXlJivk7HxxGlYxDb9C6iGZQNrj_3_AX98CkfA</recordid><startdate>20200304</startdate><enddate>20200304</enddate><creator>Roth, Richard H.</creator><creator>Cudmore, Robert H.</creator><creator>Tan, Han L.</creator><creator>Hong, Ingie</creator><creator>Zhang, Yong</creator><creator>Huganir, Richard L.</creator><general>Elsevier Inc</general><general>Elsevier Limited</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QP</scope><scope>7QR</scope><scope>7TK</scope><scope>8FD</scope><scope>FR3</scope><scope>K9.</scope><scope>NAPCQ</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20200304</creationdate><title>Cortical Synaptic AMPA Receptor Plasticity during Motor Learning</title><author>Roth, Richard H. ; Cudmore, Robert H. ; Tan, Han L. ; Hong, Ingie ; Zhang, Yong ; Huganir, Richard L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c491t-c40cac282df8f90db3de6283df4680669cf018b2794388fb6a2fed4c75a0e2a63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>AMPA receptors</topic><topic>Animals</topic><topic>Cortex (motor)</topic><topic>Dendritic spines</topic><topic>Dendritic Spines - metabolism</topic><topic>Food</topic><topic>Forelimb</topic><topic>Intravital Microscopy</topic><topic>Learning</topic><topic>long-term potentiation</topic><topic>Mice</topic><topic>Microscopy, Fluorescence</topic><topic>Motor Activity</topic><topic>motor cortex</topic><topic>Motor Cortex - metabolism</topic><topic>motor learning</topic><topic>Motor skill learning</topic><topic>Neuronal Plasticity</topic><topic>Neurons - metabolism</topic><topic>Neuroplasticity</topic><topic>Optogenetics</topic><topic>Potentiation</topic><topic>Protein Transport</topic><topic>Psychomotor Performance</topic><topic>Receptors, AMPA - metabolism</topic><topic>Sensorimotor integration</topic><topic>Spatio-Temporal Analysis</topic><topic>synaptic clustering</topic><topic>Synaptic plasticity</topic><topic>Synaptic strength</topic><topic>two-photon imaging</topic><topic>Visual cortex</topic><topic>Visual Cortex - metabolism</topic><topic>α-Amino-3-hydroxy-5-methyl-4-isoxazole propionic acid</topic><topic>α-Amino-3-hydroxy-5-methyl-4-isoxazole propionic acid receptors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Roth, Richard H.</creatorcontrib><creatorcontrib>Cudmore, Robert H.</creatorcontrib><creatorcontrib>Tan, Han L.</creatorcontrib><creatorcontrib>Hong, Ingie</creatorcontrib><creatorcontrib>Zhang, Yong</creatorcontrib><creatorcontrib>Huganir, Richard L.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Neuron (Cambridge, Mass.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Roth, Richard H.</au><au>Cudmore, Robert H.</au><au>Tan, Han L.</au><au>Hong, Ingie</au><au>Zhang, Yong</au><au>Huganir, Richard L.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Cortical Synaptic AMPA Receptor Plasticity during Motor Learning</atitle><jtitle>Neuron (Cambridge, Mass.)</jtitle><addtitle>Neuron</addtitle><date>2020-03-04</date><risdate>2020</risdate><volume>105</volume><issue>5</issue><spage>895</spage><epage>908.e5</epage><pages>895-908.e5</pages><issn>0896-6273</issn><eissn>1097-4199</eissn><abstract>Modulation of synaptic strength through trafficking of AMPA receptors (AMPARs) is a fundamental mechanism underlying synaptic plasticity, learning, and memory. However, the dynamics of AMPAR trafficking in vivo and its correlation with learning have not been resolved. Here, we used in vivo two-photon microscopy to visualize surface AMPARs in mouse cortex during the acquisition of a forelimb reaching task. Daily training leads to an increase in AMPAR levels at a subset of spatially clustered dendritic spines in the motor cortex. Surprisingly, we also observed increases in spine AMPAR levels in the visual cortex. There, synaptic potentiation depends on the availability of visual input during motor training, and optogenetic inhibition of visual cortex activity impairs task performance. These results indicate that motor learning induces widespread cortical synaptic potentiation by increasing the net trafficking of AMPARs into spines, including in non-motor brain regions. •In vivo imaging of AMPA receptors reveals high dynamics at individual synapses•Motor learning induces potentiation of a clustered subset of dendritic spines•Motor learning increases AMPA receptor levels in motor and visual cortex•Plasticity of visual cortex during learning depends on visual input Through in vivo imaging of synaptic AMPA receptors in mice, Roth et al. show that motor learning potentiates synapses in both motor and visual cortex. Recruitment and potentiation of the visual cortex require visual stimuli during motor training.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>31901303</pmid><doi>10.1016/j.neuron.2019.12.005</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0896-6273
ispartof Neuron (Cambridge, Mass.), 2020-03, Vol.105 (5), p.895-908.e5
issn 0896-6273
1097-4199
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7060107
source MEDLINE; Cell Press Free Archives; Elsevier ScienceDirect Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
subjects AMPA receptors
Animals
Cortex (motor)
Dendritic spines
Dendritic Spines - metabolism
Food
Forelimb
Intravital Microscopy
Learning
long-term potentiation
Mice
Microscopy, Fluorescence
Motor Activity
motor cortex
Motor Cortex - metabolism
motor learning
Motor skill learning
Neuronal Plasticity
Neurons - metabolism
Neuroplasticity
Optogenetics
Potentiation
Protein Transport
Psychomotor Performance
Receptors, AMPA - metabolism
Sensorimotor integration
Spatio-Temporal Analysis
synaptic clustering
Synaptic plasticity
Synaptic strength
two-photon imaging
Visual cortex
Visual Cortex - metabolism
α-Amino-3-hydroxy-5-methyl-4-isoxazole propionic acid
α-Amino-3-hydroxy-5-methyl-4-isoxazole propionic acid receptors
title Cortical Synaptic AMPA Receptor Plasticity during Motor Learning
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T21%3A21%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Cortical%20Synaptic%20AMPA%20Receptor%20Plasticity%20during%20Motor%20Learning&rft.jtitle=Neuron%20(Cambridge,%20Mass.)&rft.au=Roth,%20Richard%20H.&rft.date=2020-03-04&rft.volume=105&rft.issue=5&rft.spage=895&rft.epage=908.e5&rft.pages=895-908.e5&rft.issn=0896-6273&rft.eissn=1097-4199&rft_id=info:doi/10.1016/j.neuron.2019.12.005&rft_dat=%3Cproquest_pubme%3E2333929925%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2425661632&rft_id=info:pmid/31901303&rft_els_id=S0896627319310475&rfr_iscdi=true