ReQTL: identifying correlations between expressed SNVs and gene expression using RNA-sequencing data

Abstract Motivation By testing for associations between DNA genotypes and gene expression levels, expression quantitative trait locus (eQTL) analyses have been instrumental in understanding how thousands of single nucleotide variants (SNVs) may affect gene expression. As compared to DNA genotypes, R...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Bioinformatics 2020-03, Vol.36 (5), p.1351-1359
Hauptverfasser: Spurr, Liam F, Alomran, Nawaf, Bousounis, Pavlos, Reece-Stremtan, Dacian, Prashant, N M, Liu, Hongyu, Słowiński, Piotr, Li, Muzi, Zhang, Qianqian, Sein, Justin, Asher, Gabriel, Crandall, Keith A, Tsaneva-Atanasova, Krasimira, Horvath, Anelia
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1359
container_issue 5
container_start_page 1351
container_title Bioinformatics
container_volume 36
creator Spurr, Liam F
Alomran, Nawaf
Bousounis, Pavlos
Reece-Stremtan, Dacian
Prashant, N M
Liu, Hongyu
Słowiński, Piotr
Li, Muzi
Zhang, Qianqian
Sein, Justin
Asher, Gabriel
Crandall, Keith A
Tsaneva-Atanasova, Krasimira
Horvath, Anelia
description Abstract Motivation By testing for associations between DNA genotypes and gene expression levels, expression quantitative trait locus (eQTL) analyses have been instrumental in understanding how thousands of single nucleotide variants (SNVs) may affect gene expression. As compared to DNA genotypes, RNA genetic variation represents a phenotypic trait that reflects the actual allele content of the studied system. RNA genetic variation at expressed SNV loci can be estimated using the proportion of alleles bearing the variant nucleotide (variant allele fraction, VAFRNA). VAFRNA is a continuous measure which allows for precise allele quantitation in loci where the RNA alleles do not scale with the genotype count. We describe a method to correlate VAFRNA with gene expression and assess its ability to identify genetically regulated expression solely from RNA-sequencing (RNA-seq) datasets. Results We introduce ReQTL, an eQTL modification which substitutes the DNA allele count for the variant allele fraction at expressed SNV loci in the transcriptome (VAFRNA). We exemplify the method on sets of RNA-seq data from human tissues obtained though the Genotype-Tissue Expression (GTEx) project and demonstrate that ReQTL analyses are computationally feasible and can identify a subset of expressed eQTL loci. Availability and implementation A toolkit to perform ReQTL analyses is available at https://github.com/HorvathLab/ReQTL. Supplementary information Supplementary data are available at Bioinformatics online.
doi_str_mv 10.1093/bioinformatics/btz750
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7058180</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><oup_id>10.1093/bioinformatics/btz750</oup_id><sourcerecordid>2301881175</sourcerecordid><originalsourceid>FETCH-LOGICAL-c452t-cbd9a338dd7fcd87d2d4b8cde0362c08d76c68063e9aab232e759a7092f8b28d3</originalsourceid><addsrcrecordid>eNqNkV9PHCEUxYmp0e3qR6iZx75M5c8wMD402Wxsa7LR1KqvhIE7W8wsbGFGu_30ZbNq9M0X4MLvHLgchD4R_IXghp22LjjfhbjSgzPptB3-CY730IRUNS4p5s2HvGa1KCuJ2SH6mNI9xpxUVXWADhnhssnDBNlr-HmzOCucBT-4buP8sjAhRuizb_CpaGF4BPAF_F1HSAls8evyLhXa22IJHp73M1uMaau-vpyVCf6M4M22tHrQR2i_032C46d5im6_nd_Mf5SLq-8X89miNBWnQ2la22jGpLWiM1YKS23VSmMBs5oaLK2oTS1xzaDRuqWMguCNFrihnWyptGyKvu5812O7AmtyS1H3ah3dSseNCtqptyfe_VbL8KAE5pLkf5qiz08GMeQO0qBWLhnoe-0hjElRhomUhAieUb5DTQwpReheriFYbRNSbxNSu4Sy7uT1G19Uz5FkAO-AMK7f6fkfEi2m_Q</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2301881175</pqid></control><display><type>article</type><title>ReQTL: identifying correlations between expressed SNVs and gene expression using RNA-sequencing data</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Oxford Journals Open Access Collection</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><creator>Spurr, Liam F ; Alomran, Nawaf ; Bousounis, Pavlos ; Reece-Stremtan, Dacian ; Prashant, N M ; Liu, Hongyu ; Słowiński, Piotr ; Li, Muzi ; Zhang, Qianqian ; Sein, Justin ; Asher, Gabriel ; Crandall, Keith A ; Tsaneva-Atanasova, Krasimira ; Horvath, Anelia</creator><contributor>Birol, Inanc</contributor><creatorcontrib>Spurr, Liam F ; Alomran, Nawaf ; Bousounis, Pavlos ; Reece-Stremtan, Dacian ; Prashant, N M ; Liu, Hongyu ; Słowiński, Piotr ; Li, Muzi ; Zhang, Qianqian ; Sein, Justin ; Asher, Gabriel ; Crandall, Keith A ; Tsaneva-Atanasova, Krasimira ; Horvath, Anelia ; Birol, Inanc</creatorcontrib><description>Abstract Motivation By testing for associations between DNA genotypes and gene expression levels, expression quantitative trait locus (eQTL) analyses have been instrumental in understanding how thousands of single nucleotide variants (SNVs) may affect gene expression. As compared to DNA genotypes, RNA genetic variation represents a phenotypic trait that reflects the actual allele content of the studied system. RNA genetic variation at expressed SNV loci can be estimated using the proportion of alleles bearing the variant nucleotide (variant allele fraction, VAFRNA). VAFRNA is a continuous measure which allows for precise allele quantitation in loci where the RNA alleles do not scale with the genotype count. We describe a method to correlate VAFRNA with gene expression and assess its ability to identify genetically regulated expression solely from RNA-sequencing (RNA-seq) datasets. Results We introduce ReQTL, an eQTL modification which substitutes the DNA allele count for the variant allele fraction at expressed SNV loci in the transcriptome (VAFRNA). We exemplify the method on sets of RNA-seq data from human tissues obtained though the Genotype-Tissue Expression (GTEx) project and demonstrate that ReQTL analyses are computationally feasible and can identify a subset of expressed eQTL loci. Availability and implementation A toolkit to perform ReQTL analyses is available at https://github.com/HorvathLab/ReQTL. Supplementary information Supplementary data are available at Bioinformatics online.</description><identifier>ISSN: 1367-4803</identifier><identifier>EISSN: 1460-2059</identifier><identifier>EISSN: 1367-4811</identifier><identifier>DOI: 10.1093/bioinformatics/btz750</identifier><identifier>PMID: 31589315</identifier><language>eng</language><publisher>England: Oxford University Press</publisher><subject>Original Papers</subject><ispartof>Bioinformatics, 2020-03, Vol.36 (5), p.1351-1359</ispartof><rights>The Author(s) 2019. Published by Oxford University Press. 2019</rights><rights>The Author(s) 2019. Published by Oxford University Press.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c452t-cbd9a338dd7fcd87d2d4b8cde0362c08d76c68063e9aab232e759a7092f8b28d3</citedby><cites>FETCH-LOGICAL-c452t-cbd9a338dd7fcd87d2d4b8cde0362c08d76c68063e9aab232e759a7092f8b28d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7058180/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7058180/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,724,777,781,882,1599,27905,27906,53772,53774</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31589315$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Birol, Inanc</contributor><creatorcontrib>Spurr, Liam F</creatorcontrib><creatorcontrib>Alomran, Nawaf</creatorcontrib><creatorcontrib>Bousounis, Pavlos</creatorcontrib><creatorcontrib>Reece-Stremtan, Dacian</creatorcontrib><creatorcontrib>Prashant, N M</creatorcontrib><creatorcontrib>Liu, Hongyu</creatorcontrib><creatorcontrib>Słowiński, Piotr</creatorcontrib><creatorcontrib>Li, Muzi</creatorcontrib><creatorcontrib>Zhang, Qianqian</creatorcontrib><creatorcontrib>Sein, Justin</creatorcontrib><creatorcontrib>Asher, Gabriel</creatorcontrib><creatorcontrib>Crandall, Keith A</creatorcontrib><creatorcontrib>Tsaneva-Atanasova, Krasimira</creatorcontrib><creatorcontrib>Horvath, Anelia</creatorcontrib><title>ReQTL: identifying correlations between expressed SNVs and gene expression using RNA-sequencing data</title><title>Bioinformatics</title><addtitle>Bioinformatics</addtitle><description>Abstract Motivation By testing for associations between DNA genotypes and gene expression levels, expression quantitative trait locus (eQTL) analyses have been instrumental in understanding how thousands of single nucleotide variants (SNVs) may affect gene expression. As compared to DNA genotypes, RNA genetic variation represents a phenotypic trait that reflects the actual allele content of the studied system. RNA genetic variation at expressed SNV loci can be estimated using the proportion of alleles bearing the variant nucleotide (variant allele fraction, VAFRNA). VAFRNA is a continuous measure which allows for precise allele quantitation in loci where the RNA alleles do not scale with the genotype count. We describe a method to correlate VAFRNA with gene expression and assess its ability to identify genetically regulated expression solely from RNA-sequencing (RNA-seq) datasets. Results We introduce ReQTL, an eQTL modification which substitutes the DNA allele count for the variant allele fraction at expressed SNV loci in the transcriptome (VAFRNA). We exemplify the method on sets of RNA-seq data from human tissues obtained though the Genotype-Tissue Expression (GTEx) project and demonstrate that ReQTL analyses are computationally feasible and can identify a subset of expressed eQTL loci. Availability and implementation A toolkit to perform ReQTL analyses is available at https://github.com/HorvathLab/ReQTL. Supplementary information Supplementary data are available at Bioinformatics online.</description><subject>Original Papers</subject><issn>1367-4803</issn><issn>1460-2059</issn><issn>1367-4811</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>TOX</sourceid><recordid>eNqNkV9PHCEUxYmp0e3qR6iZx75M5c8wMD402Wxsa7LR1KqvhIE7W8wsbGFGu_30ZbNq9M0X4MLvHLgchD4R_IXghp22LjjfhbjSgzPptB3-CY730IRUNS4p5s2HvGa1KCuJ2SH6mNI9xpxUVXWADhnhssnDBNlr-HmzOCucBT-4buP8sjAhRuizb_CpaGF4BPAF_F1HSAls8evyLhXa22IJHp73M1uMaau-vpyVCf6M4M22tHrQR2i_032C46d5im6_nd_Mf5SLq-8X89miNBWnQ2la22jGpLWiM1YKS23VSmMBs5oaLK2oTS1xzaDRuqWMguCNFrihnWyptGyKvu5812O7AmtyS1H3ah3dSseNCtqptyfe_VbL8KAE5pLkf5qiz08GMeQO0qBWLhnoe-0hjElRhomUhAieUb5DTQwpReheriFYbRNSbxNSu4Sy7uT1G19Uz5FkAO-AMK7f6fkfEi2m_Q</recordid><startdate>20200301</startdate><enddate>20200301</enddate><creator>Spurr, Liam F</creator><creator>Alomran, Nawaf</creator><creator>Bousounis, Pavlos</creator><creator>Reece-Stremtan, Dacian</creator><creator>Prashant, N M</creator><creator>Liu, Hongyu</creator><creator>Słowiński, Piotr</creator><creator>Li, Muzi</creator><creator>Zhang, Qianqian</creator><creator>Sein, Justin</creator><creator>Asher, Gabriel</creator><creator>Crandall, Keith A</creator><creator>Tsaneva-Atanasova, Krasimira</creator><creator>Horvath, Anelia</creator><general>Oxford University Press</general><scope>TOX</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20200301</creationdate><title>ReQTL: identifying correlations between expressed SNVs and gene expression using RNA-sequencing data</title><author>Spurr, Liam F ; Alomran, Nawaf ; Bousounis, Pavlos ; Reece-Stremtan, Dacian ; Prashant, N M ; Liu, Hongyu ; Słowiński, Piotr ; Li, Muzi ; Zhang, Qianqian ; Sein, Justin ; Asher, Gabriel ; Crandall, Keith A ; Tsaneva-Atanasova, Krasimira ; Horvath, Anelia</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c452t-cbd9a338dd7fcd87d2d4b8cde0362c08d76c68063e9aab232e759a7092f8b28d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Original Papers</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Spurr, Liam F</creatorcontrib><creatorcontrib>Alomran, Nawaf</creatorcontrib><creatorcontrib>Bousounis, Pavlos</creatorcontrib><creatorcontrib>Reece-Stremtan, Dacian</creatorcontrib><creatorcontrib>Prashant, N M</creatorcontrib><creatorcontrib>Liu, Hongyu</creatorcontrib><creatorcontrib>Słowiński, Piotr</creatorcontrib><creatorcontrib>Li, Muzi</creatorcontrib><creatorcontrib>Zhang, Qianqian</creatorcontrib><creatorcontrib>Sein, Justin</creatorcontrib><creatorcontrib>Asher, Gabriel</creatorcontrib><creatorcontrib>Crandall, Keith A</creatorcontrib><creatorcontrib>Tsaneva-Atanasova, Krasimira</creatorcontrib><creatorcontrib>Horvath, Anelia</creatorcontrib><collection>Oxford Journals Open Access Collection</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Bioinformatics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Spurr, Liam F</au><au>Alomran, Nawaf</au><au>Bousounis, Pavlos</au><au>Reece-Stremtan, Dacian</au><au>Prashant, N M</au><au>Liu, Hongyu</au><au>Słowiński, Piotr</au><au>Li, Muzi</au><au>Zhang, Qianqian</au><au>Sein, Justin</au><au>Asher, Gabriel</au><au>Crandall, Keith A</au><au>Tsaneva-Atanasova, Krasimira</au><au>Horvath, Anelia</au><au>Birol, Inanc</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>ReQTL: identifying correlations between expressed SNVs and gene expression using RNA-sequencing data</atitle><jtitle>Bioinformatics</jtitle><addtitle>Bioinformatics</addtitle><date>2020-03-01</date><risdate>2020</risdate><volume>36</volume><issue>5</issue><spage>1351</spage><epage>1359</epage><pages>1351-1359</pages><issn>1367-4803</issn><eissn>1460-2059</eissn><eissn>1367-4811</eissn><abstract>Abstract Motivation By testing for associations between DNA genotypes and gene expression levels, expression quantitative trait locus (eQTL) analyses have been instrumental in understanding how thousands of single nucleotide variants (SNVs) may affect gene expression. As compared to DNA genotypes, RNA genetic variation represents a phenotypic trait that reflects the actual allele content of the studied system. RNA genetic variation at expressed SNV loci can be estimated using the proportion of alleles bearing the variant nucleotide (variant allele fraction, VAFRNA). VAFRNA is a continuous measure which allows for precise allele quantitation in loci where the RNA alleles do not scale with the genotype count. We describe a method to correlate VAFRNA with gene expression and assess its ability to identify genetically regulated expression solely from RNA-sequencing (RNA-seq) datasets. Results We introduce ReQTL, an eQTL modification which substitutes the DNA allele count for the variant allele fraction at expressed SNV loci in the transcriptome (VAFRNA). We exemplify the method on sets of RNA-seq data from human tissues obtained though the Genotype-Tissue Expression (GTEx) project and demonstrate that ReQTL analyses are computationally feasible and can identify a subset of expressed eQTL loci. Availability and implementation A toolkit to perform ReQTL analyses is available at https://github.com/HorvathLab/ReQTL. Supplementary information Supplementary data are available at Bioinformatics online.</abstract><cop>England</cop><pub>Oxford University Press</pub><pmid>31589315</pmid><doi>10.1093/bioinformatics/btz750</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1367-4803
ispartof Bioinformatics, 2020-03, Vol.36 (5), p.1351-1359
issn 1367-4803
1460-2059
1367-4811
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7058180
source Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Oxford Journals Open Access Collection; PubMed Central; Alma/SFX Local Collection
subjects Original Papers
title ReQTL: identifying correlations between expressed SNVs and gene expression using RNA-sequencing data
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T09%3A23%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=ReQTL:%20identifying%20correlations%20between%20expressed%20SNVs%20and%20gene%20expression%20using%20RNA-sequencing%20data&rft.jtitle=Bioinformatics&rft.au=Spurr,%20Liam%20F&rft.date=2020-03-01&rft.volume=36&rft.issue=5&rft.spage=1351&rft.epage=1359&rft.pages=1351-1359&rft.issn=1367-4803&rft.eissn=1460-2059&rft_id=info:doi/10.1093/bioinformatics/btz750&rft_dat=%3Cproquest_pubme%3E2301881175%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2301881175&rft_id=info:pmid/31589315&rft_oup_id=10.1093/bioinformatics/btz750&rfr_iscdi=true