ReQTL: identifying correlations between expressed SNVs and gene expression using RNA-sequencing data
Abstract Motivation By testing for associations between DNA genotypes and gene expression levels, expression quantitative trait locus (eQTL) analyses have been instrumental in understanding how thousands of single nucleotide variants (SNVs) may affect gene expression. As compared to DNA genotypes, R...
Gespeichert in:
Veröffentlicht in: | Bioinformatics 2020-03, Vol.36 (5), p.1351-1359 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1359 |
---|---|
container_issue | 5 |
container_start_page | 1351 |
container_title | Bioinformatics |
container_volume | 36 |
creator | Spurr, Liam F Alomran, Nawaf Bousounis, Pavlos Reece-Stremtan, Dacian Prashant, N M Liu, Hongyu Słowiński, Piotr Li, Muzi Zhang, Qianqian Sein, Justin Asher, Gabriel Crandall, Keith A Tsaneva-Atanasova, Krasimira Horvath, Anelia |
description | Abstract
Motivation
By testing for associations between DNA genotypes and gene expression levels, expression quantitative trait locus (eQTL) analyses have been instrumental in understanding how thousands of single nucleotide variants (SNVs) may affect gene expression. As compared to DNA genotypes, RNA genetic variation represents a phenotypic trait that reflects the actual allele content of the studied system. RNA genetic variation at expressed SNV loci can be estimated using the proportion of alleles bearing the variant nucleotide (variant allele fraction, VAFRNA). VAFRNA is a continuous measure which allows for precise allele quantitation in loci where the RNA alleles do not scale with the genotype count. We describe a method to correlate VAFRNA with gene expression and assess its ability to identify genetically regulated expression solely from RNA-sequencing (RNA-seq) datasets.
Results
We introduce ReQTL, an eQTL modification which substitutes the DNA allele count for the variant allele fraction at expressed SNV loci in the transcriptome (VAFRNA). We exemplify the method on sets of RNA-seq data from human tissues obtained though the Genotype-Tissue Expression (GTEx) project and demonstrate that ReQTL analyses are computationally feasible and can identify a subset of expressed eQTL loci.
Availability and implementation
A toolkit to perform ReQTL analyses is available at https://github.com/HorvathLab/ReQTL.
Supplementary information
Supplementary data are available at Bioinformatics online. |
doi_str_mv | 10.1093/bioinformatics/btz750 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7058180</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><oup_id>10.1093/bioinformatics/btz750</oup_id><sourcerecordid>2301881175</sourcerecordid><originalsourceid>FETCH-LOGICAL-c452t-cbd9a338dd7fcd87d2d4b8cde0362c08d76c68063e9aab232e759a7092f8b28d3</originalsourceid><addsrcrecordid>eNqNkV9PHCEUxYmp0e3qR6iZx75M5c8wMD402Wxsa7LR1KqvhIE7W8wsbGFGu_30ZbNq9M0X4MLvHLgchD4R_IXghp22LjjfhbjSgzPptB3-CY730IRUNS4p5s2HvGa1KCuJ2SH6mNI9xpxUVXWADhnhssnDBNlr-HmzOCucBT-4buP8sjAhRuizb_CpaGF4BPAF_F1HSAls8evyLhXa22IJHp73M1uMaau-vpyVCf6M4M22tHrQR2i_032C46d5im6_nd_Mf5SLq-8X89miNBWnQ2la22jGpLWiM1YKS23VSmMBs5oaLK2oTS1xzaDRuqWMguCNFrihnWyptGyKvu5812O7AmtyS1H3ah3dSseNCtqptyfe_VbL8KAE5pLkf5qiz08GMeQO0qBWLhnoe-0hjElRhomUhAieUb5DTQwpReheriFYbRNSbxNSu4Sy7uT1G19Uz5FkAO-AMK7f6fkfEi2m_Q</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2301881175</pqid></control><display><type>article</type><title>ReQTL: identifying correlations between expressed SNVs and gene expression using RNA-sequencing data</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Oxford Journals Open Access Collection</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><creator>Spurr, Liam F ; Alomran, Nawaf ; Bousounis, Pavlos ; Reece-Stremtan, Dacian ; Prashant, N M ; Liu, Hongyu ; Słowiński, Piotr ; Li, Muzi ; Zhang, Qianqian ; Sein, Justin ; Asher, Gabriel ; Crandall, Keith A ; Tsaneva-Atanasova, Krasimira ; Horvath, Anelia</creator><contributor>Birol, Inanc</contributor><creatorcontrib>Spurr, Liam F ; Alomran, Nawaf ; Bousounis, Pavlos ; Reece-Stremtan, Dacian ; Prashant, N M ; Liu, Hongyu ; Słowiński, Piotr ; Li, Muzi ; Zhang, Qianqian ; Sein, Justin ; Asher, Gabriel ; Crandall, Keith A ; Tsaneva-Atanasova, Krasimira ; Horvath, Anelia ; Birol, Inanc</creatorcontrib><description>Abstract
Motivation
By testing for associations between DNA genotypes and gene expression levels, expression quantitative trait locus (eQTL) analyses have been instrumental in understanding how thousands of single nucleotide variants (SNVs) may affect gene expression. As compared to DNA genotypes, RNA genetic variation represents a phenotypic trait that reflects the actual allele content of the studied system. RNA genetic variation at expressed SNV loci can be estimated using the proportion of alleles bearing the variant nucleotide (variant allele fraction, VAFRNA). VAFRNA is a continuous measure which allows for precise allele quantitation in loci where the RNA alleles do not scale with the genotype count. We describe a method to correlate VAFRNA with gene expression and assess its ability to identify genetically regulated expression solely from RNA-sequencing (RNA-seq) datasets.
Results
We introduce ReQTL, an eQTL modification which substitutes the DNA allele count for the variant allele fraction at expressed SNV loci in the transcriptome (VAFRNA). We exemplify the method on sets of RNA-seq data from human tissues obtained though the Genotype-Tissue Expression (GTEx) project and demonstrate that ReQTL analyses are computationally feasible and can identify a subset of expressed eQTL loci.
Availability and implementation
A toolkit to perform ReQTL analyses is available at https://github.com/HorvathLab/ReQTL.
Supplementary information
Supplementary data are available at Bioinformatics online.</description><identifier>ISSN: 1367-4803</identifier><identifier>EISSN: 1460-2059</identifier><identifier>EISSN: 1367-4811</identifier><identifier>DOI: 10.1093/bioinformatics/btz750</identifier><identifier>PMID: 31589315</identifier><language>eng</language><publisher>England: Oxford University Press</publisher><subject>Original Papers</subject><ispartof>Bioinformatics, 2020-03, Vol.36 (5), p.1351-1359</ispartof><rights>The Author(s) 2019. Published by Oxford University Press. 2019</rights><rights>The Author(s) 2019. Published by Oxford University Press.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c452t-cbd9a338dd7fcd87d2d4b8cde0362c08d76c68063e9aab232e759a7092f8b28d3</citedby><cites>FETCH-LOGICAL-c452t-cbd9a338dd7fcd87d2d4b8cde0362c08d76c68063e9aab232e759a7092f8b28d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7058180/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7058180/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,724,777,781,882,1599,27905,27906,53772,53774</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31589315$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Birol, Inanc</contributor><creatorcontrib>Spurr, Liam F</creatorcontrib><creatorcontrib>Alomran, Nawaf</creatorcontrib><creatorcontrib>Bousounis, Pavlos</creatorcontrib><creatorcontrib>Reece-Stremtan, Dacian</creatorcontrib><creatorcontrib>Prashant, N M</creatorcontrib><creatorcontrib>Liu, Hongyu</creatorcontrib><creatorcontrib>Słowiński, Piotr</creatorcontrib><creatorcontrib>Li, Muzi</creatorcontrib><creatorcontrib>Zhang, Qianqian</creatorcontrib><creatorcontrib>Sein, Justin</creatorcontrib><creatorcontrib>Asher, Gabriel</creatorcontrib><creatorcontrib>Crandall, Keith A</creatorcontrib><creatorcontrib>Tsaneva-Atanasova, Krasimira</creatorcontrib><creatorcontrib>Horvath, Anelia</creatorcontrib><title>ReQTL: identifying correlations between expressed SNVs and gene expression using RNA-sequencing data</title><title>Bioinformatics</title><addtitle>Bioinformatics</addtitle><description>Abstract
Motivation
By testing for associations between DNA genotypes and gene expression levels, expression quantitative trait locus (eQTL) analyses have been instrumental in understanding how thousands of single nucleotide variants (SNVs) may affect gene expression. As compared to DNA genotypes, RNA genetic variation represents a phenotypic trait that reflects the actual allele content of the studied system. RNA genetic variation at expressed SNV loci can be estimated using the proportion of alleles bearing the variant nucleotide (variant allele fraction, VAFRNA). VAFRNA is a continuous measure which allows for precise allele quantitation in loci where the RNA alleles do not scale with the genotype count. We describe a method to correlate VAFRNA with gene expression and assess its ability to identify genetically regulated expression solely from RNA-sequencing (RNA-seq) datasets.
Results
We introduce ReQTL, an eQTL modification which substitutes the DNA allele count for the variant allele fraction at expressed SNV loci in the transcriptome (VAFRNA). We exemplify the method on sets of RNA-seq data from human tissues obtained though the Genotype-Tissue Expression (GTEx) project and demonstrate that ReQTL analyses are computationally feasible and can identify a subset of expressed eQTL loci.
Availability and implementation
A toolkit to perform ReQTL analyses is available at https://github.com/HorvathLab/ReQTL.
Supplementary information
Supplementary data are available at Bioinformatics online.</description><subject>Original Papers</subject><issn>1367-4803</issn><issn>1460-2059</issn><issn>1367-4811</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>TOX</sourceid><recordid>eNqNkV9PHCEUxYmp0e3qR6iZx75M5c8wMD402Wxsa7LR1KqvhIE7W8wsbGFGu_30ZbNq9M0X4MLvHLgchD4R_IXghp22LjjfhbjSgzPptB3-CY730IRUNS4p5s2HvGa1KCuJ2SH6mNI9xpxUVXWADhnhssnDBNlr-HmzOCucBT-4buP8sjAhRuizb_CpaGF4BPAF_F1HSAls8evyLhXa22IJHp73M1uMaau-vpyVCf6M4M22tHrQR2i_032C46d5im6_nd_Mf5SLq-8X89miNBWnQ2la22jGpLWiM1YKS23VSmMBs5oaLK2oTS1xzaDRuqWMguCNFrihnWyptGyKvu5812O7AmtyS1H3ah3dSseNCtqptyfe_VbL8KAE5pLkf5qiz08GMeQO0qBWLhnoe-0hjElRhomUhAieUb5DTQwpReheriFYbRNSbxNSu4Sy7uT1G19Uz5FkAO-AMK7f6fkfEi2m_Q</recordid><startdate>20200301</startdate><enddate>20200301</enddate><creator>Spurr, Liam F</creator><creator>Alomran, Nawaf</creator><creator>Bousounis, Pavlos</creator><creator>Reece-Stremtan, Dacian</creator><creator>Prashant, N M</creator><creator>Liu, Hongyu</creator><creator>Słowiński, Piotr</creator><creator>Li, Muzi</creator><creator>Zhang, Qianqian</creator><creator>Sein, Justin</creator><creator>Asher, Gabriel</creator><creator>Crandall, Keith A</creator><creator>Tsaneva-Atanasova, Krasimira</creator><creator>Horvath, Anelia</creator><general>Oxford University Press</general><scope>TOX</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20200301</creationdate><title>ReQTL: identifying correlations between expressed SNVs and gene expression using RNA-sequencing data</title><author>Spurr, Liam F ; Alomran, Nawaf ; Bousounis, Pavlos ; Reece-Stremtan, Dacian ; Prashant, N M ; Liu, Hongyu ; Słowiński, Piotr ; Li, Muzi ; Zhang, Qianqian ; Sein, Justin ; Asher, Gabriel ; Crandall, Keith A ; Tsaneva-Atanasova, Krasimira ; Horvath, Anelia</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c452t-cbd9a338dd7fcd87d2d4b8cde0362c08d76c68063e9aab232e759a7092f8b28d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Original Papers</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Spurr, Liam F</creatorcontrib><creatorcontrib>Alomran, Nawaf</creatorcontrib><creatorcontrib>Bousounis, Pavlos</creatorcontrib><creatorcontrib>Reece-Stremtan, Dacian</creatorcontrib><creatorcontrib>Prashant, N M</creatorcontrib><creatorcontrib>Liu, Hongyu</creatorcontrib><creatorcontrib>Słowiński, Piotr</creatorcontrib><creatorcontrib>Li, Muzi</creatorcontrib><creatorcontrib>Zhang, Qianqian</creatorcontrib><creatorcontrib>Sein, Justin</creatorcontrib><creatorcontrib>Asher, Gabriel</creatorcontrib><creatorcontrib>Crandall, Keith A</creatorcontrib><creatorcontrib>Tsaneva-Atanasova, Krasimira</creatorcontrib><creatorcontrib>Horvath, Anelia</creatorcontrib><collection>Oxford Journals Open Access Collection</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Bioinformatics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Spurr, Liam F</au><au>Alomran, Nawaf</au><au>Bousounis, Pavlos</au><au>Reece-Stremtan, Dacian</au><au>Prashant, N M</au><au>Liu, Hongyu</au><au>Słowiński, Piotr</au><au>Li, Muzi</au><au>Zhang, Qianqian</au><au>Sein, Justin</au><au>Asher, Gabriel</au><au>Crandall, Keith A</au><au>Tsaneva-Atanasova, Krasimira</au><au>Horvath, Anelia</au><au>Birol, Inanc</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>ReQTL: identifying correlations between expressed SNVs and gene expression using RNA-sequencing data</atitle><jtitle>Bioinformatics</jtitle><addtitle>Bioinformatics</addtitle><date>2020-03-01</date><risdate>2020</risdate><volume>36</volume><issue>5</issue><spage>1351</spage><epage>1359</epage><pages>1351-1359</pages><issn>1367-4803</issn><eissn>1460-2059</eissn><eissn>1367-4811</eissn><abstract>Abstract
Motivation
By testing for associations between DNA genotypes and gene expression levels, expression quantitative trait locus (eQTL) analyses have been instrumental in understanding how thousands of single nucleotide variants (SNVs) may affect gene expression. As compared to DNA genotypes, RNA genetic variation represents a phenotypic trait that reflects the actual allele content of the studied system. RNA genetic variation at expressed SNV loci can be estimated using the proportion of alleles bearing the variant nucleotide (variant allele fraction, VAFRNA). VAFRNA is a continuous measure which allows for precise allele quantitation in loci where the RNA alleles do not scale with the genotype count. We describe a method to correlate VAFRNA with gene expression and assess its ability to identify genetically regulated expression solely from RNA-sequencing (RNA-seq) datasets.
Results
We introduce ReQTL, an eQTL modification which substitutes the DNA allele count for the variant allele fraction at expressed SNV loci in the transcriptome (VAFRNA). We exemplify the method on sets of RNA-seq data from human tissues obtained though the Genotype-Tissue Expression (GTEx) project and demonstrate that ReQTL analyses are computationally feasible and can identify a subset of expressed eQTL loci.
Availability and implementation
A toolkit to perform ReQTL analyses is available at https://github.com/HorvathLab/ReQTL.
Supplementary information
Supplementary data are available at Bioinformatics online.</abstract><cop>England</cop><pub>Oxford University Press</pub><pmid>31589315</pmid><doi>10.1093/bioinformatics/btz750</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1367-4803 |
ispartof | Bioinformatics, 2020-03, Vol.36 (5), p.1351-1359 |
issn | 1367-4803 1460-2059 1367-4811 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7058180 |
source | Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Oxford Journals Open Access Collection; PubMed Central; Alma/SFX Local Collection |
subjects | Original Papers |
title | ReQTL: identifying correlations between expressed SNVs and gene expression using RNA-sequencing data |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T09%3A23%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=ReQTL:%20identifying%20correlations%20between%20expressed%20SNVs%20and%20gene%20expression%20using%20RNA-sequencing%20data&rft.jtitle=Bioinformatics&rft.au=Spurr,%20Liam%20F&rft.date=2020-03-01&rft.volume=36&rft.issue=5&rft.spage=1351&rft.epage=1359&rft.pages=1351-1359&rft.issn=1367-4803&rft.eissn=1460-2059&rft_id=info:doi/10.1093/bioinformatics/btz750&rft_dat=%3Cproquest_pubme%3E2301881175%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2301881175&rft_id=info:pmid/31589315&rft_oup_id=10.1093/bioinformatics/btz750&rfr_iscdi=true |