Exogenous carbon monoxide protects against mitochondrial DNA‑induced hippocampal pyroptosis in a model of hemorrhagic shock and resuscitation
Carbon monoxide‑releasing molecule‑3 (CORM‑3), which is an exogenous carbon monoxide (CO) compound, slowly releases CO under physiological conditions; this exerts neuroprotective effects against incomplete ischemia/reperfusion injury. The objective of the present study was to investigate whether the...
Gespeichert in:
Veröffentlicht in: | International journal of molecular medicine 2020-04, Vol.45 (4), p.1176-1186 |
---|---|
Hauptverfasser: | , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1186 |
---|---|
container_issue | 4 |
container_start_page | 1176 |
container_title | International journal of molecular medicine |
container_volume | 45 |
creator | Fu, Lan Zhang, Dong-Xue Zhang, Li-Min Song, Yan-Cheng Liu, Feng-Hai Li, Yan Wang, Xu-Peng Zheng, Wei-Chao Wang, Xiao-Dong Gui, Chun-Xiao Kong, Xiang-Jun Kang, Li-Qing |
description | Carbon monoxide‑releasing molecule‑3 (CORM‑3), which is an exogenous carbon monoxide (CO) compound, slowly releases CO under physiological conditions; this exerts neuroprotective effects against incomplete ischemia/reperfusion injury. The objective of the present study was to investigate whether the administration of CORM‑3 protects against nucleotide‑binding oligomerization domain‑like receptor pyrin domain‑3 (NLRP3) inflammasome formation and neuronal pyroptosis in the hippocampus following hemorrhagic shock and resuscitation (HSR). To establish this, an HSR model was created. Hemorrhagic shock was induced in adult male Sprague‑Dawley rats under sevoflurane anesthesia by bleeding using a heparinized syringe to maintain a mean arterial pressure of 30±5 mmHg for 60 min. Resuscitation was performed by reperfusion of the blood and, if necessary, administering sterile saline to achieve the baseline arterial pressure. Following resuscitation, CORM‑3 (4 mg/kg) was injected via the femoral vein. Neuronal pyroptosis in the hippocampus, mitochondrial morphology, mitochondrial DNA (mtDNA), brain magnetic resonance imaging, expression levels of NLRP3 and the interaction of pro‑caspase‑1 and apoptosis‑associated speck‑like protein containing a CARD domain (ASC) were examined 12 h after HSR; locomotor activity was assessed 7 days after HSR. Compared with HSR‑treated rats, CORM‑3 administration resulted in a lower level of neuronal pyroptosis in the hippocampus, improved mitochondrial morphology, a lower mtDNA level, steadier levels of metabolites, decreased expression levels of NLRP3 and pro‑caspase‑1 interacting with ASC and enhanced locomotor activity. In conclusion, treatment with CORM‑3 ameliorated impairments of locomotor and exploratory activities in a rat model of HSR. The mechanism may be associated with the inhibition of mitochondrial DNA‑induced pyroptosis via improvements in cell metabolism. |
doi_str_mv | 10.3892/ijmm.2020.4493 |
format | Article |
fullrecord | <record><control><sourceid>gale_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7053849</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A618308887</galeid><sourcerecordid>A618308887</sourcerecordid><originalsourceid>FETCH-LOGICAL-c485t-2454e293c7ce6246a1421eca45c2516b55692b0c525a70cd0c54a1327e3328de3</originalsourceid><addsrcrecordid>eNptkk2LFDEQhhtR3HX06lECnmfMZ3f6Igy76wcselHwFjJJujvjJNUmadm9-Q_Ev-gvMYPrqrDUoYrUWy9V4WmapwRvmOzpC78PYUMxxRvOe3avOSVdT9aU80_3a01wt2adaE-aRznvMaaC9_Jhc8IoobwX_Wnz_eIKRhdhycjotIOIAkS48tahOUFxpmSkR-1jLij4AmaCaJPXB3T-bvvz2w8f7WKcRZOfZzA6zLUzXyeYC2SfkY9IV0frDggGNLkAKU169AblCcxnpKNFyeUlG1908RAfNw8GfcjuyU1eNR9fXXw4e7O-fP_67dn2cm24FKUeKLijPTOdcS3lrSacEmc0F4YK0u6EaHu6w0ZQoTtsbK24Jox2jjEqrWOr5uVv33nZBWeNiyXpg5qTDzpdK9Be_d-JflIjfFUdFkzWr141z28MEnxZXC5qD0uKdWdFWUcYY6SVf1WjPjjl4wDVzASfjdq2RDIspeyqanOHqoZ1wRuIbvD1_a4BkyDn5IbbxQlWRy7UkQt15EIduagDz_4991b-BwT2Cw3It88</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2371333168</pqid></control><display><type>article</type><title>Exogenous carbon monoxide protects against mitochondrial DNA‑induced hippocampal pyroptosis in a model of hemorrhagic shock and resuscitation</title><source>Spandidos Publications Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Alma/SFX Local Collection</source><creator>Fu, Lan ; Zhang, Dong-Xue ; Zhang, Li-Min ; Song, Yan-Cheng ; Liu, Feng-Hai ; Li, Yan ; Wang, Xu-Peng ; Zheng, Wei-Chao ; Wang, Xiao-Dong ; Gui, Chun-Xiao ; Kong, Xiang-Jun ; Kang, Li-Qing</creator><creatorcontrib>Fu, Lan ; Zhang, Dong-Xue ; Zhang, Li-Min ; Song, Yan-Cheng ; Liu, Feng-Hai ; Li, Yan ; Wang, Xu-Peng ; Zheng, Wei-Chao ; Wang, Xiao-Dong ; Gui, Chun-Xiao ; Kong, Xiang-Jun ; Kang, Li-Qing</creatorcontrib><description>Carbon monoxide‑releasing molecule‑3 (CORM‑3), which is an exogenous carbon monoxide (CO) compound, slowly releases CO under physiological conditions; this exerts neuroprotective effects against incomplete ischemia/reperfusion injury. The objective of the present study was to investigate whether the administration of CORM‑3 protects against nucleotide‑binding oligomerization domain‑like receptor pyrin domain‑3 (NLRP3) inflammasome formation and neuronal pyroptosis in the hippocampus following hemorrhagic shock and resuscitation (HSR). To establish this, an HSR model was created. Hemorrhagic shock was induced in adult male Sprague‑Dawley rats under sevoflurane anesthesia by bleeding using a heparinized syringe to maintain a mean arterial pressure of 30±5 mmHg for 60 min. Resuscitation was performed by reperfusion of the blood and, if necessary, administering sterile saline to achieve the baseline arterial pressure. Following resuscitation, CORM‑3 (4 mg/kg) was injected via the femoral vein. Neuronal pyroptosis in the hippocampus, mitochondrial morphology, mitochondrial DNA (mtDNA), brain magnetic resonance imaging, expression levels of NLRP3 and the interaction of pro‑caspase‑1 and apoptosis‑associated speck‑like protein containing a CARD domain (ASC) were examined 12 h after HSR; locomotor activity was assessed 7 days after HSR. Compared with HSR‑treated rats, CORM‑3 administration resulted in a lower level of neuronal pyroptosis in the hippocampus, improved mitochondrial morphology, a lower mtDNA level, steadier levels of metabolites, decreased expression levels of NLRP3 and pro‑caspase‑1 interacting with ASC and enhanced locomotor activity. In conclusion, treatment with CORM‑3 ameliorated impairments of locomotor and exploratory activities in a rat model of HSR. The mechanism may be associated with the inhibition of mitochondrial DNA‑induced pyroptosis via improvements in cell metabolism.</description><identifier>ISSN: 1107-3756</identifier><identifier>EISSN: 1791-244X</identifier><identifier>DOI: 10.3892/ijmm.2020.4493</identifier><identifier>PMID: 32124959</identifier><language>eng</language><publisher>Greece: Spandidos Publications</publisher><subject>Anesthesia ; Apoptosis ; Biotechnology ; Brain ; Carbon monoxide ; Containers ; Cytokines ; Dehydrogenases ; Disabilities ; DNA ; Ethanol ; Experiments ; Hemorrhagic shock ; Ischemia ; Laboratory animals ; Metabolism ; Metabolites ; Mitochondrial DNA ; Neurons ; Neurophysiology ; Oligomers ; Rodents ; Spectrum analysis</subject><ispartof>International journal of molecular medicine, 2020-04, Vol.45 (4), p.1176-1186</ispartof><rights>COPYRIGHT 2020 Spandidos Publications</rights><rights>Copyright Spandidos Publications UK Ltd. 2020</rights><rights>Copyright: © Fu et al. 2020</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c485t-2454e293c7ce6246a1421eca45c2516b55692b0c525a70cd0c54a1327e3328de3</citedby><cites>FETCH-LOGICAL-c485t-2454e293c7ce6246a1421eca45c2516b55692b0c525a70cd0c54a1327e3328de3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32124959$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Fu, Lan</creatorcontrib><creatorcontrib>Zhang, Dong-Xue</creatorcontrib><creatorcontrib>Zhang, Li-Min</creatorcontrib><creatorcontrib>Song, Yan-Cheng</creatorcontrib><creatorcontrib>Liu, Feng-Hai</creatorcontrib><creatorcontrib>Li, Yan</creatorcontrib><creatorcontrib>Wang, Xu-Peng</creatorcontrib><creatorcontrib>Zheng, Wei-Chao</creatorcontrib><creatorcontrib>Wang, Xiao-Dong</creatorcontrib><creatorcontrib>Gui, Chun-Xiao</creatorcontrib><creatorcontrib>Kong, Xiang-Jun</creatorcontrib><creatorcontrib>Kang, Li-Qing</creatorcontrib><title>Exogenous carbon monoxide protects against mitochondrial DNA‑induced hippocampal pyroptosis in a model of hemorrhagic shock and resuscitation</title><title>International journal of molecular medicine</title><addtitle>Int J Mol Med</addtitle><description>Carbon monoxide‑releasing molecule‑3 (CORM‑3), which is an exogenous carbon monoxide (CO) compound, slowly releases CO under physiological conditions; this exerts neuroprotective effects against incomplete ischemia/reperfusion injury. The objective of the present study was to investigate whether the administration of CORM‑3 protects against nucleotide‑binding oligomerization domain‑like receptor pyrin domain‑3 (NLRP3) inflammasome formation and neuronal pyroptosis in the hippocampus following hemorrhagic shock and resuscitation (HSR). To establish this, an HSR model was created. Hemorrhagic shock was induced in adult male Sprague‑Dawley rats under sevoflurane anesthesia by bleeding using a heparinized syringe to maintain a mean arterial pressure of 30±5 mmHg for 60 min. Resuscitation was performed by reperfusion of the blood and, if necessary, administering sterile saline to achieve the baseline arterial pressure. Following resuscitation, CORM‑3 (4 mg/kg) was injected via the femoral vein. Neuronal pyroptosis in the hippocampus, mitochondrial morphology, mitochondrial DNA (mtDNA), brain magnetic resonance imaging, expression levels of NLRP3 and the interaction of pro‑caspase‑1 and apoptosis‑associated speck‑like protein containing a CARD domain (ASC) were examined 12 h after HSR; locomotor activity was assessed 7 days after HSR. Compared with HSR‑treated rats, CORM‑3 administration resulted in a lower level of neuronal pyroptosis in the hippocampus, improved mitochondrial morphology, a lower mtDNA level, steadier levels of metabolites, decreased expression levels of NLRP3 and pro‑caspase‑1 interacting with ASC and enhanced locomotor activity. In conclusion, treatment with CORM‑3 ameliorated impairments of locomotor and exploratory activities in a rat model of HSR. The mechanism may be associated with the inhibition of mitochondrial DNA‑induced pyroptosis via improvements in cell metabolism.</description><subject>Anesthesia</subject><subject>Apoptosis</subject><subject>Biotechnology</subject><subject>Brain</subject><subject>Carbon monoxide</subject><subject>Containers</subject><subject>Cytokines</subject><subject>Dehydrogenases</subject><subject>Disabilities</subject><subject>DNA</subject><subject>Ethanol</subject><subject>Experiments</subject><subject>Hemorrhagic shock</subject><subject>Ischemia</subject><subject>Laboratory animals</subject><subject>Metabolism</subject><subject>Metabolites</subject><subject>Mitochondrial DNA</subject><subject>Neurons</subject><subject>Neurophysiology</subject><subject>Oligomers</subject><subject>Rodents</subject><subject>Spectrum analysis</subject><issn>1107-3756</issn><issn>1791-244X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><recordid>eNptkk2LFDEQhhtR3HX06lECnmfMZ3f6Igy76wcselHwFjJJujvjJNUmadm9-Q_Ev-gvMYPrqrDUoYrUWy9V4WmapwRvmOzpC78PYUMxxRvOe3avOSVdT9aU80_3a01wt2adaE-aRznvMaaC9_Jhc8IoobwX_Wnz_eIKRhdhycjotIOIAkS48tahOUFxpmSkR-1jLij4AmaCaJPXB3T-bvvz2w8f7WKcRZOfZzA6zLUzXyeYC2SfkY9IV0frDggGNLkAKU169AblCcxnpKNFyeUlG1908RAfNw8GfcjuyU1eNR9fXXw4e7O-fP_67dn2cm24FKUeKLijPTOdcS3lrSacEmc0F4YK0u6EaHu6w0ZQoTtsbK24Jox2jjEqrWOr5uVv33nZBWeNiyXpg5qTDzpdK9Be_d-JflIjfFUdFkzWr141z28MEnxZXC5qD0uKdWdFWUcYY6SVf1WjPjjl4wDVzASfjdq2RDIspeyqanOHqoZ1wRuIbvD1_a4BkyDn5IbbxQlWRy7UkQt15EIduagDz_4991b-BwT2Cw3It88</recordid><startdate>20200401</startdate><enddate>20200401</enddate><creator>Fu, Lan</creator><creator>Zhang, Dong-Xue</creator><creator>Zhang, Li-Min</creator><creator>Song, Yan-Cheng</creator><creator>Liu, Feng-Hai</creator><creator>Li, Yan</creator><creator>Wang, Xu-Peng</creator><creator>Zheng, Wei-Chao</creator><creator>Wang, Xiao-Dong</creator><creator>Gui, Chun-Xiao</creator><creator>Kong, Xiang-Jun</creator><creator>Kang, Li-Qing</creator><general>Spandidos Publications</general><general>Spandidos Publications UK Ltd</general><general>D.A. Spandidos</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>K9.</scope><scope>M0S</scope><scope>M1P</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>5PM</scope></search><sort><creationdate>20200401</creationdate><title>Exogenous carbon monoxide protects against mitochondrial DNA‑induced hippocampal pyroptosis in a model of hemorrhagic shock and resuscitation</title><author>Fu, Lan ; Zhang, Dong-Xue ; Zhang, Li-Min ; Song, Yan-Cheng ; Liu, Feng-Hai ; Li, Yan ; Wang, Xu-Peng ; Zheng, Wei-Chao ; Wang, Xiao-Dong ; Gui, Chun-Xiao ; Kong, Xiang-Jun ; Kang, Li-Qing</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c485t-2454e293c7ce6246a1421eca45c2516b55692b0c525a70cd0c54a1327e3328de3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Anesthesia</topic><topic>Apoptosis</topic><topic>Biotechnology</topic><topic>Brain</topic><topic>Carbon monoxide</topic><topic>Containers</topic><topic>Cytokines</topic><topic>Dehydrogenases</topic><topic>Disabilities</topic><topic>DNA</topic><topic>Ethanol</topic><topic>Experiments</topic><topic>Hemorrhagic shock</topic><topic>Ischemia</topic><topic>Laboratory animals</topic><topic>Metabolism</topic><topic>Metabolites</topic><topic>Mitochondrial DNA</topic><topic>Neurons</topic><topic>Neurophysiology</topic><topic>Oligomers</topic><topic>Rodents</topic><topic>Spectrum analysis</topic><toplevel>online_resources</toplevel><creatorcontrib>Fu, Lan</creatorcontrib><creatorcontrib>Zhang, Dong-Xue</creatorcontrib><creatorcontrib>Zhang, Li-Min</creatorcontrib><creatorcontrib>Song, Yan-Cheng</creatorcontrib><creatorcontrib>Liu, Feng-Hai</creatorcontrib><creatorcontrib>Li, Yan</creatorcontrib><creatorcontrib>Wang, Xu-Peng</creatorcontrib><creatorcontrib>Zheng, Wei-Chao</creatorcontrib><creatorcontrib>Wang, Xiao-Dong</creatorcontrib><creatorcontrib>Gui, Chun-Xiao</creatorcontrib><creatorcontrib>Kong, Xiang-Jun</creatorcontrib><creatorcontrib>Kang, Li-Qing</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>International journal of molecular medicine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fu, Lan</au><au>Zhang, Dong-Xue</au><au>Zhang, Li-Min</au><au>Song, Yan-Cheng</au><au>Liu, Feng-Hai</au><au>Li, Yan</au><au>Wang, Xu-Peng</au><au>Zheng, Wei-Chao</au><au>Wang, Xiao-Dong</au><au>Gui, Chun-Xiao</au><au>Kong, Xiang-Jun</au><au>Kang, Li-Qing</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Exogenous carbon monoxide protects against mitochondrial DNA‑induced hippocampal pyroptosis in a model of hemorrhagic shock and resuscitation</atitle><jtitle>International journal of molecular medicine</jtitle><addtitle>Int J Mol Med</addtitle><date>2020-04-01</date><risdate>2020</risdate><volume>45</volume><issue>4</issue><spage>1176</spage><epage>1186</epage><pages>1176-1186</pages><issn>1107-3756</issn><eissn>1791-244X</eissn><abstract>Carbon monoxide‑releasing molecule‑3 (CORM‑3), which is an exogenous carbon monoxide (CO) compound, slowly releases CO under physiological conditions; this exerts neuroprotective effects against incomplete ischemia/reperfusion injury. The objective of the present study was to investigate whether the administration of CORM‑3 protects against nucleotide‑binding oligomerization domain‑like receptor pyrin domain‑3 (NLRP3) inflammasome formation and neuronal pyroptosis in the hippocampus following hemorrhagic shock and resuscitation (HSR). To establish this, an HSR model was created. Hemorrhagic shock was induced in adult male Sprague‑Dawley rats under sevoflurane anesthesia by bleeding using a heparinized syringe to maintain a mean arterial pressure of 30±5 mmHg for 60 min. Resuscitation was performed by reperfusion of the blood and, if necessary, administering sterile saline to achieve the baseline arterial pressure. Following resuscitation, CORM‑3 (4 mg/kg) was injected via the femoral vein. Neuronal pyroptosis in the hippocampus, mitochondrial morphology, mitochondrial DNA (mtDNA), brain magnetic resonance imaging, expression levels of NLRP3 and the interaction of pro‑caspase‑1 and apoptosis‑associated speck‑like protein containing a CARD domain (ASC) were examined 12 h after HSR; locomotor activity was assessed 7 days after HSR. Compared with HSR‑treated rats, CORM‑3 administration resulted in a lower level of neuronal pyroptosis in the hippocampus, improved mitochondrial morphology, a lower mtDNA level, steadier levels of metabolites, decreased expression levels of NLRP3 and pro‑caspase‑1 interacting with ASC and enhanced locomotor activity. In conclusion, treatment with CORM‑3 ameliorated impairments of locomotor and exploratory activities in a rat model of HSR. The mechanism may be associated with the inhibition of mitochondrial DNA‑induced pyroptosis via improvements in cell metabolism.</abstract><cop>Greece</cop><pub>Spandidos Publications</pub><pmid>32124959</pmid><doi>10.3892/ijmm.2020.4493</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1107-3756 |
ispartof | International journal of molecular medicine, 2020-04, Vol.45 (4), p.1176-1186 |
issn | 1107-3756 1791-244X |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7053849 |
source | Spandidos Publications Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Alma/SFX Local Collection |
subjects | Anesthesia Apoptosis Biotechnology Brain Carbon monoxide Containers Cytokines Dehydrogenases Disabilities DNA Ethanol Experiments Hemorrhagic shock Ischemia Laboratory animals Metabolism Metabolites Mitochondrial DNA Neurons Neurophysiology Oligomers Rodents Spectrum analysis |
title | Exogenous carbon monoxide protects against mitochondrial DNA‑induced hippocampal pyroptosis in a model of hemorrhagic shock and resuscitation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-18T22%3A59%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Exogenous%20carbon%20monoxide%20protects%20against%20mitochondrial%20DNA%E2%80%91induced%20hippocampal%20pyroptosis%20in%20a%20model%20of%20hemorrhagic%20shock%20and%20resuscitation&rft.jtitle=International%20journal%20of%20molecular%20medicine&rft.au=Fu,%20Lan&rft.date=2020-04-01&rft.volume=45&rft.issue=4&rft.spage=1176&rft.epage=1186&rft.pages=1176-1186&rft.issn=1107-3756&rft.eissn=1791-244X&rft_id=info:doi/10.3892/ijmm.2020.4493&rft_dat=%3Cgale_pubme%3EA618308887%3C/gale_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2371333168&rft_id=info:pmid/32124959&rft_galeid=A618308887&rfr_iscdi=true |