Organization of the Addax Major Histocompatibility Complex Provides Insights Into Ruminant Evolution
Ruminants are critical as prey in transferring solar energy fixed by plants into carnivorous species, yet the genetic signature of the driving forces leading to the evolutionary success of the huge number of ruminant species remains largely unknown. Here we report a complete DNA map of the major his...
Gespeichert in:
Veröffentlicht in: | Frontiers in immunology 2020-02, Vol.11, p.260, Article 260 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | 260 |
container_title | Frontiers in immunology |
container_volume | 11 |
creator | Li, Chaokun Huang, Rui Nie, Fangyuan Li, Jiujie Zhu, Wen Shi, Xiaoqian Guo, Yu Chen, Yan Wang, Shiyu Zhang, Limeng Chen, Longxin Li, Runting Liu, Xuefeng Zheng, Changming Zhang, Chenglin Ma, Runlin Z. |
description | Ruminants are critical as prey in transferring solar energy fixed by plants into carnivorous species, yet the genetic signature of the driving forces leading to the evolutionary success of the huge number of ruminant species remains largely unknown. Here we report a complete DNA map of the major histocompatibility complex (MHC) of the addax (Addax nasomaculatus) genome by sequencing a total of 47 overlapping BAC clones previously mapped to cover the MHC region. The addax MHC is composed of 3,224,151 nucleotides, harboring a total of 150 coding genes, 50 tRNA genes, and 14 non-coding RNA genes. The organization of addax MHC was found to be highly conserved to those of sheep and cattle, highlighted by a large piece of chromosome inversion that divided the MHC class II into IIa and IIb subregions. It is now highly possible that all of the ruminant species in the family of Bovidae carry the same chromosome inversion in the MHC region, inherited from a common ancestor of ruminants. Phylogenetic analysis indicated that DY, a ruminant-specific gene located at the boundary of the inversion and highly expressed in dendritic cells, was possibly evolved from DQ, with an estimated divergence time 140 million years ago. Homology modeling showed that the overall predicted structure of addax DY was similar to that of HLA-DQ2. However, the pocket properties of P1, P4, P6, and P9, which were critical for antigen binding in the addax DY, showed certain distinctive features. Structural analysis suggested that the populations of peptide antigens presented by addax DY and HLA-DQ2 were quite diverse, which in theory could serve to promote microbial regulation in the rumen by ruminant species, contributing to enhanced grass utilization ability. In summary, the results of our study helped to enhance our understanding of the MHC evolution and provided additional supportive evidence to our previous hypothesis that an ancient chromosome inversion in the MHC region of the last common ancestor of ruminants may have contributed to the evolutionary success of current ruminants on our planet. |
doi_str_mv | 10.3389/fimmu.2020.00260 |
format | Article |
fullrecord | <record><control><sourceid>pubmed_cross</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7053375</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_719f54e8b3bf43f8aeeab79c66d07838</doaj_id><sourcerecordid>32161588</sourcerecordid><originalsourceid>FETCH-LOGICAL-c462t-6813c95a677a529539d3bd323175ec4a4dd24d908a1d28944b4db473b8c9f9463</originalsourceid><addsrcrecordid>eNqNkktvEzEURkcIRKvSPSvkPUrw-7FBqkaFRmpVhGBt-TWJo5lx5PGkLb-emYRG7Q5vfK_93ePFcVV9RHBJiFRfmth14xJDDJcQYg7fVOeIc7ogGNO3L-qz6nIYtnBaVBFC2PvqjGDEEZPyvPL3eW36-MeUmHqQGlA2AVx5bx7BndmmDG7iUJJL3W5K2NjG8gTqqWvDI_iR0z76MIBVP8T1psxFSeDn2MXe9AVc71M7ztwP1bvGtEO4_LdfVL-_Xf-qbxa3999X9dXtwlGOy4JLRJxihgthGFaMKE-sJ5ggwYKjhnqPqVdQGuSxVJRa6i0VxEqnGkU5uahWR65PZqt3OXYmP-lkoj4cpLzWJpfo2qAFUg2jQVpiG0oaaUIwVijHuYdCEjmxvh5Zu9F2wbvQl2zaV9DXN33c6HXaawEZIYJNAHgEuJyGIYfmNIugngXqg0A9C9QHgdPIp5dvngaedU2Bz8fAQ7CpGVwMvQun2GSYYSqExLNsNKXl_6frWA5_oE5jX8hfJn26bw</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Organization of the Addax Major Histocompatibility Complex Provides Insights Into Ruminant Evolution</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central Open Access</source><source>Web of Science - Science Citation Index Expanded - 2020<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" /></source><source>PubMed Central</source><creator>Li, Chaokun ; Huang, Rui ; Nie, Fangyuan ; Li, Jiujie ; Zhu, Wen ; Shi, Xiaoqian ; Guo, Yu ; Chen, Yan ; Wang, Shiyu ; Zhang, Limeng ; Chen, Longxin ; Li, Runting ; Liu, Xuefeng ; Zheng, Changming ; Zhang, Chenglin ; Ma, Runlin Z.</creator><creatorcontrib>Li, Chaokun ; Huang, Rui ; Nie, Fangyuan ; Li, Jiujie ; Zhu, Wen ; Shi, Xiaoqian ; Guo, Yu ; Chen, Yan ; Wang, Shiyu ; Zhang, Limeng ; Chen, Longxin ; Li, Runting ; Liu, Xuefeng ; Zheng, Changming ; Zhang, Chenglin ; Ma, Runlin Z.</creatorcontrib><description>Ruminants are critical as prey in transferring solar energy fixed by plants into carnivorous species, yet the genetic signature of the driving forces leading to the evolutionary success of the huge number of ruminant species remains largely unknown. Here we report a complete DNA map of the major histocompatibility complex (MHC) of the addax (Addax nasomaculatus) genome by sequencing a total of 47 overlapping BAC clones previously mapped to cover the MHC region. The addax MHC is composed of 3,224,151 nucleotides, harboring a total of 150 coding genes, 50 tRNA genes, and 14 non-coding RNA genes. The organization of addax MHC was found to be highly conserved to those of sheep and cattle, highlighted by a large piece of chromosome inversion that divided the MHC class II into IIa and IIb subregions. It is now highly possible that all of the ruminant species in the family of Bovidae carry the same chromosome inversion in the MHC region, inherited from a common ancestor of ruminants. Phylogenetic analysis indicated that DY, a ruminant-specific gene located at the boundary of the inversion and highly expressed in dendritic cells, was possibly evolved from DQ, with an estimated divergence time 140 million years ago. Homology modeling showed that the overall predicted structure of addax DY was similar to that of HLA-DQ2. However, the pocket properties of P1, P4, P6, and P9, which were critical for antigen binding in the addax DY, showed certain distinctive features. Structural analysis suggested that the populations of peptide antigens presented by addax DY and HLA-DQ2 were quite diverse, which in theory could serve to promote microbial regulation in the rumen by ruminant species, contributing to enhanced grass utilization ability. In summary, the results of our study helped to enhance our understanding of the MHC evolution and provided additional supportive evidence to our previous hypothesis that an ancient chromosome inversion in the MHC region of the last common ancestor of ruminants may have contributed to the evolutionary success of current ruminants on our planet.</description><identifier>ISSN: 1664-3224</identifier><identifier>EISSN: 1664-3224</identifier><identifier>DOI: 10.3389/fimmu.2020.00260</identifier><identifier>PMID: 32161588</identifier><language>eng</language><publisher>LAUSANNE: Frontiers Media Sa</publisher><subject>Addax nasomaculatus ; Amino Acids - genetics ; Animals ; Antelopes ; chromosome inversion ; Chromosome Inversion - genetics ; evolution ; Evolution, Molecular ; Genome ; Immunology ; Life Sciences & Biomedicine ; Major Histocompatibility Complex - genetics ; Mammals - genetics ; MHC ; Phylogeny ; Repetitive Sequences, Nucleic Acid ; RNA, Untranslated ; ruminant ; Ruminants - genetics ; Science & Technology</subject><ispartof>Frontiers in immunology, 2020-02, Vol.11, p.260, Article 260</ispartof><rights>Copyright © 2020 Li, Huang, Nie, Li, Zhu, Shi, Guo, Chen, Wang, Zhang, Chen, Li, Liu, Zheng, Zhang and Ma.</rights><rights>Copyright © 2020 Li, Huang, Nie, Li, Zhu, Shi, Guo, Chen, Wang, Zhang, Chen, Li, Liu, Zheng, Zhang and Ma. 2020 Li, Huang, Nie, Li, Zhu, Shi, Guo, Chen, Wang, Zhang, Chen, Li, Liu, Zheng, Zhang and Ma</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>5</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000524778200001</woscitedreferencesoriginalsourcerecordid><citedby>FETCH-LOGICAL-c462t-6813c95a677a529539d3bd323175ec4a4dd24d908a1d28944b4db473b8c9f9463</citedby><cites>FETCH-LOGICAL-c462t-6813c95a677a529539d3bd323175ec4a4dd24d908a1d28944b4db473b8c9f9463</cites><orcidid>0000-0001-9037-488X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7053375/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7053375/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,315,729,782,786,866,887,2104,2116,27931,27932,28255,53798,53800</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32161588$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Li, Chaokun</creatorcontrib><creatorcontrib>Huang, Rui</creatorcontrib><creatorcontrib>Nie, Fangyuan</creatorcontrib><creatorcontrib>Li, Jiujie</creatorcontrib><creatorcontrib>Zhu, Wen</creatorcontrib><creatorcontrib>Shi, Xiaoqian</creatorcontrib><creatorcontrib>Guo, Yu</creatorcontrib><creatorcontrib>Chen, Yan</creatorcontrib><creatorcontrib>Wang, Shiyu</creatorcontrib><creatorcontrib>Zhang, Limeng</creatorcontrib><creatorcontrib>Chen, Longxin</creatorcontrib><creatorcontrib>Li, Runting</creatorcontrib><creatorcontrib>Liu, Xuefeng</creatorcontrib><creatorcontrib>Zheng, Changming</creatorcontrib><creatorcontrib>Zhang, Chenglin</creatorcontrib><creatorcontrib>Ma, Runlin Z.</creatorcontrib><title>Organization of the Addax Major Histocompatibility Complex Provides Insights Into Ruminant Evolution</title><title>Frontiers in immunology</title><addtitle>FRONT IMMUNOL</addtitle><addtitle>Front Immunol</addtitle><description>Ruminants are critical as prey in transferring solar energy fixed by plants into carnivorous species, yet the genetic signature of the driving forces leading to the evolutionary success of the huge number of ruminant species remains largely unknown. Here we report a complete DNA map of the major histocompatibility complex (MHC) of the addax (Addax nasomaculatus) genome by sequencing a total of 47 overlapping BAC clones previously mapped to cover the MHC region. The addax MHC is composed of 3,224,151 nucleotides, harboring a total of 150 coding genes, 50 tRNA genes, and 14 non-coding RNA genes. The organization of addax MHC was found to be highly conserved to those of sheep and cattle, highlighted by a large piece of chromosome inversion that divided the MHC class II into IIa and IIb subregions. It is now highly possible that all of the ruminant species in the family of Bovidae carry the same chromosome inversion in the MHC region, inherited from a common ancestor of ruminants. Phylogenetic analysis indicated that DY, a ruminant-specific gene located at the boundary of the inversion and highly expressed in dendritic cells, was possibly evolved from DQ, with an estimated divergence time 140 million years ago. Homology modeling showed that the overall predicted structure of addax DY was similar to that of HLA-DQ2. However, the pocket properties of P1, P4, P6, and P9, which were critical for antigen binding in the addax DY, showed certain distinctive features. Structural analysis suggested that the populations of peptide antigens presented by addax DY and HLA-DQ2 were quite diverse, which in theory could serve to promote microbial regulation in the rumen by ruminant species, contributing to enhanced grass utilization ability. In summary, the results of our study helped to enhance our understanding of the MHC evolution and provided additional supportive evidence to our previous hypothesis that an ancient chromosome inversion in the MHC region of the last common ancestor of ruminants may have contributed to the evolutionary success of current ruminants on our planet.</description><subject>Addax nasomaculatus</subject><subject>Amino Acids - genetics</subject><subject>Animals</subject><subject>Antelopes</subject><subject>chromosome inversion</subject><subject>Chromosome Inversion - genetics</subject><subject>evolution</subject><subject>Evolution, Molecular</subject><subject>Genome</subject><subject>Immunology</subject><subject>Life Sciences & Biomedicine</subject><subject>Major Histocompatibility Complex - genetics</subject><subject>Mammals - genetics</subject><subject>MHC</subject><subject>Phylogeny</subject><subject>Repetitive Sequences, Nucleic Acid</subject><subject>RNA, Untranslated</subject><subject>ruminant</subject><subject>Ruminants - genetics</subject><subject>Science & Technology</subject><issn>1664-3224</issn><issn>1664-3224</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>AOWDO</sourceid><sourceid>EIF</sourceid><sourceid>DOA</sourceid><recordid>eNqNkktvEzEURkcIRKvSPSvkPUrw-7FBqkaFRmpVhGBt-TWJo5lx5PGkLb-emYRG7Q5vfK_93ePFcVV9RHBJiFRfmth14xJDDJcQYg7fVOeIc7ogGNO3L-qz6nIYtnBaVBFC2PvqjGDEEZPyvPL3eW36-MeUmHqQGlA2AVx5bx7BndmmDG7iUJJL3W5K2NjG8gTqqWvDI_iR0z76MIBVP8T1psxFSeDn2MXe9AVc71M7ztwP1bvGtEO4_LdfVL-_Xf-qbxa3999X9dXtwlGOy4JLRJxihgthGFaMKE-sJ5ggwYKjhnqPqVdQGuSxVJRa6i0VxEqnGkU5uahWR65PZqt3OXYmP-lkoj4cpLzWJpfo2qAFUg2jQVpiG0oaaUIwVijHuYdCEjmxvh5Zu9F2wbvQl2zaV9DXN33c6HXaawEZIYJNAHgEuJyGIYfmNIugngXqg0A9C9QHgdPIp5dvngaedU2Bz8fAQ7CpGVwMvQun2GSYYSqExLNsNKXl_6frWA5_oE5jX8hfJn26bw</recordid><startdate>20200225</startdate><enddate>20200225</enddate><creator>Li, Chaokun</creator><creator>Huang, Rui</creator><creator>Nie, Fangyuan</creator><creator>Li, Jiujie</creator><creator>Zhu, Wen</creator><creator>Shi, Xiaoqian</creator><creator>Guo, Yu</creator><creator>Chen, Yan</creator><creator>Wang, Shiyu</creator><creator>Zhang, Limeng</creator><creator>Chen, Longxin</creator><creator>Li, Runting</creator><creator>Liu, Xuefeng</creator><creator>Zheng, Changming</creator><creator>Zhang, Chenglin</creator><creator>Ma, Runlin Z.</creator><general>Frontiers Media Sa</general><general>Frontiers Media S.A</general><scope>AOWDO</scope><scope>BLEPL</scope><scope>DTL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-9037-488X</orcidid></search><sort><creationdate>20200225</creationdate><title>Organization of the Addax Major Histocompatibility Complex Provides Insights Into Ruminant Evolution</title><author>Li, Chaokun ; Huang, Rui ; Nie, Fangyuan ; Li, Jiujie ; Zhu, Wen ; Shi, Xiaoqian ; Guo, Yu ; Chen, Yan ; Wang, Shiyu ; Zhang, Limeng ; Chen, Longxin ; Li, Runting ; Liu, Xuefeng ; Zheng, Changming ; Zhang, Chenglin ; Ma, Runlin Z.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c462t-6813c95a677a529539d3bd323175ec4a4dd24d908a1d28944b4db473b8c9f9463</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Addax nasomaculatus</topic><topic>Amino Acids - genetics</topic><topic>Animals</topic><topic>Antelopes</topic><topic>chromosome inversion</topic><topic>Chromosome Inversion - genetics</topic><topic>evolution</topic><topic>Evolution, Molecular</topic><topic>Genome</topic><topic>Immunology</topic><topic>Life Sciences & Biomedicine</topic><topic>Major Histocompatibility Complex - genetics</topic><topic>Mammals - genetics</topic><topic>MHC</topic><topic>Phylogeny</topic><topic>Repetitive Sequences, Nucleic Acid</topic><topic>RNA, Untranslated</topic><topic>ruminant</topic><topic>Ruminants - genetics</topic><topic>Science & Technology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Chaokun</creatorcontrib><creatorcontrib>Huang, Rui</creatorcontrib><creatorcontrib>Nie, Fangyuan</creatorcontrib><creatorcontrib>Li, Jiujie</creatorcontrib><creatorcontrib>Zhu, Wen</creatorcontrib><creatorcontrib>Shi, Xiaoqian</creatorcontrib><creatorcontrib>Guo, Yu</creatorcontrib><creatorcontrib>Chen, Yan</creatorcontrib><creatorcontrib>Wang, Shiyu</creatorcontrib><creatorcontrib>Zhang, Limeng</creatorcontrib><creatorcontrib>Chen, Longxin</creatorcontrib><creatorcontrib>Li, Runting</creatorcontrib><creatorcontrib>Liu, Xuefeng</creatorcontrib><creatorcontrib>Zheng, Changming</creatorcontrib><creatorcontrib>Zhang, Chenglin</creatorcontrib><creatorcontrib>Ma, Runlin Z.</creatorcontrib><collection>Web of Science - Science Citation Index Expanded - 2020</collection><collection>Web of Science Core Collection</collection><collection>Science Citation Index Expanded</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Frontiers in immunology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Chaokun</au><au>Huang, Rui</au><au>Nie, Fangyuan</au><au>Li, Jiujie</au><au>Zhu, Wen</au><au>Shi, Xiaoqian</au><au>Guo, Yu</au><au>Chen, Yan</au><au>Wang, Shiyu</au><au>Zhang, Limeng</au><au>Chen, Longxin</au><au>Li, Runting</au><au>Liu, Xuefeng</au><au>Zheng, Changming</au><au>Zhang, Chenglin</au><au>Ma, Runlin Z.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Organization of the Addax Major Histocompatibility Complex Provides Insights Into Ruminant Evolution</atitle><jtitle>Frontiers in immunology</jtitle><stitle>FRONT IMMUNOL</stitle><addtitle>Front Immunol</addtitle><date>2020-02-25</date><risdate>2020</risdate><volume>11</volume><spage>260</spage><pages>260-</pages><artnum>260</artnum><issn>1664-3224</issn><eissn>1664-3224</eissn><abstract>Ruminants are critical as prey in transferring solar energy fixed by plants into carnivorous species, yet the genetic signature of the driving forces leading to the evolutionary success of the huge number of ruminant species remains largely unknown. Here we report a complete DNA map of the major histocompatibility complex (MHC) of the addax (Addax nasomaculatus) genome by sequencing a total of 47 overlapping BAC clones previously mapped to cover the MHC region. The addax MHC is composed of 3,224,151 nucleotides, harboring a total of 150 coding genes, 50 tRNA genes, and 14 non-coding RNA genes. The organization of addax MHC was found to be highly conserved to those of sheep and cattle, highlighted by a large piece of chromosome inversion that divided the MHC class II into IIa and IIb subregions. It is now highly possible that all of the ruminant species in the family of Bovidae carry the same chromosome inversion in the MHC region, inherited from a common ancestor of ruminants. Phylogenetic analysis indicated that DY, a ruminant-specific gene located at the boundary of the inversion and highly expressed in dendritic cells, was possibly evolved from DQ, with an estimated divergence time 140 million years ago. Homology modeling showed that the overall predicted structure of addax DY was similar to that of HLA-DQ2. However, the pocket properties of P1, P4, P6, and P9, which were critical for antigen binding in the addax DY, showed certain distinctive features. Structural analysis suggested that the populations of peptide antigens presented by addax DY and HLA-DQ2 were quite diverse, which in theory could serve to promote microbial regulation in the rumen by ruminant species, contributing to enhanced grass utilization ability. In summary, the results of our study helped to enhance our understanding of the MHC evolution and provided additional supportive evidence to our previous hypothesis that an ancient chromosome inversion in the MHC region of the last common ancestor of ruminants may have contributed to the evolutionary success of current ruminants on our planet.</abstract><cop>LAUSANNE</cop><pub>Frontiers Media Sa</pub><pmid>32161588</pmid><doi>10.3389/fimmu.2020.00260</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0001-9037-488X</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1664-3224 |
ispartof | Frontiers in immunology, 2020-02, Vol.11, p.260, Article 260 |
issn | 1664-3224 1664-3224 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7053375 |
source | MEDLINE; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central Open Access; Web of Science - Science Citation Index Expanded - 2020<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" />; PubMed Central |
subjects | Addax nasomaculatus Amino Acids - genetics Animals Antelopes chromosome inversion Chromosome Inversion - genetics evolution Evolution, Molecular Genome Immunology Life Sciences & Biomedicine Major Histocompatibility Complex - genetics Mammals - genetics MHC Phylogeny Repetitive Sequences, Nucleic Acid RNA, Untranslated ruminant Ruminants - genetics Science & Technology |
title | Organization of the Addax Major Histocompatibility Complex Provides Insights Into Ruminant Evolution |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-04T05%3A21%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pubmed_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Organization%20of%20the%20Addax%20Major%20Histocompatibility%20Complex%20Provides%20Insights%20Into%20Ruminant%20Evolution&rft.jtitle=Frontiers%20in%20immunology&rft.au=Li,%20Chaokun&rft.date=2020-02-25&rft.volume=11&rft.spage=260&rft.pages=260-&rft.artnum=260&rft.issn=1664-3224&rft.eissn=1664-3224&rft_id=info:doi/10.3389/fimmu.2020.00260&rft_dat=%3Cpubmed_cross%3E32161588%3C/pubmed_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/32161588&rft_doaj_id=oai_doaj_org_article_719f54e8b3bf43f8aeeab79c66d07838&rfr_iscdi=true |