Compensatory endocytosis occurs after cortical granule exocytosis in mouse eggs

Compensatory endocytosis (CE) is one of the primary mechanisms through which cells maintain their surface area after exocytosis. Considering that in eggs massive exocytosis of cortical granules (CG) takes place after fertilization, the aim of this study was to evaluate the occurrence of CE following...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of cellular physiology 2020-05, Vol.235 (5), p.4351-4360
Hauptverfasser: Gómez‐Elías, Matías D., Fissore, Rafael A., Cuasnicú, Patricia S., Cohen, Débora J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 4360
container_issue 5
container_start_page 4351
container_title Journal of cellular physiology
container_volume 235
creator Gómez‐Elías, Matías D.
Fissore, Rafael A.
Cuasnicú, Patricia S.
Cohen, Débora J.
description Compensatory endocytosis (CE) is one of the primary mechanisms through which cells maintain their surface area after exocytosis. Considering that in eggs massive exocytosis of cortical granules (CG) takes place after fertilization, the aim of this study was to evaluate the occurrence of CE following cortical exocytosis in mouse eggs. For this purpose, we developed a pulse‐chase assay to detect CG membrane internalization. Results showed internalized labeling in SrCl2‐activated and fertilized eggs when chasing at 37°C, but not at a nonpermissive temperature (4°C). The use of kinase and calcineurin inhibitors led us to conclude that this internal labeling corresponded to CE. Further experiments showed that CE in mouse eggs is dependent on actin dynamics and dynamin activity, and could be associated with a transient exposure of phosphatidylserine. Finally, CE was impaired in A23187 ionophore‐activated eggs, highlighting once again the mechanistic differences between the activation methods. Altogether, these results demonstrate for the first time that egg activation triggers CE in mouse eggs after exocytosis of CG, probably as a plasma membrane homeostasis mechanism. Our studies show that mouse eggs display compensatory endocytosis following cortical granule exocytosis, probably as a plasma membrane homeostasis mechanism. This endocytic process is dependent on actin dynamics and dynamin activity, and could be associated with a transient exposure of phosphatidylserine.
doi_str_mv 10.1002/jcp.29311
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7052662</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2305796661</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4431-857a0faab5d9f225a869bd67d92d1fc5a317f4b3883bd0d5497c129a12fde1c63</originalsourceid><addsrcrecordid>eNp10ctKxDAUBuAgio6XhS8gBTe6qOYkTdpsBBm8IuhC1yFN0rFD24xJq87bG51xUMFVIOfj5xx-hPYBnwDG5HSqZydEUIA1NAIs8jTjjKyjUZxBKlgGW2g7hCnGWAhKN9EWBQ6E4WKE7seundkuqN75eWI74_S8d6EOidN68CFRVW99op3va62aZOJVNzQ2se8rWHdJ64YQ_yaTsIs2KtUEu7d8d9DT5cXj-Dq9u7-6GZ_fpTrLKKQFyxWulCqZERUhTBVclIbnRhADlWaKQl5lJS0KWhpsWCZyDUQoIJWxoDndQWeL3NlQttZo2_VeNXLm61b5uXSqlr8nXf0sJ-5V5pgRzkkMOFoGePcy2NDLtg7aNo3qbLxGEopZLjjnEOnhHzp1g-_ieVExmglOmIjqeKG0dyF4W62WASw_a5KxJvlVU7QHP7dfye9eIjhdgLe6sfP_k-Tt-GER-QGs753a</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2353496259</pqid></control><display><type>article</type><title>Compensatory endocytosis occurs after cortical granule exocytosis in mouse eggs</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><creator>Gómez‐Elías, Matías D. ; Fissore, Rafael A. ; Cuasnicú, Patricia S. ; Cohen, Débora J.</creator><creatorcontrib>Gómez‐Elías, Matías D. ; Fissore, Rafael A. ; Cuasnicú, Patricia S. ; Cohen, Débora J.</creatorcontrib><description>Compensatory endocytosis (CE) is one of the primary mechanisms through which cells maintain their surface area after exocytosis. Considering that in eggs massive exocytosis of cortical granules (CG) takes place after fertilization, the aim of this study was to evaluate the occurrence of CE following cortical exocytosis in mouse eggs. For this purpose, we developed a pulse‐chase assay to detect CG membrane internalization. Results showed internalized labeling in SrCl2‐activated and fertilized eggs when chasing at 37°C, but not at a nonpermissive temperature (4°C). The use of kinase and calcineurin inhibitors led us to conclude that this internal labeling corresponded to CE. Further experiments showed that CE in mouse eggs is dependent on actin dynamics and dynamin activity, and could be associated with a transient exposure of phosphatidylserine. Finally, CE was impaired in A23187 ionophore‐activated eggs, highlighting once again the mechanistic differences between the activation methods. Altogether, these results demonstrate for the first time that egg activation triggers CE in mouse eggs after exocytosis of CG, probably as a plasma membrane homeostasis mechanism. Our studies show that mouse eggs display compensatory endocytosis following cortical granule exocytosis, probably as a plasma membrane homeostasis mechanism. This endocytic process is dependent on actin dynamics and dynamin activity, and could be associated with a transient exposure of phosphatidylserine.</description><identifier>ISSN: 0021-9541</identifier><identifier>EISSN: 1097-4652</identifier><identifier>DOI: 10.1002/jcp.29311</identifier><identifier>PMID: 31612508</identifier><language>eng</language><publisher>United States: Wiley Subscription Services, Inc</publisher><subject>Actin ; Activation ; Animals ; Calcimycin ; Calcineurin ; Calcineurin inhibitors ; Calcium - metabolism ; compensatory endocytosis ; Cortex ; cortical granules ; Cytoplasmic Granules - metabolism ; Dynamin ; egg activation ; Eggs ; Endocytosis ; Endocytosis - physiology ; Exocytosis ; Exocytosis - physiology ; Female ; Fertilization ; Fertilization - physiology ; Granular materials ; Homeostasis ; Internalization ; Kinases ; Labeling ; Male ; Membranes ; Mice ; Ovum - physiology ; Phosphatidylserine</subject><ispartof>Journal of cellular physiology, 2020-05, Vol.235 (5), p.4351-4360</ispartof><rights>2019 Wiley Periodicals, Inc.</rights><rights>2020 Wiley Periodicals, Inc.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4431-857a0faab5d9f225a869bd67d92d1fc5a317f4b3883bd0d5497c129a12fde1c63</citedby><cites>FETCH-LOGICAL-c4431-857a0faab5d9f225a869bd67d92d1fc5a317f4b3883bd0d5497c129a12fde1c63</cites><orcidid>0000-0002-0903-216X ; 0000-0002-8001-7632 ; 0000-0003-3861-9469</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fjcp.29311$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fjcp.29311$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>230,314,776,780,881,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31612508$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Gómez‐Elías, Matías D.</creatorcontrib><creatorcontrib>Fissore, Rafael A.</creatorcontrib><creatorcontrib>Cuasnicú, Patricia S.</creatorcontrib><creatorcontrib>Cohen, Débora J.</creatorcontrib><title>Compensatory endocytosis occurs after cortical granule exocytosis in mouse eggs</title><title>Journal of cellular physiology</title><addtitle>J Cell Physiol</addtitle><description>Compensatory endocytosis (CE) is one of the primary mechanisms through which cells maintain their surface area after exocytosis. Considering that in eggs massive exocytosis of cortical granules (CG) takes place after fertilization, the aim of this study was to evaluate the occurrence of CE following cortical exocytosis in mouse eggs. For this purpose, we developed a pulse‐chase assay to detect CG membrane internalization. Results showed internalized labeling in SrCl2‐activated and fertilized eggs when chasing at 37°C, but not at a nonpermissive temperature (4°C). The use of kinase and calcineurin inhibitors led us to conclude that this internal labeling corresponded to CE. Further experiments showed that CE in mouse eggs is dependent on actin dynamics and dynamin activity, and could be associated with a transient exposure of phosphatidylserine. Finally, CE was impaired in A23187 ionophore‐activated eggs, highlighting once again the mechanistic differences between the activation methods. Altogether, these results demonstrate for the first time that egg activation triggers CE in mouse eggs after exocytosis of CG, probably as a plasma membrane homeostasis mechanism. Our studies show that mouse eggs display compensatory endocytosis following cortical granule exocytosis, probably as a plasma membrane homeostasis mechanism. This endocytic process is dependent on actin dynamics and dynamin activity, and could be associated with a transient exposure of phosphatidylserine.</description><subject>Actin</subject><subject>Activation</subject><subject>Animals</subject><subject>Calcimycin</subject><subject>Calcineurin</subject><subject>Calcineurin inhibitors</subject><subject>Calcium - metabolism</subject><subject>compensatory endocytosis</subject><subject>Cortex</subject><subject>cortical granules</subject><subject>Cytoplasmic Granules - metabolism</subject><subject>Dynamin</subject><subject>egg activation</subject><subject>Eggs</subject><subject>Endocytosis</subject><subject>Endocytosis - physiology</subject><subject>Exocytosis</subject><subject>Exocytosis - physiology</subject><subject>Female</subject><subject>Fertilization</subject><subject>Fertilization - physiology</subject><subject>Granular materials</subject><subject>Homeostasis</subject><subject>Internalization</subject><subject>Kinases</subject><subject>Labeling</subject><subject>Male</subject><subject>Membranes</subject><subject>Mice</subject><subject>Ovum - physiology</subject><subject>Phosphatidylserine</subject><issn>0021-9541</issn><issn>1097-4652</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp10ctKxDAUBuAgio6XhS8gBTe6qOYkTdpsBBm8IuhC1yFN0rFD24xJq87bG51xUMFVIOfj5xx-hPYBnwDG5HSqZydEUIA1NAIs8jTjjKyjUZxBKlgGW2g7hCnGWAhKN9EWBQ6E4WKE7seundkuqN75eWI74_S8d6EOidN68CFRVW99op3va62aZOJVNzQ2se8rWHdJ64YQ_yaTsIs2KtUEu7d8d9DT5cXj-Dq9u7-6GZ_fpTrLKKQFyxWulCqZERUhTBVclIbnRhADlWaKQl5lJS0KWhpsWCZyDUQoIJWxoDndQWeL3NlQttZo2_VeNXLm61b5uXSqlr8nXf0sJ-5V5pgRzkkMOFoGePcy2NDLtg7aNo3qbLxGEopZLjjnEOnhHzp1g-_ieVExmglOmIjqeKG0dyF4W62WASw_a5KxJvlVU7QHP7dfye9eIjhdgLe6sfP_k-Tt-GER-QGs753a</recordid><startdate>202005</startdate><enddate>202005</enddate><creator>Gómez‐Elías, Matías D.</creator><creator>Fissore, Rafael A.</creator><creator>Cuasnicú, Patricia S.</creator><creator>Cohen, Débora J.</creator><general>Wiley Subscription Services, Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TK</scope><scope>7U7</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>K9.</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-0903-216X</orcidid><orcidid>https://orcid.org/0000-0002-8001-7632</orcidid><orcidid>https://orcid.org/0000-0003-3861-9469</orcidid></search><sort><creationdate>202005</creationdate><title>Compensatory endocytosis occurs after cortical granule exocytosis in mouse eggs</title><author>Gómez‐Elías, Matías D. ; Fissore, Rafael A. ; Cuasnicú, Patricia S. ; Cohen, Débora J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4431-857a0faab5d9f225a869bd67d92d1fc5a317f4b3883bd0d5497c129a12fde1c63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Actin</topic><topic>Activation</topic><topic>Animals</topic><topic>Calcimycin</topic><topic>Calcineurin</topic><topic>Calcineurin inhibitors</topic><topic>Calcium - metabolism</topic><topic>compensatory endocytosis</topic><topic>Cortex</topic><topic>cortical granules</topic><topic>Cytoplasmic Granules - metabolism</topic><topic>Dynamin</topic><topic>egg activation</topic><topic>Eggs</topic><topic>Endocytosis</topic><topic>Endocytosis - physiology</topic><topic>Exocytosis</topic><topic>Exocytosis - physiology</topic><topic>Female</topic><topic>Fertilization</topic><topic>Fertilization - physiology</topic><topic>Granular materials</topic><topic>Homeostasis</topic><topic>Internalization</topic><topic>Kinases</topic><topic>Labeling</topic><topic>Male</topic><topic>Membranes</topic><topic>Mice</topic><topic>Ovum - physiology</topic><topic>Phosphatidylserine</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gómez‐Elías, Matías D.</creatorcontrib><creatorcontrib>Fissore, Rafael A.</creatorcontrib><creatorcontrib>Cuasnicú, Patricia S.</creatorcontrib><creatorcontrib>Cohen, Débora J.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Neurosciences Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Journal of cellular physiology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gómez‐Elías, Matías D.</au><au>Fissore, Rafael A.</au><au>Cuasnicú, Patricia S.</au><au>Cohen, Débora J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Compensatory endocytosis occurs after cortical granule exocytosis in mouse eggs</atitle><jtitle>Journal of cellular physiology</jtitle><addtitle>J Cell Physiol</addtitle><date>2020-05</date><risdate>2020</risdate><volume>235</volume><issue>5</issue><spage>4351</spage><epage>4360</epage><pages>4351-4360</pages><issn>0021-9541</issn><eissn>1097-4652</eissn><abstract>Compensatory endocytosis (CE) is one of the primary mechanisms through which cells maintain their surface area after exocytosis. Considering that in eggs massive exocytosis of cortical granules (CG) takes place after fertilization, the aim of this study was to evaluate the occurrence of CE following cortical exocytosis in mouse eggs. For this purpose, we developed a pulse‐chase assay to detect CG membrane internalization. Results showed internalized labeling in SrCl2‐activated and fertilized eggs when chasing at 37°C, but not at a nonpermissive temperature (4°C). The use of kinase and calcineurin inhibitors led us to conclude that this internal labeling corresponded to CE. Further experiments showed that CE in mouse eggs is dependent on actin dynamics and dynamin activity, and could be associated with a transient exposure of phosphatidylserine. Finally, CE was impaired in A23187 ionophore‐activated eggs, highlighting once again the mechanistic differences between the activation methods. Altogether, these results demonstrate for the first time that egg activation triggers CE in mouse eggs after exocytosis of CG, probably as a plasma membrane homeostasis mechanism. Our studies show that mouse eggs display compensatory endocytosis following cortical granule exocytosis, probably as a plasma membrane homeostasis mechanism. This endocytic process is dependent on actin dynamics and dynamin activity, and could be associated with a transient exposure of phosphatidylserine.</abstract><cop>United States</cop><pub>Wiley Subscription Services, Inc</pub><pmid>31612508</pmid><doi>10.1002/jcp.29311</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-0903-216X</orcidid><orcidid>https://orcid.org/0000-0002-8001-7632</orcidid><orcidid>https://orcid.org/0000-0003-3861-9469</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0021-9541
ispartof Journal of cellular physiology, 2020-05, Vol.235 (5), p.4351-4360
issn 0021-9541
1097-4652
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7052662
source MEDLINE; Wiley Online Library Journals Frontfile Complete
subjects Actin
Activation
Animals
Calcimycin
Calcineurin
Calcineurin inhibitors
Calcium - metabolism
compensatory endocytosis
Cortex
cortical granules
Cytoplasmic Granules - metabolism
Dynamin
egg activation
Eggs
Endocytosis
Endocytosis - physiology
Exocytosis
Exocytosis - physiology
Female
Fertilization
Fertilization - physiology
Granular materials
Homeostasis
Internalization
Kinases
Labeling
Male
Membranes
Mice
Ovum - physiology
Phosphatidylserine
title Compensatory endocytosis occurs after cortical granule exocytosis in mouse eggs
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T03%3A57%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Compensatory%20endocytosis%20occurs%20after%20cortical%20granule%20exocytosis%20in%20mouse%20eggs&rft.jtitle=Journal%20of%20cellular%20physiology&rft.au=G%C3%B3mez%E2%80%90El%C3%ADas,%20Mat%C3%ADas%20D.&rft.date=2020-05&rft.volume=235&rft.issue=5&rft.spage=4351&rft.epage=4360&rft.pages=4351-4360&rft.issn=0021-9541&rft.eissn=1097-4652&rft_id=info:doi/10.1002/jcp.29311&rft_dat=%3Cproquest_pubme%3E2305796661%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2353496259&rft_id=info:pmid/31612508&rfr_iscdi=true