Genome sequence of the agarwood tree Aquilaria sinensis (Lour.) Spreng: the first chromosome-level draft genome in the Thymelaeceae family
Abstract Backgroud Aquilaria sinensis (Lour.) Spreng is one of the important plant resources involved in the production of agarwood in China. The agarwood resin collected from wounded Aquilaria trees has been used in Asia for aromatic or medicinal purposes from ancient times, although the mechanism...
Gespeichert in:
Veröffentlicht in: | Gigascience 2020-03, Vol.9 (3) |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 3 |
container_start_page | |
container_title | Gigascience |
container_volume | 9 |
creator | Ding, Xupo Mei, Wenli Lin, Qiang Wang, Hao Wang, Jun Peng, Shiqing Li, Huiliang Zhu, Jiahong Li, Wei Wang, Pei Chen, Huiqin Dong, Wenhua Guo, Dong Cai, Caihong Huang, Shengzhuo Cui, Peng Dai, Haofu |
description | Abstract
Backgroud
Aquilaria sinensis (Lour.) Spreng is one of the important plant resources involved in the production of agarwood in China. The agarwood resin collected from wounded Aquilaria trees has been used in Asia for aromatic or medicinal purposes from ancient times, although the mechanism underlying the formation of agarwood still remains poorly understood owing to a lack of accurate and high-quality genetic information.
Findings
We report the genomic architecture of A. sinensis by using an integrated strategy combining Nanopore, Illumina, and Hi-C sequencing. The final genome was ~726.5 Mb in size, which reached a high level of continuity and a contig N50 of 1.1 Mb. We combined Hi-C data with the genome assembly to generate chromosome-level scaffolds. Eight super-scaffolds corresponding to the 8 chromosomes were assembled to a final size of 716.6 Mb, with a scaffold N50 of 88.78 Mb using 1,862 contigs. BUSCO evaluation reveals that the genome completeness reached 95.27%. The repeat sequences accounted for 59.13%, and 29,203 protein-coding genes were annotated in the genome. According to phylogenetic analysis using single-copy orthologous genes, we found that A. sinensis is closely related to Gossypium hirsutum and Theobroma cacao from the Malvales order, and A. sinensis diverged from their common ancestor ~53.18–84.37 million years ago.
Conclusions
Here, we present the first chromosome-level genome assembly and gene annotation of A. sinensis. This study should contribute to valuable genetic resources for further research on the agarwood formation mechanism, genome-assisted improvement, and conservation biology of Aquilaria species. |
doi_str_mv | 10.1093/gigascience/giaa013 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7050300</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><oup_id>10.1093/gigascience/giaa013</oup_id><sourcerecordid>2715815490</sourcerecordid><originalsourceid>FETCH-LOGICAL-c472t-430e4872460b230dfc526108a6b841bea20cf7b31b131ad523bbc3835894fa203</originalsourceid><addsrcrecordid>eNqNkc9u1DAQxiMEolXpEyAhS1zKIYv_JLGXA1JVQUFaiQNF4mZNnEnWlWNv7aTVvgJPjbe7VAsnfPFI830_e-YriteMLhhdiveDHSAZi95grgEoE8-KU04rWXImfz4_qk-K85RuaT5SKiXFy-JEcMYUb-rT4tc1-jAiSXg372Ak9GRaI4EB4kMIHZkiIrm8m62DaIEk69Enm8jFKsxx8Y5830T0w4dHU29jmohZxzCGlKmlw3t0pIvQT2TYP2T9o_RmvR3RARqE7IPRuu2r4kUPLuH54T4rfnz-dHP1pVx9u_56dbkqTSX5VFaCYqUkrxrackG73tS8YVRB06qKtQicml62grVMMOhqLtrWCCVqtaz63BRnxcc9dzO3I3YG_RTB6U20I8StDmD13x1v13oI91rSmgq6A1wcADHkraVJjzYZdA48hjlpLpqlUnn9VZa-_Ud6m9fm83iaS1YrVlfLHVDsVSaGlCL2T59hVO_i1kdx60Pc2fXmeI4nz59ws2CxF4R581_E34WZvEY</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2715815490</pqid></control><display><type>article</type><title>Genome sequence of the agarwood tree Aquilaria sinensis (Lour.) Spreng: the first chromosome-level draft genome in the Thymelaeceae family</title><source>MEDLINE</source><source>Oxford Journals Open Access Collection</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><creator>Ding, Xupo ; Mei, Wenli ; Lin, Qiang ; Wang, Hao ; Wang, Jun ; Peng, Shiqing ; Li, Huiliang ; Zhu, Jiahong ; Li, Wei ; Wang, Pei ; Chen, Huiqin ; Dong, Wenhua ; Guo, Dong ; Cai, Caihong ; Huang, Shengzhuo ; Cui, Peng ; Dai, Haofu</creator><creatorcontrib>Ding, Xupo ; Mei, Wenli ; Lin, Qiang ; Wang, Hao ; Wang, Jun ; Peng, Shiqing ; Li, Huiliang ; Zhu, Jiahong ; Li, Wei ; Wang, Pei ; Chen, Huiqin ; Dong, Wenhua ; Guo, Dong ; Cai, Caihong ; Huang, Shengzhuo ; Cui, Peng ; Dai, Haofu</creatorcontrib><description>Abstract
Backgroud
Aquilaria sinensis (Lour.) Spreng is one of the important plant resources involved in the production of agarwood in China. The agarwood resin collected from wounded Aquilaria trees has been used in Asia for aromatic or medicinal purposes from ancient times, although the mechanism underlying the formation of agarwood still remains poorly understood owing to a lack of accurate and high-quality genetic information.
Findings
We report the genomic architecture of A. sinensis by using an integrated strategy combining Nanopore, Illumina, and Hi-C sequencing. The final genome was ~726.5 Mb in size, which reached a high level of continuity and a contig N50 of 1.1 Mb. We combined Hi-C data with the genome assembly to generate chromosome-level scaffolds. Eight super-scaffolds corresponding to the 8 chromosomes were assembled to a final size of 716.6 Mb, with a scaffold N50 of 88.78 Mb using 1,862 contigs. BUSCO evaluation reveals that the genome completeness reached 95.27%. The repeat sequences accounted for 59.13%, and 29,203 protein-coding genes were annotated in the genome. According to phylogenetic analysis using single-copy orthologous genes, we found that A. sinensis is closely related to Gossypium hirsutum and Theobroma cacao from the Malvales order, and A. sinensis diverged from their common ancestor ~53.18–84.37 million years ago.
Conclusions
Here, we present the first chromosome-level genome assembly and gene annotation of A. sinensis. This study should contribute to valuable genetic resources for further research on the agarwood formation mechanism, genome-assisted improvement, and conservation biology of Aquilaria species.</description><identifier>ISSN: 2047-217X</identifier><identifier>EISSN: 2047-217X</identifier><identifier>DOI: 10.1093/gigascience/giaa013</identifier><identifier>PMID: 32118265</identifier><language>eng</language><publisher>United States: Oxford University Press</publisher><subject>Annotations ; Aquilaria ; Aquilaria sinensis ; Assembly ; Chromosomes ; Chromosomes, Plant - genetics ; Contig Mapping ; Data Note ; Gene sequencing ; Genes ; Genetic resources ; Genome, Plant ; Genomes ; Molecular Sequence Annotation ; Nucleotide sequence ; Phylogeny ; Plant Proteins - genetics ; Scaffolds ; Thymelaeaceae - classification ; Thymelaeaceae - genetics ; Whole Genome Sequencing ; Wildlife conservation</subject><ispartof>Gigascience, 2020-03, Vol.9 (3)</ispartof><rights>The Author(s) 2020. Published by Oxford University Press. 2020</rights><rights>The Author(s) 2020. Published by Oxford University Press.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c472t-430e4872460b230dfc526108a6b841bea20cf7b31b131ad523bbc3835894fa203</citedby><cites>FETCH-LOGICAL-c472t-430e4872460b230dfc526108a6b841bea20cf7b31b131ad523bbc3835894fa203</cites><orcidid>0000-0002-7028-7858 ; 0000-0002-3583-3884 ; 0000-0003-2882-7758 ; 0000-0002-0221-7858 ; 0000-0001-6132-6758 ; 0000-0003-3076-0070 ; 0000-0003-2699-5037 ; 0000-0002-7279-516X ; 0000-0002-1559-9824 ; 0000-0002-4076-3497 ; 0000-0001-5650-1304 ; 0000-0001-9195-7112 ; 0000-0001-6838-6550 ; 0000-0002-5422-8137 ; 0000-0001-9531-5504 ; 0000-0001-5249-8945 ; 0000-0002-2201-9250</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7050300/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7050300/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,1604,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32118265$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ding, Xupo</creatorcontrib><creatorcontrib>Mei, Wenli</creatorcontrib><creatorcontrib>Lin, Qiang</creatorcontrib><creatorcontrib>Wang, Hao</creatorcontrib><creatorcontrib>Wang, Jun</creatorcontrib><creatorcontrib>Peng, Shiqing</creatorcontrib><creatorcontrib>Li, Huiliang</creatorcontrib><creatorcontrib>Zhu, Jiahong</creatorcontrib><creatorcontrib>Li, Wei</creatorcontrib><creatorcontrib>Wang, Pei</creatorcontrib><creatorcontrib>Chen, Huiqin</creatorcontrib><creatorcontrib>Dong, Wenhua</creatorcontrib><creatorcontrib>Guo, Dong</creatorcontrib><creatorcontrib>Cai, Caihong</creatorcontrib><creatorcontrib>Huang, Shengzhuo</creatorcontrib><creatorcontrib>Cui, Peng</creatorcontrib><creatorcontrib>Dai, Haofu</creatorcontrib><title>Genome sequence of the agarwood tree Aquilaria sinensis (Lour.) Spreng: the first chromosome-level draft genome in the Thymelaeceae family</title><title>Gigascience</title><addtitle>Gigascience</addtitle><description>Abstract
Backgroud
Aquilaria sinensis (Lour.) Spreng is one of the important plant resources involved in the production of agarwood in China. The agarwood resin collected from wounded Aquilaria trees has been used in Asia for aromatic or medicinal purposes from ancient times, although the mechanism underlying the formation of agarwood still remains poorly understood owing to a lack of accurate and high-quality genetic information.
Findings
We report the genomic architecture of A. sinensis by using an integrated strategy combining Nanopore, Illumina, and Hi-C sequencing. The final genome was ~726.5 Mb in size, which reached a high level of continuity and a contig N50 of 1.1 Mb. We combined Hi-C data with the genome assembly to generate chromosome-level scaffolds. Eight super-scaffolds corresponding to the 8 chromosomes were assembled to a final size of 716.6 Mb, with a scaffold N50 of 88.78 Mb using 1,862 contigs. BUSCO evaluation reveals that the genome completeness reached 95.27%. The repeat sequences accounted for 59.13%, and 29,203 protein-coding genes were annotated in the genome. According to phylogenetic analysis using single-copy orthologous genes, we found that A. sinensis is closely related to Gossypium hirsutum and Theobroma cacao from the Malvales order, and A. sinensis diverged from their common ancestor ~53.18–84.37 million years ago.
Conclusions
Here, we present the first chromosome-level genome assembly and gene annotation of A. sinensis. This study should contribute to valuable genetic resources for further research on the agarwood formation mechanism, genome-assisted improvement, and conservation biology of Aquilaria species.</description><subject>Annotations</subject><subject>Aquilaria</subject><subject>Aquilaria sinensis</subject><subject>Assembly</subject><subject>Chromosomes</subject><subject>Chromosomes, Plant - genetics</subject><subject>Contig Mapping</subject><subject>Data Note</subject><subject>Gene sequencing</subject><subject>Genes</subject><subject>Genetic resources</subject><subject>Genome, Plant</subject><subject>Genomes</subject><subject>Molecular Sequence Annotation</subject><subject>Nucleotide sequence</subject><subject>Phylogeny</subject><subject>Plant Proteins - genetics</subject><subject>Scaffolds</subject><subject>Thymelaeaceae - classification</subject><subject>Thymelaeaceae - genetics</subject><subject>Whole Genome Sequencing</subject><subject>Wildlife conservation</subject><issn>2047-217X</issn><issn>2047-217X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>TOX</sourceid><sourceid>EIF</sourceid><recordid>eNqNkc9u1DAQxiMEolXpEyAhS1zKIYv_JLGXA1JVQUFaiQNF4mZNnEnWlWNv7aTVvgJPjbe7VAsnfPFI830_e-YriteMLhhdiveDHSAZi95grgEoE8-KU04rWXImfz4_qk-K85RuaT5SKiXFy-JEcMYUb-rT4tc1-jAiSXg372Ak9GRaI4EB4kMIHZkiIrm8m62DaIEk69Enm8jFKsxx8Y5830T0w4dHU29jmohZxzCGlKmlw3t0pIvQT2TYP2T9o_RmvR3RARqE7IPRuu2r4kUPLuH54T4rfnz-dHP1pVx9u_56dbkqTSX5VFaCYqUkrxrackG73tS8YVRB06qKtQicml62grVMMOhqLtrWCCVqtaz63BRnxcc9dzO3I3YG_RTB6U20I8StDmD13x1v13oI91rSmgq6A1wcADHkraVJjzYZdA48hjlpLpqlUnn9VZa-_Ud6m9fm83iaS1YrVlfLHVDsVSaGlCL2T59hVO_i1kdx60Pc2fXmeI4nz59ws2CxF4R581_E34WZvEY</recordid><startdate>20200301</startdate><enddate>20200301</enddate><creator>Ding, Xupo</creator><creator>Mei, Wenli</creator><creator>Lin, Qiang</creator><creator>Wang, Hao</creator><creator>Wang, Jun</creator><creator>Peng, Shiqing</creator><creator>Li, Huiliang</creator><creator>Zhu, Jiahong</creator><creator>Li, Wei</creator><creator>Wang, Pei</creator><creator>Chen, Huiqin</creator><creator>Dong, Wenhua</creator><creator>Guo, Dong</creator><creator>Cai, Caihong</creator><creator>Huang, Shengzhuo</creator><creator>Cui, Peng</creator><creator>Dai, Haofu</creator><general>Oxford University Press</general><scope>TOX</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>JQ2</scope><scope>K9.</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-7028-7858</orcidid><orcidid>https://orcid.org/0000-0002-3583-3884</orcidid><orcidid>https://orcid.org/0000-0003-2882-7758</orcidid><orcidid>https://orcid.org/0000-0002-0221-7858</orcidid><orcidid>https://orcid.org/0000-0001-6132-6758</orcidid><orcidid>https://orcid.org/0000-0003-3076-0070</orcidid><orcidid>https://orcid.org/0000-0003-2699-5037</orcidid><orcidid>https://orcid.org/0000-0002-7279-516X</orcidid><orcidid>https://orcid.org/0000-0002-1559-9824</orcidid><orcidid>https://orcid.org/0000-0002-4076-3497</orcidid><orcidid>https://orcid.org/0000-0001-5650-1304</orcidid><orcidid>https://orcid.org/0000-0001-9195-7112</orcidid><orcidid>https://orcid.org/0000-0001-6838-6550</orcidid><orcidid>https://orcid.org/0000-0002-5422-8137</orcidid><orcidid>https://orcid.org/0000-0001-9531-5504</orcidid><orcidid>https://orcid.org/0000-0001-5249-8945</orcidid><orcidid>https://orcid.org/0000-0002-2201-9250</orcidid></search><sort><creationdate>20200301</creationdate><title>Genome sequence of the agarwood tree Aquilaria sinensis (Lour.) Spreng: the first chromosome-level draft genome in the Thymelaeceae family</title><author>Ding, Xupo ; Mei, Wenli ; Lin, Qiang ; Wang, Hao ; Wang, Jun ; Peng, Shiqing ; Li, Huiliang ; Zhu, Jiahong ; Li, Wei ; Wang, Pei ; Chen, Huiqin ; Dong, Wenhua ; Guo, Dong ; Cai, Caihong ; Huang, Shengzhuo ; Cui, Peng ; Dai, Haofu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c472t-430e4872460b230dfc526108a6b841bea20cf7b31b131ad523bbc3835894fa203</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Annotations</topic><topic>Aquilaria</topic><topic>Aquilaria sinensis</topic><topic>Assembly</topic><topic>Chromosomes</topic><topic>Chromosomes, Plant - genetics</topic><topic>Contig Mapping</topic><topic>Data Note</topic><topic>Gene sequencing</topic><topic>Genes</topic><topic>Genetic resources</topic><topic>Genome, Plant</topic><topic>Genomes</topic><topic>Molecular Sequence Annotation</topic><topic>Nucleotide sequence</topic><topic>Phylogeny</topic><topic>Plant Proteins - genetics</topic><topic>Scaffolds</topic><topic>Thymelaeaceae - classification</topic><topic>Thymelaeaceae - genetics</topic><topic>Whole Genome Sequencing</topic><topic>Wildlife conservation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ding, Xupo</creatorcontrib><creatorcontrib>Mei, Wenli</creatorcontrib><creatorcontrib>Lin, Qiang</creatorcontrib><creatorcontrib>Wang, Hao</creatorcontrib><creatorcontrib>Wang, Jun</creatorcontrib><creatorcontrib>Peng, Shiqing</creatorcontrib><creatorcontrib>Li, Huiliang</creatorcontrib><creatorcontrib>Zhu, Jiahong</creatorcontrib><creatorcontrib>Li, Wei</creatorcontrib><creatorcontrib>Wang, Pei</creatorcontrib><creatorcontrib>Chen, Huiqin</creatorcontrib><creatorcontrib>Dong, Wenhua</creatorcontrib><creatorcontrib>Guo, Dong</creatorcontrib><creatorcontrib>Cai, Caihong</creatorcontrib><creatorcontrib>Huang, Shengzhuo</creatorcontrib><creatorcontrib>Cui, Peng</creatorcontrib><creatorcontrib>Dai, Haofu</creatorcontrib><collection>Oxford Journals Open Access Collection</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Gigascience</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ding, Xupo</au><au>Mei, Wenli</au><au>Lin, Qiang</au><au>Wang, Hao</au><au>Wang, Jun</au><au>Peng, Shiqing</au><au>Li, Huiliang</au><au>Zhu, Jiahong</au><au>Li, Wei</au><au>Wang, Pei</au><au>Chen, Huiqin</au><au>Dong, Wenhua</au><au>Guo, Dong</au><au>Cai, Caihong</au><au>Huang, Shengzhuo</au><au>Cui, Peng</au><au>Dai, Haofu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Genome sequence of the agarwood tree Aquilaria sinensis (Lour.) Spreng: the first chromosome-level draft genome in the Thymelaeceae family</atitle><jtitle>Gigascience</jtitle><addtitle>Gigascience</addtitle><date>2020-03-01</date><risdate>2020</risdate><volume>9</volume><issue>3</issue><issn>2047-217X</issn><eissn>2047-217X</eissn><abstract>Abstract
Backgroud
Aquilaria sinensis (Lour.) Spreng is one of the important plant resources involved in the production of agarwood in China. The agarwood resin collected from wounded Aquilaria trees has been used in Asia for aromatic or medicinal purposes from ancient times, although the mechanism underlying the formation of agarwood still remains poorly understood owing to a lack of accurate and high-quality genetic information.
Findings
We report the genomic architecture of A. sinensis by using an integrated strategy combining Nanopore, Illumina, and Hi-C sequencing. The final genome was ~726.5 Mb in size, which reached a high level of continuity and a contig N50 of 1.1 Mb. We combined Hi-C data with the genome assembly to generate chromosome-level scaffolds. Eight super-scaffolds corresponding to the 8 chromosomes were assembled to a final size of 716.6 Mb, with a scaffold N50 of 88.78 Mb using 1,862 contigs. BUSCO evaluation reveals that the genome completeness reached 95.27%. The repeat sequences accounted for 59.13%, and 29,203 protein-coding genes were annotated in the genome. According to phylogenetic analysis using single-copy orthologous genes, we found that A. sinensis is closely related to Gossypium hirsutum and Theobroma cacao from the Malvales order, and A. sinensis diverged from their common ancestor ~53.18–84.37 million years ago.
Conclusions
Here, we present the first chromosome-level genome assembly and gene annotation of A. sinensis. This study should contribute to valuable genetic resources for further research on the agarwood formation mechanism, genome-assisted improvement, and conservation biology of Aquilaria species.</abstract><cop>United States</cop><pub>Oxford University Press</pub><pmid>32118265</pmid><doi>10.1093/gigascience/giaa013</doi><orcidid>https://orcid.org/0000-0002-7028-7858</orcidid><orcidid>https://orcid.org/0000-0002-3583-3884</orcidid><orcidid>https://orcid.org/0000-0003-2882-7758</orcidid><orcidid>https://orcid.org/0000-0002-0221-7858</orcidid><orcidid>https://orcid.org/0000-0001-6132-6758</orcidid><orcidid>https://orcid.org/0000-0003-3076-0070</orcidid><orcidid>https://orcid.org/0000-0003-2699-5037</orcidid><orcidid>https://orcid.org/0000-0002-7279-516X</orcidid><orcidid>https://orcid.org/0000-0002-1559-9824</orcidid><orcidid>https://orcid.org/0000-0002-4076-3497</orcidid><orcidid>https://orcid.org/0000-0001-5650-1304</orcidid><orcidid>https://orcid.org/0000-0001-9195-7112</orcidid><orcidid>https://orcid.org/0000-0001-6838-6550</orcidid><orcidid>https://orcid.org/0000-0002-5422-8137</orcidid><orcidid>https://orcid.org/0000-0001-9531-5504</orcidid><orcidid>https://orcid.org/0000-0001-5249-8945</orcidid><orcidid>https://orcid.org/0000-0002-2201-9250</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2047-217X |
ispartof | Gigascience, 2020-03, Vol.9 (3) |
issn | 2047-217X 2047-217X |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7050300 |
source | MEDLINE; Oxford Journals Open Access Collection; EZB-FREE-00999 freely available EZB journals; PubMed Central |
subjects | Annotations Aquilaria Aquilaria sinensis Assembly Chromosomes Chromosomes, Plant - genetics Contig Mapping Data Note Gene sequencing Genes Genetic resources Genome, Plant Genomes Molecular Sequence Annotation Nucleotide sequence Phylogeny Plant Proteins - genetics Scaffolds Thymelaeaceae - classification Thymelaeaceae - genetics Whole Genome Sequencing Wildlife conservation |
title | Genome sequence of the agarwood tree Aquilaria sinensis (Lour.) Spreng: the first chromosome-level draft genome in the Thymelaeceae family |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T15%3A47%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Genome%20sequence%20of%20the%20agarwood%20tree%20Aquilaria%20sinensis%20(Lour.)%20Spreng:%20the%20first%20chromosome-level%20draft%20genome%20in%20the%20Thymelaeceae%20family&rft.jtitle=Gigascience&rft.au=Ding,%20Xupo&rft.date=2020-03-01&rft.volume=9&rft.issue=3&rft.issn=2047-217X&rft.eissn=2047-217X&rft_id=info:doi/10.1093/gigascience/giaa013&rft_dat=%3Cproquest_pubme%3E2715815490%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2715815490&rft_id=info:pmid/32118265&rft_oup_id=10.1093/gigascience/giaa013&rfr_iscdi=true |