Genome sequence of the agarwood tree Aquilaria sinensis (Lour.) Spreng: the first chromosome-level draft genome in the Thymelaeceae family

Abstract Backgroud Aquilaria sinensis (Lour.) Spreng is one of the important plant resources involved in the production of agarwood in China. The agarwood resin collected from wounded Aquilaria trees has been used in Asia for aromatic or medicinal purposes from ancient times, although the mechanism...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Gigascience 2020-03, Vol.9 (3)
Hauptverfasser: Ding, Xupo, Mei, Wenli, Lin, Qiang, Wang, Hao, Wang, Jun, Peng, Shiqing, Li, Huiliang, Zhu, Jiahong, Li, Wei, Wang, Pei, Chen, Huiqin, Dong, Wenhua, Guo, Dong, Cai, Caihong, Huang, Shengzhuo, Cui, Peng, Dai, Haofu
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 3
container_start_page
container_title Gigascience
container_volume 9
creator Ding, Xupo
Mei, Wenli
Lin, Qiang
Wang, Hao
Wang, Jun
Peng, Shiqing
Li, Huiliang
Zhu, Jiahong
Li, Wei
Wang, Pei
Chen, Huiqin
Dong, Wenhua
Guo, Dong
Cai, Caihong
Huang, Shengzhuo
Cui, Peng
Dai, Haofu
description Abstract Backgroud Aquilaria sinensis (Lour.) Spreng is one of the important plant resources involved in the production of agarwood in China. The agarwood resin collected from wounded Aquilaria trees has been used in Asia for aromatic or medicinal purposes from ancient times, although the mechanism underlying the formation of agarwood still remains poorly understood owing to a lack of accurate and high-quality genetic information. Findings We report the genomic architecture of A. sinensis by using an integrated strategy combining Nanopore, Illumina, and Hi-C sequencing. The final genome was ~726.5 Mb in size, which reached a high level of continuity and a contig N50 of 1.1 Mb. We combined Hi-C data with the genome assembly to generate chromosome-level scaffolds. Eight super-scaffolds corresponding to the 8 chromosomes were assembled to a final size of 716.6 Mb, with a scaffold N50 of 88.78 Mb using 1,862 contigs. BUSCO evaluation reveals that the genome completeness reached 95.27%. The repeat sequences accounted for 59.13%, and 29,203 protein-coding genes were annotated in the genome. According to phylogenetic analysis using single-copy orthologous genes, we found that A. sinensis is closely related to Gossypium hirsutum and Theobroma cacao from the Malvales order, and A. sinensis diverged from their common ancestor ~53.18–84.37 million years ago. Conclusions Here, we present the first chromosome-level genome assembly and gene annotation of A. sinensis. This study should contribute to valuable genetic resources for further research on the agarwood formation mechanism, genome-assisted improvement, and conservation biology of Aquilaria species.
doi_str_mv 10.1093/gigascience/giaa013
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7050300</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><oup_id>10.1093/gigascience/giaa013</oup_id><sourcerecordid>2715815490</sourcerecordid><originalsourceid>FETCH-LOGICAL-c472t-430e4872460b230dfc526108a6b841bea20cf7b31b131ad523bbc3835894fa203</originalsourceid><addsrcrecordid>eNqNkc9u1DAQxiMEolXpEyAhS1zKIYv_JLGXA1JVQUFaiQNF4mZNnEnWlWNv7aTVvgJPjbe7VAsnfPFI830_e-YriteMLhhdiveDHSAZi95grgEoE8-KU04rWXImfz4_qk-K85RuaT5SKiXFy-JEcMYUb-rT4tc1-jAiSXg372Ak9GRaI4EB4kMIHZkiIrm8m62DaIEk69Enm8jFKsxx8Y5830T0w4dHU29jmohZxzCGlKmlw3t0pIvQT2TYP2T9o_RmvR3RARqE7IPRuu2r4kUPLuH54T4rfnz-dHP1pVx9u_56dbkqTSX5VFaCYqUkrxrackG73tS8YVRB06qKtQicml62grVMMOhqLtrWCCVqtaz63BRnxcc9dzO3I3YG_RTB6U20I8StDmD13x1v13oI91rSmgq6A1wcADHkraVJjzYZdA48hjlpLpqlUnn9VZa-_Ud6m9fm83iaS1YrVlfLHVDsVSaGlCL2T59hVO_i1kdx60Pc2fXmeI4nz59ws2CxF4R581_E34WZvEY</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2715815490</pqid></control><display><type>article</type><title>Genome sequence of the agarwood tree Aquilaria sinensis (Lour.) Spreng: the first chromosome-level draft genome in the Thymelaeceae family</title><source>MEDLINE</source><source>Oxford Journals Open Access Collection</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><creator>Ding, Xupo ; Mei, Wenli ; Lin, Qiang ; Wang, Hao ; Wang, Jun ; Peng, Shiqing ; Li, Huiliang ; Zhu, Jiahong ; Li, Wei ; Wang, Pei ; Chen, Huiqin ; Dong, Wenhua ; Guo, Dong ; Cai, Caihong ; Huang, Shengzhuo ; Cui, Peng ; Dai, Haofu</creator><creatorcontrib>Ding, Xupo ; Mei, Wenli ; Lin, Qiang ; Wang, Hao ; Wang, Jun ; Peng, Shiqing ; Li, Huiliang ; Zhu, Jiahong ; Li, Wei ; Wang, Pei ; Chen, Huiqin ; Dong, Wenhua ; Guo, Dong ; Cai, Caihong ; Huang, Shengzhuo ; Cui, Peng ; Dai, Haofu</creatorcontrib><description>Abstract Backgroud Aquilaria sinensis (Lour.) Spreng is one of the important plant resources involved in the production of agarwood in China. The agarwood resin collected from wounded Aquilaria trees has been used in Asia for aromatic or medicinal purposes from ancient times, although the mechanism underlying the formation of agarwood still remains poorly understood owing to a lack of accurate and high-quality genetic information. Findings We report the genomic architecture of A. sinensis by using an integrated strategy combining Nanopore, Illumina, and Hi-C sequencing. The final genome was ~726.5 Mb in size, which reached a high level of continuity and a contig N50 of 1.1 Mb. We combined Hi-C data with the genome assembly to generate chromosome-level scaffolds. Eight super-scaffolds corresponding to the 8 chromosomes were assembled to a final size of 716.6 Mb, with a scaffold N50 of 88.78 Mb using 1,862 contigs. BUSCO evaluation reveals that the genome completeness reached 95.27%. The repeat sequences accounted for 59.13%, and 29,203 protein-coding genes were annotated in the genome. According to phylogenetic analysis using single-copy orthologous genes, we found that A. sinensis is closely related to Gossypium hirsutum and Theobroma cacao from the Malvales order, and A. sinensis diverged from their common ancestor ~53.18–84.37 million years ago. Conclusions Here, we present the first chromosome-level genome assembly and gene annotation of A. sinensis. This study should contribute to valuable genetic resources for further research on the agarwood formation mechanism, genome-assisted improvement, and conservation biology of Aquilaria species.</description><identifier>ISSN: 2047-217X</identifier><identifier>EISSN: 2047-217X</identifier><identifier>DOI: 10.1093/gigascience/giaa013</identifier><identifier>PMID: 32118265</identifier><language>eng</language><publisher>United States: Oxford University Press</publisher><subject>Annotations ; Aquilaria ; Aquilaria sinensis ; Assembly ; Chromosomes ; Chromosomes, Plant - genetics ; Contig Mapping ; Data Note ; Gene sequencing ; Genes ; Genetic resources ; Genome, Plant ; Genomes ; Molecular Sequence Annotation ; Nucleotide sequence ; Phylogeny ; Plant Proteins - genetics ; Scaffolds ; Thymelaeaceae - classification ; Thymelaeaceae - genetics ; Whole Genome Sequencing ; Wildlife conservation</subject><ispartof>Gigascience, 2020-03, Vol.9 (3)</ispartof><rights>The Author(s) 2020. Published by Oxford University Press. 2020</rights><rights>The Author(s) 2020. Published by Oxford University Press.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c472t-430e4872460b230dfc526108a6b841bea20cf7b31b131ad523bbc3835894fa203</citedby><cites>FETCH-LOGICAL-c472t-430e4872460b230dfc526108a6b841bea20cf7b31b131ad523bbc3835894fa203</cites><orcidid>0000-0002-7028-7858 ; 0000-0002-3583-3884 ; 0000-0003-2882-7758 ; 0000-0002-0221-7858 ; 0000-0001-6132-6758 ; 0000-0003-3076-0070 ; 0000-0003-2699-5037 ; 0000-0002-7279-516X ; 0000-0002-1559-9824 ; 0000-0002-4076-3497 ; 0000-0001-5650-1304 ; 0000-0001-9195-7112 ; 0000-0001-6838-6550 ; 0000-0002-5422-8137 ; 0000-0001-9531-5504 ; 0000-0001-5249-8945 ; 0000-0002-2201-9250</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7050300/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7050300/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,1604,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32118265$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ding, Xupo</creatorcontrib><creatorcontrib>Mei, Wenli</creatorcontrib><creatorcontrib>Lin, Qiang</creatorcontrib><creatorcontrib>Wang, Hao</creatorcontrib><creatorcontrib>Wang, Jun</creatorcontrib><creatorcontrib>Peng, Shiqing</creatorcontrib><creatorcontrib>Li, Huiliang</creatorcontrib><creatorcontrib>Zhu, Jiahong</creatorcontrib><creatorcontrib>Li, Wei</creatorcontrib><creatorcontrib>Wang, Pei</creatorcontrib><creatorcontrib>Chen, Huiqin</creatorcontrib><creatorcontrib>Dong, Wenhua</creatorcontrib><creatorcontrib>Guo, Dong</creatorcontrib><creatorcontrib>Cai, Caihong</creatorcontrib><creatorcontrib>Huang, Shengzhuo</creatorcontrib><creatorcontrib>Cui, Peng</creatorcontrib><creatorcontrib>Dai, Haofu</creatorcontrib><title>Genome sequence of the agarwood tree Aquilaria sinensis (Lour.) Spreng: the first chromosome-level draft genome in the Thymelaeceae family</title><title>Gigascience</title><addtitle>Gigascience</addtitle><description>Abstract Backgroud Aquilaria sinensis (Lour.) Spreng is one of the important plant resources involved in the production of agarwood in China. The agarwood resin collected from wounded Aquilaria trees has been used in Asia for aromatic or medicinal purposes from ancient times, although the mechanism underlying the formation of agarwood still remains poorly understood owing to a lack of accurate and high-quality genetic information. Findings We report the genomic architecture of A. sinensis by using an integrated strategy combining Nanopore, Illumina, and Hi-C sequencing. The final genome was ~726.5 Mb in size, which reached a high level of continuity and a contig N50 of 1.1 Mb. We combined Hi-C data with the genome assembly to generate chromosome-level scaffolds. Eight super-scaffolds corresponding to the 8 chromosomes were assembled to a final size of 716.6 Mb, with a scaffold N50 of 88.78 Mb using 1,862 contigs. BUSCO evaluation reveals that the genome completeness reached 95.27%. The repeat sequences accounted for 59.13%, and 29,203 protein-coding genes were annotated in the genome. According to phylogenetic analysis using single-copy orthologous genes, we found that A. sinensis is closely related to Gossypium hirsutum and Theobroma cacao from the Malvales order, and A. sinensis diverged from their common ancestor ~53.18–84.37 million years ago. Conclusions Here, we present the first chromosome-level genome assembly and gene annotation of A. sinensis. This study should contribute to valuable genetic resources for further research on the agarwood formation mechanism, genome-assisted improvement, and conservation biology of Aquilaria species.</description><subject>Annotations</subject><subject>Aquilaria</subject><subject>Aquilaria sinensis</subject><subject>Assembly</subject><subject>Chromosomes</subject><subject>Chromosomes, Plant - genetics</subject><subject>Contig Mapping</subject><subject>Data Note</subject><subject>Gene sequencing</subject><subject>Genes</subject><subject>Genetic resources</subject><subject>Genome, Plant</subject><subject>Genomes</subject><subject>Molecular Sequence Annotation</subject><subject>Nucleotide sequence</subject><subject>Phylogeny</subject><subject>Plant Proteins - genetics</subject><subject>Scaffolds</subject><subject>Thymelaeaceae - classification</subject><subject>Thymelaeaceae - genetics</subject><subject>Whole Genome Sequencing</subject><subject>Wildlife conservation</subject><issn>2047-217X</issn><issn>2047-217X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>TOX</sourceid><sourceid>EIF</sourceid><recordid>eNqNkc9u1DAQxiMEolXpEyAhS1zKIYv_JLGXA1JVQUFaiQNF4mZNnEnWlWNv7aTVvgJPjbe7VAsnfPFI830_e-YriteMLhhdiveDHSAZi95grgEoE8-KU04rWXImfz4_qk-K85RuaT5SKiXFy-JEcMYUb-rT4tc1-jAiSXg372Ak9GRaI4EB4kMIHZkiIrm8m62DaIEk69Enm8jFKsxx8Y5830T0w4dHU29jmohZxzCGlKmlw3t0pIvQT2TYP2T9o_RmvR3RARqE7IPRuu2r4kUPLuH54T4rfnz-dHP1pVx9u_56dbkqTSX5VFaCYqUkrxrackG73tS8YVRB06qKtQicml62grVMMOhqLtrWCCVqtaz63BRnxcc9dzO3I3YG_RTB6U20I8StDmD13x1v13oI91rSmgq6A1wcADHkraVJjzYZdA48hjlpLpqlUnn9VZa-_Ud6m9fm83iaS1YrVlfLHVDsVSaGlCL2T59hVO_i1kdx60Pc2fXmeI4nz59ws2CxF4R581_E34WZvEY</recordid><startdate>20200301</startdate><enddate>20200301</enddate><creator>Ding, Xupo</creator><creator>Mei, Wenli</creator><creator>Lin, Qiang</creator><creator>Wang, Hao</creator><creator>Wang, Jun</creator><creator>Peng, Shiqing</creator><creator>Li, Huiliang</creator><creator>Zhu, Jiahong</creator><creator>Li, Wei</creator><creator>Wang, Pei</creator><creator>Chen, Huiqin</creator><creator>Dong, Wenhua</creator><creator>Guo, Dong</creator><creator>Cai, Caihong</creator><creator>Huang, Shengzhuo</creator><creator>Cui, Peng</creator><creator>Dai, Haofu</creator><general>Oxford University Press</general><scope>TOX</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>JQ2</scope><scope>K9.</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-7028-7858</orcidid><orcidid>https://orcid.org/0000-0002-3583-3884</orcidid><orcidid>https://orcid.org/0000-0003-2882-7758</orcidid><orcidid>https://orcid.org/0000-0002-0221-7858</orcidid><orcidid>https://orcid.org/0000-0001-6132-6758</orcidid><orcidid>https://orcid.org/0000-0003-3076-0070</orcidid><orcidid>https://orcid.org/0000-0003-2699-5037</orcidid><orcidid>https://orcid.org/0000-0002-7279-516X</orcidid><orcidid>https://orcid.org/0000-0002-1559-9824</orcidid><orcidid>https://orcid.org/0000-0002-4076-3497</orcidid><orcidid>https://orcid.org/0000-0001-5650-1304</orcidid><orcidid>https://orcid.org/0000-0001-9195-7112</orcidid><orcidid>https://orcid.org/0000-0001-6838-6550</orcidid><orcidid>https://orcid.org/0000-0002-5422-8137</orcidid><orcidid>https://orcid.org/0000-0001-9531-5504</orcidid><orcidid>https://orcid.org/0000-0001-5249-8945</orcidid><orcidid>https://orcid.org/0000-0002-2201-9250</orcidid></search><sort><creationdate>20200301</creationdate><title>Genome sequence of the agarwood tree Aquilaria sinensis (Lour.) Spreng: the first chromosome-level draft genome in the Thymelaeceae family</title><author>Ding, Xupo ; Mei, Wenli ; Lin, Qiang ; Wang, Hao ; Wang, Jun ; Peng, Shiqing ; Li, Huiliang ; Zhu, Jiahong ; Li, Wei ; Wang, Pei ; Chen, Huiqin ; Dong, Wenhua ; Guo, Dong ; Cai, Caihong ; Huang, Shengzhuo ; Cui, Peng ; Dai, Haofu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c472t-430e4872460b230dfc526108a6b841bea20cf7b31b131ad523bbc3835894fa203</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Annotations</topic><topic>Aquilaria</topic><topic>Aquilaria sinensis</topic><topic>Assembly</topic><topic>Chromosomes</topic><topic>Chromosomes, Plant - genetics</topic><topic>Contig Mapping</topic><topic>Data Note</topic><topic>Gene sequencing</topic><topic>Genes</topic><topic>Genetic resources</topic><topic>Genome, Plant</topic><topic>Genomes</topic><topic>Molecular Sequence Annotation</topic><topic>Nucleotide sequence</topic><topic>Phylogeny</topic><topic>Plant Proteins - genetics</topic><topic>Scaffolds</topic><topic>Thymelaeaceae - classification</topic><topic>Thymelaeaceae - genetics</topic><topic>Whole Genome Sequencing</topic><topic>Wildlife conservation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ding, Xupo</creatorcontrib><creatorcontrib>Mei, Wenli</creatorcontrib><creatorcontrib>Lin, Qiang</creatorcontrib><creatorcontrib>Wang, Hao</creatorcontrib><creatorcontrib>Wang, Jun</creatorcontrib><creatorcontrib>Peng, Shiqing</creatorcontrib><creatorcontrib>Li, Huiliang</creatorcontrib><creatorcontrib>Zhu, Jiahong</creatorcontrib><creatorcontrib>Li, Wei</creatorcontrib><creatorcontrib>Wang, Pei</creatorcontrib><creatorcontrib>Chen, Huiqin</creatorcontrib><creatorcontrib>Dong, Wenhua</creatorcontrib><creatorcontrib>Guo, Dong</creatorcontrib><creatorcontrib>Cai, Caihong</creatorcontrib><creatorcontrib>Huang, Shengzhuo</creatorcontrib><creatorcontrib>Cui, Peng</creatorcontrib><creatorcontrib>Dai, Haofu</creatorcontrib><collection>Oxford Journals Open Access Collection</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Gigascience</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ding, Xupo</au><au>Mei, Wenli</au><au>Lin, Qiang</au><au>Wang, Hao</au><au>Wang, Jun</au><au>Peng, Shiqing</au><au>Li, Huiliang</au><au>Zhu, Jiahong</au><au>Li, Wei</au><au>Wang, Pei</au><au>Chen, Huiqin</au><au>Dong, Wenhua</au><au>Guo, Dong</au><au>Cai, Caihong</au><au>Huang, Shengzhuo</au><au>Cui, Peng</au><au>Dai, Haofu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Genome sequence of the agarwood tree Aquilaria sinensis (Lour.) Spreng: the first chromosome-level draft genome in the Thymelaeceae family</atitle><jtitle>Gigascience</jtitle><addtitle>Gigascience</addtitle><date>2020-03-01</date><risdate>2020</risdate><volume>9</volume><issue>3</issue><issn>2047-217X</issn><eissn>2047-217X</eissn><abstract>Abstract Backgroud Aquilaria sinensis (Lour.) Spreng is one of the important plant resources involved in the production of agarwood in China. The agarwood resin collected from wounded Aquilaria trees has been used in Asia for aromatic or medicinal purposes from ancient times, although the mechanism underlying the formation of agarwood still remains poorly understood owing to a lack of accurate and high-quality genetic information. Findings We report the genomic architecture of A. sinensis by using an integrated strategy combining Nanopore, Illumina, and Hi-C sequencing. The final genome was ~726.5 Mb in size, which reached a high level of continuity and a contig N50 of 1.1 Mb. We combined Hi-C data with the genome assembly to generate chromosome-level scaffolds. Eight super-scaffolds corresponding to the 8 chromosomes were assembled to a final size of 716.6 Mb, with a scaffold N50 of 88.78 Mb using 1,862 contigs. BUSCO evaluation reveals that the genome completeness reached 95.27%. The repeat sequences accounted for 59.13%, and 29,203 protein-coding genes were annotated in the genome. According to phylogenetic analysis using single-copy orthologous genes, we found that A. sinensis is closely related to Gossypium hirsutum and Theobroma cacao from the Malvales order, and A. sinensis diverged from their common ancestor ~53.18–84.37 million years ago. Conclusions Here, we present the first chromosome-level genome assembly and gene annotation of A. sinensis. This study should contribute to valuable genetic resources for further research on the agarwood formation mechanism, genome-assisted improvement, and conservation biology of Aquilaria species.</abstract><cop>United States</cop><pub>Oxford University Press</pub><pmid>32118265</pmid><doi>10.1093/gigascience/giaa013</doi><orcidid>https://orcid.org/0000-0002-7028-7858</orcidid><orcidid>https://orcid.org/0000-0002-3583-3884</orcidid><orcidid>https://orcid.org/0000-0003-2882-7758</orcidid><orcidid>https://orcid.org/0000-0002-0221-7858</orcidid><orcidid>https://orcid.org/0000-0001-6132-6758</orcidid><orcidid>https://orcid.org/0000-0003-3076-0070</orcidid><orcidid>https://orcid.org/0000-0003-2699-5037</orcidid><orcidid>https://orcid.org/0000-0002-7279-516X</orcidid><orcidid>https://orcid.org/0000-0002-1559-9824</orcidid><orcidid>https://orcid.org/0000-0002-4076-3497</orcidid><orcidid>https://orcid.org/0000-0001-5650-1304</orcidid><orcidid>https://orcid.org/0000-0001-9195-7112</orcidid><orcidid>https://orcid.org/0000-0001-6838-6550</orcidid><orcidid>https://orcid.org/0000-0002-5422-8137</orcidid><orcidid>https://orcid.org/0000-0001-9531-5504</orcidid><orcidid>https://orcid.org/0000-0001-5249-8945</orcidid><orcidid>https://orcid.org/0000-0002-2201-9250</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2047-217X
ispartof Gigascience, 2020-03, Vol.9 (3)
issn 2047-217X
2047-217X
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7050300
source MEDLINE; Oxford Journals Open Access Collection; EZB-FREE-00999 freely available EZB journals; PubMed Central
subjects Annotations
Aquilaria
Aquilaria sinensis
Assembly
Chromosomes
Chromosomes, Plant - genetics
Contig Mapping
Data Note
Gene sequencing
Genes
Genetic resources
Genome, Plant
Genomes
Molecular Sequence Annotation
Nucleotide sequence
Phylogeny
Plant Proteins - genetics
Scaffolds
Thymelaeaceae - classification
Thymelaeaceae - genetics
Whole Genome Sequencing
Wildlife conservation
title Genome sequence of the agarwood tree Aquilaria sinensis (Lour.) Spreng: the first chromosome-level draft genome in the Thymelaeceae family
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T15%3A47%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Genome%20sequence%20of%20the%20agarwood%20tree%20Aquilaria%20sinensis%20(Lour.)%20Spreng:%20the%20first%20chromosome-level%20draft%20genome%20in%20the%20Thymelaeceae%20family&rft.jtitle=Gigascience&rft.au=Ding,%20Xupo&rft.date=2020-03-01&rft.volume=9&rft.issue=3&rft.issn=2047-217X&rft.eissn=2047-217X&rft_id=info:doi/10.1093/gigascience/giaa013&rft_dat=%3Cproquest_pubme%3E2715815490%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2715815490&rft_id=info:pmid/32118265&rft_oup_id=10.1093/gigascience/giaa013&rfr_iscdi=true