In situ genetic engineering of tumors for long-lasting and systemic immunotherapy
Cancer immunotherapy has been the subject of extensive research, but highly effective and broadly applicable methods remain elusive. Moreover, a general approach to engender endogenous patientspecific cellular therapy, without the need for a priori knowledge of tumor antigen, ex vivo cellular manipu...
Gespeichert in:
Veröffentlicht in: | Proceedings of the National Academy of Sciences - PNAS 2020-02, Vol.117 (8), p.4043-4052 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 4052 |
---|---|
container_issue | 8 |
container_start_page | 4043 |
container_title | Proceedings of the National Academy of Sciences - PNAS |
container_volume | 117 |
creator | Tzeng, Stephany Y. Patel, Kisha K. Wilson, David R. Meyer, Randall A. Rhodes, Kelly R. Green, Jordan J. |
description | Cancer immunotherapy has been the subject of extensive research, but highly effective and broadly applicable methods remain elusive. Moreover, a general approach to engender endogenous patientspecific cellular therapy, without the need for a priori knowledge of tumor antigen, ex vivo cellular manipulation, or cellular manufacture, could dramatically reduce costs and broaden accessibility. Here, we describe a biotechnology based on synthetic, biodegradable nanoparticles that can genetically reprogram cancer cells and their microenvironment in situ so that the cancer cells can act as tumor-associated antigen-presenting cells (tAPCs) by inducing coexpression of a costimulatory molecule (4-1BBL) and immunostimulatory cytokine (IL-12). In B16-F10 melanoma and MC38 colorectal carcinoma mouse models, reprogramming nanoparticles in combination with checkpoint blockade significantly reduced tumor growth over time and, in some cases, cleared the tumor, leading to long-term survivors that were then resistant to the formation of new tumors upon rechallenge at a distant site. In vitro and in vivo analyses confirmed that locally delivered tAPC-reprogramming nanoparticles led to a significant cell-mediated cytotoxic immune response with systemic effects. The systemic tumor-specific and cell-mediated immunotherapy response was achieved without requiring a priori knowledge of tumor-expressed antigens and reflects the translational potential of this nanomedicine. |
doi_str_mv | 10.1073/pnas.1916039117 |
format | Article |
fullrecord | <record><control><sourceid>jstor_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7049107</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>26929057</jstor_id><sourcerecordid>26929057</sourcerecordid><originalsourceid>FETCH-LOGICAL-c443t-3ccae56516fd20b91a15e349ddfb10624b7f4b345f53ea23fc63adeb9bb8a2653</originalsourceid><addsrcrecordid>eNpdkUtr3DAUhUVpaCbTrrtqMWSTjZOr92hTKKGPQKAU2rWQbcnRYEtTSS7Mv4-GSadtVndxvvs49yD0FsM1BklvdsHka6ywAKowli_QCoPCrWAKXqIVAJHthhF2ji5y3gKA4ht4hc4pAcpAyRX6fhea7MvSjDbY4vvGhtEHa5MPYxNdU5Y5pty4mJophrGdTC4HyYShyftc7Fx7_DwvIZYHm8xu_xqdOTNl--aprtHPz59-3H5t7799ubv9eN_2jNHS0r43lguOhRsIdAobzC1lahhch0EQ1knHOsq449QaQl0vqBlsp7puY4jgdI0-HOfulm62Q29DSWbSu-Rnk_Y6Gq__V4J_0GP8rSUwdXjeGl09DUjx12Jz0bPPvZ0mE2xcsiaU1z1MYFbRy2foNi4pVHuVkliK-nBSqZsj1aeYc7LudAwGfdioD3Hpv3HVjvf_ejjxf_KpwLsjsM0lppNOhCIKuKSPaDGckQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2371766492</pqid></control><display><type>article</type><title>In situ genetic engineering of tumors for long-lasting and systemic immunotherapy</title><source>Jstor Complete Legacy</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Tzeng, Stephany Y. ; Patel, Kisha K. ; Wilson, David R. ; Meyer, Randall A. ; Rhodes, Kelly R. ; Green, Jordan J.</creator><creatorcontrib>Tzeng, Stephany Y. ; Patel, Kisha K. ; Wilson, David R. ; Meyer, Randall A. ; Rhodes, Kelly R. ; Green, Jordan J.</creatorcontrib><description>Cancer immunotherapy has been the subject of extensive research, but highly effective and broadly applicable methods remain elusive. Moreover, a general approach to engender endogenous patientspecific cellular therapy, without the need for a priori knowledge of tumor antigen, ex vivo cellular manipulation, or cellular manufacture, could dramatically reduce costs and broaden accessibility. Here, we describe a biotechnology based on synthetic, biodegradable nanoparticles that can genetically reprogram cancer cells and their microenvironment in situ so that the cancer cells can act as tumor-associated antigen-presenting cells (tAPCs) by inducing coexpression of a costimulatory molecule (4-1BBL) and immunostimulatory cytokine (IL-12). In B16-F10 melanoma and MC38 colorectal carcinoma mouse models, reprogramming nanoparticles in combination with checkpoint blockade significantly reduced tumor growth over time and, in some cases, cleared the tumor, leading to long-term survivors that were then resistant to the formation of new tumors upon rechallenge at a distant site. In vitro and in vivo analyses confirmed that locally delivered tAPC-reprogramming nanoparticles led to a significant cell-mediated cytotoxic immune response with systemic effects. The systemic tumor-specific and cell-mediated immunotherapy response was achieved without requiring a priori knowledge of tumor-expressed antigens and reflects the translational potential of this nanomedicine.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.1916039117</identifier><identifier>PMID: 32034097</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Animal models ; Antigen (tumor-associated) ; Antigen-presenting cells ; Antigens ; Biodegradability ; Biodegradation ; Biological Sciences ; Biotechnology ; Cancer ; Cancer immunotherapy ; Cellular manufacture ; Colorectal carcinoma ; Cytokines ; Cytotoxicity ; Genetic engineering ; Immune checkpoint ; Immune response ; Immune response (cell-mediated) ; Immune system ; Immunostimulation ; Immunotherapy ; Interleukin 12 ; Melanoma ; Nanoparticles ; Nanotechnology ; Physical Sciences ; Tumors</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2020-02, Vol.117 (8), p.4043-4052</ispartof><rights>Copyright © 2020 the Author(s). Published by PNAS.</rights><rights>Copyright National Academy of Sciences Feb 25, 2020</rights><rights>Copyright © 2020 the Author(s). Published by PNAS. 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c443t-3ccae56516fd20b91a15e349ddfb10624b7f4b345f53ea23fc63adeb9bb8a2653</citedby><cites>FETCH-LOGICAL-c443t-3ccae56516fd20b91a15e349ddfb10624b7f4b345f53ea23fc63adeb9bb8a2653</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/26929057$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/26929057$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,723,776,780,799,881,27901,27902,53766,53768,57992,58225</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32034097$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Tzeng, Stephany Y.</creatorcontrib><creatorcontrib>Patel, Kisha K.</creatorcontrib><creatorcontrib>Wilson, David R.</creatorcontrib><creatorcontrib>Meyer, Randall A.</creatorcontrib><creatorcontrib>Rhodes, Kelly R.</creatorcontrib><creatorcontrib>Green, Jordan J.</creatorcontrib><title>In situ genetic engineering of tumors for long-lasting and systemic immunotherapy</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>Cancer immunotherapy has been the subject of extensive research, but highly effective and broadly applicable methods remain elusive. Moreover, a general approach to engender endogenous patientspecific cellular therapy, without the need for a priori knowledge of tumor antigen, ex vivo cellular manipulation, or cellular manufacture, could dramatically reduce costs and broaden accessibility. Here, we describe a biotechnology based on synthetic, biodegradable nanoparticles that can genetically reprogram cancer cells and their microenvironment in situ so that the cancer cells can act as tumor-associated antigen-presenting cells (tAPCs) by inducing coexpression of a costimulatory molecule (4-1BBL) and immunostimulatory cytokine (IL-12). In B16-F10 melanoma and MC38 colorectal carcinoma mouse models, reprogramming nanoparticles in combination with checkpoint blockade significantly reduced tumor growth over time and, in some cases, cleared the tumor, leading to long-term survivors that were then resistant to the formation of new tumors upon rechallenge at a distant site. In vitro and in vivo analyses confirmed that locally delivered tAPC-reprogramming nanoparticles led to a significant cell-mediated cytotoxic immune response with systemic effects. The systemic tumor-specific and cell-mediated immunotherapy response was achieved without requiring a priori knowledge of tumor-expressed antigens and reflects the translational potential of this nanomedicine.</description><subject>Animal models</subject><subject>Antigen (tumor-associated)</subject><subject>Antigen-presenting cells</subject><subject>Antigens</subject><subject>Biodegradability</subject><subject>Biodegradation</subject><subject>Biological Sciences</subject><subject>Biotechnology</subject><subject>Cancer</subject><subject>Cancer immunotherapy</subject><subject>Cellular manufacture</subject><subject>Colorectal carcinoma</subject><subject>Cytokines</subject><subject>Cytotoxicity</subject><subject>Genetic engineering</subject><subject>Immune checkpoint</subject><subject>Immune response</subject><subject>Immune response (cell-mediated)</subject><subject>Immune system</subject><subject>Immunostimulation</subject><subject>Immunotherapy</subject><subject>Interleukin 12</subject><subject>Melanoma</subject><subject>Nanoparticles</subject><subject>Nanotechnology</subject><subject>Physical Sciences</subject><subject>Tumors</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNpdkUtr3DAUhUVpaCbTrrtqMWSTjZOr92hTKKGPQKAU2rWQbcnRYEtTSS7Mv4-GSadtVndxvvs49yD0FsM1BklvdsHka6ywAKowli_QCoPCrWAKXqIVAJHthhF2ji5y3gKA4ht4hc4pAcpAyRX6fhea7MvSjDbY4vvGhtEHa5MPYxNdU5Y5pty4mJophrGdTC4HyYShyftc7Fx7_DwvIZYHm8xu_xqdOTNl--aprtHPz59-3H5t7799ubv9eN_2jNHS0r43lguOhRsIdAobzC1lahhch0EQ1knHOsq449QaQl0vqBlsp7puY4jgdI0-HOfulm62Q29DSWbSu-Rnk_Y6Gq__V4J_0GP8rSUwdXjeGl09DUjx12Jz0bPPvZ0mE2xcsiaU1z1MYFbRy2foNi4pVHuVkliK-nBSqZsj1aeYc7LudAwGfdioD3Hpv3HVjvf_ejjxf_KpwLsjsM0lppNOhCIKuKSPaDGckQ</recordid><startdate>20200225</startdate><enddate>20200225</enddate><creator>Tzeng, Stephany Y.</creator><creator>Patel, Kisha K.</creator><creator>Wilson, David R.</creator><creator>Meyer, Randall A.</creator><creator>Rhodes, Kelly R.</creator><creator>Green, Jordan J.</creator><general>National Academy of Sciences</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20200225</creationdate><title>In situ genetic engineering of tumors for long-lasting and systemic immunotherapy</title><author>Tzeng, Stephany Y. ; Patel, Kisha K. ; Wilson, David R. ; Meyer, Randall A. ; Rhodes, Kelly R. ; Green, Jordan J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c443t-3ccae56516fd20b91a15e349ddfb10624b7f4b345f53ea23fc63adeb9bb8a2653</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Animal models</topic><topic>Antigen (tumor-associated)</topic><topic>Antigen-presenting cells</topic><topic>Antigens</topic><topic>Biodegradability</topic><topic>Biodegradation</topic><topic>Biological Sciences</topic><topic>Biotechnology</topic><topic>Cancer</topic><topic>Cancer immunotherapy</topic><topic>Cellular manufacture</topic><topic>Colorectal carcinoma</topic><topic>Cytokines</topic><topic>Cytotoxicity</topic><topic>Genetic engineering</topic><topic>Immune checkpoint</topic><topic>Immune response</topic><topic>Immune response (cell-mediated)</topic><topic>Immune system</topic><topic>Immunostimulation</topic><topic>Immunotherapy</topic><topic>Interleukin 12</topic><topic>Melanoma</topic><topic>Nanoparticles</topic><topic>Nanotechnology</topic><topic>Physical Sciences</topic><topic>Tumors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tzeng, Stephany Y.</creatorcontrib><creatorcontrib>Patel, Kisha K.</creatorcontrib><creatorcontrib>Wilson, David R.</creatorcontrib><creatorcontrib>Meyer, Randall A.</creatorcontrib><creatorcontrib>Rhodes, Kelly R.</creatorcontrib><creatorcontrib>Green, Jordan J.</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tzeng, Stephany Y.</au><au>Patel, Kisha K.</au><au>Wilson, David R.</au><au>Meyer, Randall A.</au><au>Rhodes, Kelly R.</au><au>Green, Jordan J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>In situ genetic engineering of tumors for long-lasting and systemic immunotherapy</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2020-02-25</date><risdate>2020</risdate><volume>117</volume><issue>8</issue><spage>4043</spage><epage>4052</epage><pages>4043-4052</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>Cancer immunotherapy has been the subject of extensive research, but highly effective and broadly applicable methods remain elusive. Moreover, a general approach to engender endogenous patientspecific cellular therapy, without the need for a priori knowledge of tumor antigen, ex vivo cellular manipulation, or cellular manufacture, could dramatically reduce costs and broaden accessibility. Here, we describe a biotechnology based on synthetic, biodegradable nanoparticles that can genetically reprogram cancer cells and their microenvironment in situ so that the cancer cells can act as tumor-associated antigen-presenting cells (tAPCs) by inducing coexpression of a costimulatory molecule (4-1BBL) and immunostimulatory cytokine (IL-12). In B16-F10 melanoma and MC38 colorectal carcinoma mouse models, reprogramming nanoparticles in combination with checkpoint blockade significantly reduced tumor growth over time and, in some cases, cleared the tumor, leading to long-term survivors that were then resistant to the formation of new tumors upon rechallenge at a distant site. In vitro and in vivo analyses confirmed that locally delivered tAPC-reprogramming nanoparticles led to a significant cell-mediated cytotoxic immune response with systemic effects. The systemic tumor-specific and cell-mediated immunotherapy response was achieved without requiring a priori knowledge of tumor-expressed antigens and reflects the translational potential of this nanomedicine.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>32034097</pmid><doi>10.1073/pnas.1916039117</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0027-8424 |
ispartof | Proceedings of the National Academy of Sciences - PNAS, 2020-02, Vol.117 (8), p.4043-4052 |
issn | 0027-8424 1091-6490 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7049107 |
source | Jstor Complete Legacy; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry |
subjects | Animal models Antigen (tumor-associated) Antigen-presenting cells Antigens Biodegradability Biodegradation Biological Sciences Biotechnology Cancer Cancer immunotherapy Cellular manufacture Colorectal carcinoma Cytokines Cytotoxicity Genetic engineering Immune checkpoint Immune response Immune response (cell-mediated) Immune system Immunostimulation Immunotherapy Interleukin 12 Melanoma Nanoparticles Nanotechnology Physical Sciences Tumors |
title | In situ genetic engineering of tumors for long-lasting and systemic immunotherapy |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T04%3A06%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=In%20situ%20genetic%20engineering%20of%20tumors%20for%20long-lasting%20and%20systemic%20immunotherapy&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Tzeng,%20Stephany%20Y.&rft.date=2020-02-25&rft.volume=117&rft.issue=8&rft.spage=4043&rft.epage=4052&rft.pages=4043-4052&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.1916039117&rft_dat=%3Cjstor_pubme%3E26929057%3C/jstor_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2371766492&rft_id=info:pmid/32034097&rft_jstor_id=26929057&rfr_iscdi=true |