Orbital pacing and secular evolution of the Early Jurassic carbon cycle

Global perturbations to the Early Jurassic environment (∼201 to ∼174 Ma), notably during the Triassic–Jurassic transition and Toarcian Oceanic Anoxic Event, are well studied and largely associated with volcanogenic greenhouse gas emissions released by large igneous provinces. The long-term secular e...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the National Academy of Sciences - PNAS 2020-02, Vol.117 (8), p.3974-3982
Hauptverfasser: Storm, Marisa S., Hesselbo, Stephen P., Jenkyns, Hugh C., Ruhl, Micha, Ullmann, Clemens V., Xu, Weimu, Leng, Melanie J., Riding, James B., Gorbanenko, Olga
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3982
container_issue 8
container_start_page 3974
container_title Proceedings of the National Academy of Sciences - PNAS
container_volume 117
creator Storm, Marisa S.
Hesselbo, Stephen P.
Jenkyns, Hugh C.
Ruhl, Micha
Ullmann, Clemens V.
Xu, Weimu
Leng, Melanie J.
Riding, James B.
Gorbanenko, Olga
description Global perturbations to the Early Jurassic environment (∼201 to ∼174 Ma), notably during the Triassic–Jurassic transition and Toarcian Oceanic Anoxic Event, are well studied and largely associated with volcanogenic greenhouse gas emissions released by large igneous provinces. The long-term secular evolution, timing, and pacing of changes in the Early Jurassic carbon cycle that provide context for these events are thus far poorly understood due to a lack of continuous high-resolution δ13C data. Here we present a δ13CTOC record for the uppermost Rhaetian (Triassic) to Pliensbachian (Lower Jurassic), derived from a calcareous mudstone succession of the exceptionally expanded Llanbedr (Mochras Farm) borehole, Cardigan Bay Basin, Wales, United Kingdom. Combined with existing δ13CTOC data from the Toarcian, the compilation covers the entire Lower Jurassic. The dataset reproduces large-amplitude δ13CTOC excursions (>3‰) recognized elsewhere, at the Sinemurian–Pliensbachian transition and in the lower Toarcian serpentinum zone, as well as several previously identified medium-amplitude (∼0.5 to 2‰) shifts in the Hettangian to Pliensbachian interval. In addition, multiple hitherto undiscovered isotope shifts of comparable amplitude and stratigraphic extent are recorded, demonstrating that those similar features described earlier from stratigraphically more limited sections are nonunique in a long-term context. These shifts are identified as long-eccentricity (∼405-ky) orbital cycles. Orbital tuning of the δ13CTOC record provides the basis for an astrochronological duration estimate for the Pliensbachian and Sinemurian, giving implications for the duration of the Hettangian Stage. Overall the chemostratigraphy illustrates particular sensitivity of the marine carbon cycle to long-eccentricity orbital forcing.
doi_str_mv 10.1073/pnas.1912094117
format Article
fullrecord <record><control><sourceid>jstor_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7049106</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>26929048</jstor_id><sourcerecordid>26929048</sourcerecordid><originalsourceid>FETCH-LOGICAL-c509t-45833fe20ae51977992b91d3f3ada14cad749b0cd8c47e129d9e77be8cee02433</originalsourceid><addsrcrecordid>eNpdkU1r3DAQhkVpaTZpzz21CHrpxcnow5bmUgghTVsCuSRnIcvjxIvW2kp2YP99HTbZfpzm8D7zMsPD2AcBpwKMOtuOvpwKFBJQC2FesZUAFFWjEV6zFYA0ldVSH7HjUtYAgLWFt-xISdDCWlyxq5vcDpOPfOvDMN5zP3a8UJijz5weU5ynIY089Xx6IH7pc9zxn3P2pQyBB5_bJQy7EOkde9P7WOj98zxhd98uby--V9c3Vz8uzq-rUANOla6tUj1J8FQLNAZRtig61SvfeaGD74zGFkJngzYkJHZIxrRkAxFIrdQJ-7rv3c7thrpA45R9dNs8bHzeueQH928yDg_uPj06AxoFNEvBl-eCnH7NVCa3GUqgGP1IaS5OqlrVtlEIC_r5P3Sd5jwu7y2UEcbUjakX6mxPhZxKydQfjhHgniS5J0nuj6Rl49PfPxz4FysL8HEPrMuU8iGXDUoEbdVvq5-XnA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2371775675</pqid></control><display><type>article</type><title>Orbital pacing and secular evolution of the Early Jurassic carbon cycle</title><source>JSTOR Archive Collection A-Z Listing</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Storm, Marisa S. ; Hesselbo, Stephen P. ; Jenkyns, Hugh C. ; Ruhl, Micha ; Ullmann, Clemens V. ; Xu, Weimu ; Leng, Melanie J. ; Riding, James B. ; Gorbanenko, Olga</creator><creatorcontrib>Storm, Marisa S. ; Hesselbo, Stephen P. ; Jenkyns, Hugh C. ; Ruhl, Micha ; Ullmann, Clemens V. ; Xu, Weimu ; Leng, Melanie J. ; Riding, James B. ; Gorbanenko, Olga</creatorcontrib><description>Global perturbations to the Early Jurassic environment (∼201 to ∼174 Ma), notably during the Triassic–Jurassic transition and Toarcian Oceanic Anoxic Event, are well studied and largely associated with volcanogenic greenhouse gas emissions released by large igneous provinces. The long-term secular evolution, timing, and pacing of changes in the Early Jurassic carbon cycle that provide context for these events are thus far poorly understood due to a lack of continuous high-resolution δ13C data. Here we present a δ13CTOC record for the uppermost Rhaetian (Triassic) to Pliensbachian (Lower Jurassic), derived from a calcareous mudstone succession of the exceptionally expanded Llanbedr (Mochras Farm) borehole, Cardigan Bay Basin, Wales, United Kingdom. Combined with existing δ13CTOC data from the Toarcian, the compilation covers the entire Lower Jurassic. The dataset reproduces large-amplitude δ13CTOC excursions (&gt;3‰) recognized elsewhere, at the Sinemurian–Pliensbachian transition and in the lower Toarcian serpentinum zone, as well as several previously identified medium-amplitude (∼0.5 to 2‰) shifts in the Hettangian to Pliensbachian interval. In addition, multiple hitherto undiscovered isotope shifts of comparable amplitude and stratigraphic extent are recorded, demonstrating that those similar features described earlier from stratigraphically more limited sections are nonunique in a long-term context. These shifts are identified as long-eccentricity (∼405-ky) orbital cycles. Orbital tuning of the δ13CTOC record provides the basis for an astrochronological duration estimate for the Pliensbachian and Sinemurian, giving implications for the duration of the Hettangian Stage. Overall the chemostratigraphy illustrates particular sensitivity of the marine carbon cycle to long-eccentricity orbital forcing.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.1912094117</identifier><identifier>PMID: 32041889</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Amplitudes ; Boreholes ; Carbon ; Carbon cycle ; Eccentric orbits ; Emissions ; Evolution ; Farm buildings ; Greenhouse effect ; Greenhouse gases ; Jurassic ; Mudstone ; Physical Sciences ; Stratigraphy ; Triassic</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2020-02, Vol.117 (8), p.3974-3982</ispartof><rights>Copyright © 2020 the Author(s). Published by PNAS.</rights><rights>Copyright National Academy of Sciences Feb 25, 2020</rights><rights>Copyright © 2020 the Author(s). Published by PNAS. 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c509t-45833fe20ae51977992b91d3f3ada14cad749b0cd8c47e129d9e77be8cee02433</citedby><cites>FETCH-LOGICAL-c509t-45833fe20ae51977992b91d3f3ada14cad749b0cd8c47e129d9e77be8cee02433</cites><orcidid>0000-0002-2028-6152</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/26929048$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/26929048$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,727,780,784,803,885,27923,27924,53790,53792,58016,58249</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32041889$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Storm, Marisa S.</creatorcontrib><creatorcontrib>Hesselbo, Stephen P.</creatorcontrib><creatorcontrib>Jenkyns, Hugh C.</creatorcontrib><creatorcontrib>Ruhl, Micha</creatorcontrib><creatorcontrib>Ullmann, Clemens V.</creatorcontrib><creatorcontrib>Xu, Weimu</creatorcontrib><creatorcontrib>Leng, Melanie J.</creatorcontrib><creatorcontrib>Riding, James B.</creatorcontrib><creatorcontrib>Gorbanenko, Olga</creatorcontrib><title>Orbital pacing and secular evolution of the Early Jurassic carbon cycle</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>Global perturbations to the Early Jurassic environment (∼201 to ∼174 Ma), notably during the Triassic–Jurassic transition and Toarcian Oceanic Anoxic Event, are well studied and largely associated with volcanogenic greenhouse gas emissions released by large igneous provinces. The long-term secular evolution, timing, and pacing of changes in the Early Jurassic carbon cycle that provide context for these events are thus far poorly understood due to a lack of continuous high-resolution δ13C data. Here we present a δ13CTOC record for the uppermost Rhaetian (Triassic) to Pliensbachian (Lower Jurassic), derived from a calcareous mudstone succession of the exceptionally expanded Llanbedr (Mochras Farm) borehole, Cardigan Bay Basin, Wales, United Kingdom. Combined with existing δ13CTOC data from the Toarcian, the compilation covers the entire Lower Jurassic. The dataset reproduces large-amplitude δ13CTOC excursions (&gt;3‰) recognized elsewhere, at the Sinemurian–Pliensbachian transition and in the lower Toarcian serpentinum zone, as well as several previously identified medium-amplitude (∼0.5 to 2‰) shifts in the Hettangian to Pliensbachian interval. In addition, multiple hitherto undiscovered isotope shifts of comparable amplitude and stratigraphic extent are recorded, demonstrating that those similar features described earlier from stratigraphically more limited sections are nonunique in a long-term context. These shifts are identified as long-eccentricity (∼405-ky) orbital cycles. Orbital tuning of the δ13CTOC record provides the basis for an astrochronological duration estimate for the Pliensbachian and Sinemurian, giving implications for the duration of the Hettangian Stage. Overall the chemostratigraphy illustrates particular sensitivity of the marine carbon cycle to long-eccentricity orbital forcing.</description><subject>Amplitudes</subject><subject>Boreholes</subject><subject>Carbon</subject><subject>Carbon cycle</subject><subject>Eccentric orbits</subject><subject>Emissions</subject><subject>Evolution</subject><subject>Farm buildings</subject><subject>Greenhouse effect</subject><subject>Greenhouse gases</subject><subject>Jurassic</subject><subject>Mudstone</subject><subject>Physical Sciences</subject><subject>Stratigraphy</subject><subject>Triassic</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNpdkU1r3DAQhkVpaTZpzz21CHrpxcnow5bmUgghTVsCuSRnIcvjxIvW2kp2YP99HTbZfpzm8D7zMsPD2AcBpwKMOtuOvpwKFBJQC2FesZUAFFWjEV6zFYA0ldVSH7HjUtYAgLWFt-xISdDCWlyxq5vcDpOPfOvDMN5zP3a8UJijz5weU5ynIY089Xx6IH7pc9zxn3P2pQyBB5_bJQy7EOkde9P7WOj98zxhd98uby--V9c3Vz8uzq-rUANOla6tUj1J8FQLNAZRtig61SvfeaGD74zGFkJngzYkJHZIxrRkAxFIrdQJ-7rv3c7thrpA45R9dNs8bHzeueQH928yDg_uPj06AxoFNEvBl-eCnH7NVCa3GUqgGP1IaS5OqlrVtlEIC_r5P3Sd5jwu7y2UEcbUjakX6mxPhZxKydQfjhHgniS5J0nuj6Rl49PfPxz4FysL8HEPrMuU8iGXDUoEbdVvq5-XnA</recordid><startdate>20200225</startdate><enddate>20200225</enddate><creator>Storm, Marisa S.</creator><creator>Hesselbo, Stephen P.</creator><creator>Jenkyns, Hugh C.</creator><creator>Ruhl, Micha</creator><creator>Ullmann, Clemens V.</creator><creator>Xu, Weimu</creator><creator>Leng, Melanie J.</creator><creator>Riding, James B.</creator><creator>Gorbanenko, Olga</creator><general>National Academy of Sciences</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-2028-6152</orcidid></search><sort><creationdate>20200225</creationdate><title>Orbital pacing and secular evolution of the Early Jurassic carbon cycle</title><author>Storm, Marisa S. ; Hesselbo, Stephen P. ; Jenkyns, Hugh C. ; Ruhl, Micha ; Ullmann, Clemens V. ; Xu, Weimu ; Leng, Melanie J. ; Riding, James B. ; Gorbanenko, Olga</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c509t-45833fe20ae51977992b91d3f3ada14cad749b0cd8c47e129d9e77be8cee02433</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Amplitudes</topic><topic>Boreholes</topic><topic>Carbon</topic><topic>Carbon cycle</topic><topic>Eccentric orbits</topic><topic>Emissions</topic><topic>Evolution</topic><topic>Farm buildings</topic><topic>Greenhouse effect</topic><topic>Greenhouse gases</topic><topic>Jurassic</topic><topic>Mudstone</topic><topic>Physical Sciences</topic><topic>Stratigraphy</topic><topic>Triassic</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Storm, Marisa S.</creatorcontrib><creatorcontrib>Hesselbo, Stephen P.</creatorcontrib><creatorcontrib>Jenkyns, Hugh C.</creatorcontrib><creatorcontrib>Ruhl, Micha</creatorcontrib><creatorcontrib>Ullmann, Clemens V.</creatorcontrib><creatorcontrib>Xu, Weimu</creatorcontrib><creatorcontrib>Leng, Melanie J.</creatorcontrib><creatorcontrib>Riding, James B.</creatorcontrib><creatorcontrib>Gorbanenko, Olga</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Storm, Marisa S.</au><au>Hesselbo, Stephen P.</au><au>Jenkyns, Hugh C.</au><au>Ruhl, Micha</au><au>Ullmann, Clemens V.</au><au>Xu, Weimu</au><au>Leng, Melanie J.</au><au>Riding, James B.</au><au>Gorbanenko, Olga</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Orbital pacing and secular evolution of the Early Jurassic carbon cycle</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2020-02-25</date><risdate>2020</risdate><volume>117</volume><issue>8</issue><spage>3974</spage><epage>3982</epage><pages>3974-3982</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>Global perturbations to the Early Jurassic environment (∼201 to ∼174 Ma), notably during the Triassic–Jurassic transition and Toarcian Oceanic Anoxic Event, are well studied and largely associated with volcanogenic greenhouse gas emissions released by large igneous provinces. The long-term secular evolution, timing, and pacing of changes in the Early Jurassic carbon cycle that provide context for these events are thus far poorly understood due to a lack of continuous high-resolution δ13C data. Here we present a δ13CTOC record for the uppermost Rhaetian (Triassic) to Pliensbachian (Lower Jurassic), derived from a calcareous mudstone succession of the exceptionally expanded Llanbedr (Mochras Farm) borehole, Cardigan Bay Basin, Wales, United Kingdom. Combined with existing δ13CTOC data from the Toarcian, the compilation covers the entire Lower Jurassic. The dataset reproduces large-amplitude δ13CTOC excursions (&gt;3‰) recognized elsewhere, at the Sinemurian–Pliensbachian transition and in the lower Toarcian serpentinum zone, as well as several previously identified medium-amplitude (∼0.5 to 2‰) shifts in the Hettangian to Pliensbachian interval. In addition, multiple hitherto undiscovered isotope shifts of comparable amplitude and stratigraphic extent are recorded, demonstrating that those similar features described earlier from stratigraphically more limited sections are nonunique in a long-term context. These shifts are identified as long-eccentricity (∼405-ky) orbital cycles. Orbital tuning of the δ13CTOC record provides the basis for an astrochronological duration estimate for the Pliensbachian and Sinemurian, giving implications for the duration of the Hettangian Stage. Overall the chemostratigraphy illustrates particular sensitivity of the marine carbon cycle to long-eccentricity orbital forcing.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>32041889</pmid><doi>10.1073/pnas.1912094117</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-2028-6152</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0027-8424
ispartof Proceedings of the National Academy of Sciences - PNAS, 2020-02, Vol.117 (8), p.3974-3982
issn 0027-8424
1091-6490
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7049106
source JSTOR Archive Collection A-Z Listing; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry
subjects Amplitudes
Boreholes
Carbon
Carbon cycle
Eccentric orbits
Emissions
Evolution
Farm buildings
Greenhouse effect
Greenhouse gases
Jurassic
Mudstone
Physical Sciences
Stratigraphy
Triassic
title Orbital pacing and secular evolution of the Early Jurassic carbon cycle
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T01%3A13%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Orbital%20pacing%20and%20secular%20evolution%20of%20the%20Early%20Jurassic%20carbon%20cycle&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Storm,%20Marisa%20S.&rft.date=2020-02-25&rft.volume=117&rft.issue=8&rft.spage=3974&rft.epage=3982&rft.pages=3974-3982&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.1912094117&rft_dat=%3Cjstor_pubme%3E26929048%3C/jstor_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2371775675&rft_id=info:pmid/32041889&rft_jstor_id=26929048&rfr_iscdi=true