Icariin prevents oestrogen deficiency–induced alveolar bone loss through promoting osteogenesis via STAT3
Objectives Alveolar bone osteoporosis has attracted more and more attention because of its profound impact on stomatognathic function and treatment, but current treatments have not been targeted to alveolar bone and might even cause severe side effects. Thus, identifying the effects of anti‐osteopor...
Gespeichert in:
Veröffentlicht in: | Cell proliferation 2020-02, Vol.53 (2), p.e12743-n/a |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | 2 |
container_start_page | e12743 |
container_title | Cell proliferation |
container_volume | 53 |
creator | Xu, Hongyuan Zhou, Siru Qu, Ranyi Yang, Yiling Gong, Xinyi Hong, Yueyang Jin, Anting Huang, Xiangru Dai, Qinggang Jiang, Lingyong |
description | Objectives
Alveolar bone osteoporosis has attracted more and more attention because of its profound impact on stomatognathic function and treatment, but current treatments have not been targeted to alveolar bone and might even cause severe side effects. Thus, identifying the effects of anti‐osteoporosis agents on alveolar bone is essential. Icariin ameliorates metabolic dysfunction of long bones, but its effects on alveolar bone remain unclarified.
Materials and methods
BMSCs were isolated from rat mandibles (mBMSCs). The osteogenic potential of mBMSCs and the signalling pathway involved under icariin treatment were measured by ALP and alizarin red staining, reverse transcription‐polymerase chain reaction (RT‐PCR), Western blotting and immunofluorescence. Dual‐luciferase assay, chromatin immunoprecipitation (ChIP) and co‐immunoprecipitation were used to investigate the molecular mechanism. Ovariectomized and sham‐operated rats treated with or without icariin were analysed by micro‐CT, TRAP staining and calcein double labelling.
Results
We found that icariin promoted osteoblast differentiation of mBMSCs. Furthermore, STAT3 was critical for icariin‐promoted osteoblast differentiation, as indicated by increased phosphorylation levels in icariin‐treated mBMSCs, while preventing STAT3 activation blocked icariin‐induced osteoblast differentiation. Mechanistically, icariin‐promoted transcription of the downstream osteogenic gene osteocalcin (Ocn) through STAT3 and STAT3 bound to the promoter of Ocn. Notably, icariin prevented the alveolar bone osteoporosis induced by oestrogen deficiency through promoting bone formation.
Conclusions
For the first time, our work provides evidence supporting the potential application of icariin in promoting osteogenesis and treating alveolar bone osteoporosis. |
doi_str_mv | 10.1111/cpr.12743 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7048209</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2365345187</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4433-363f82fc002042937b445e8dff7132102da00828288d04fc7e87baa5264fcc3e3</originalsourceid><addsrcrecordid>eNp1kctOAyEYRonRaL0sfAFD4srFKLcZphsT03hLTDRa14Qy_7ToFCrM1HTnO_iGPolo1ehCWBDCyQG-D6FdSg5pGkdmFg4pk4KvoB7lRZ4xWopV1CP9gmRSMraBNmN8IIRyKot1tMFpX3CR5z30eGl0sNbhWYA5uDZiD7ENfgwOV1BbY8GZxdvLq3VVZ6DCupmDb3TAI-8ANz5G3E6C78aTpPBT31o3xj628KGAaCOeW43vhidDvo3Wat1E2Plat9D92elwcJFdXZ9fDk6uMiME5xkveF2y2hDCiGB9LkdC5FBWdS0pZ5SwShNSsjTLiojaSCjlSOucFWljOPAtdLz0zrrRFCqTvhV0o2bBTnVYKK-t-nvi7ESN_VxJIkpG-kmw_yUI_qlLeagH3wWX3qxYijclR0uZqIMlZUJKIUD9cwMl6qMXlXpRn70kdu_3k37I7yIScLQEnm0Di_9NanBzu1S-A9Ehmmk</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2365345187</pqid></control><display><type>article</type><title>Icariin prevents oestrogen deficiency–induced alveolar bone loss through promoting osteogenesis via STAT3</title><source>MEDLINE</source><source>Wiley Online Library Open Access</source><source>DOAJ Directory of Open Access Journals</source><source>Wiley Online Library Journals Frontfile Complete</source><source>PubMed Central</source><creator>Xu, Hongyuan ; Zhou, Siru ; Qu, Ranyi ; Yang, Yiling ; Gong, Xinyi ; Hong, Yueyang ; Jin, Anting ; Huang, Xiangru ; Dai, Qinggang ; Jiang, Lingyong</creator><creatorcontrib>Xu, Hongyuan ; Zhou, Siru ; Qu, Ranyi ; Yang, Yiling ; Gong, Xinyi ; Hong, Yueyang ; Jin, Anting ; Huang, Xiangru ; Dai, Qinggang ; Jiang, Lingyong</creatorcontrib><description>Objectives
Alveolar bone osteoporosis has attracted more and more attention because of its profound impact on stomatognathic function and treatment, but current treatments have not been targeted to alveolar bone and might even cause severe side effects. Thus, identifying the effects of anti‐osteoporosis agents on alveolar bone is essential. Icariin ameliorates metabolic dysfunction of long bones, but its effects on alveolar bone remain unclarified.
Materials and methods
BMSCs were isolated from rat mandibles (mBMSCs). The osteogenic potential of mBMSCs and the signalling pathway involved under icariin treatment were measured by ALP and alizarin red staining, reverse transcription‐polymerase chain reaction (RT‐PCR), Western blotting and immunofluorescence. Dual‐luciferase assay, chromatin immunoprecipitation (ChIP) and co‐immunoprecipitation were used to investigate the molecular mechanism. Ovariectomized and sham‐operated rats treated with or without icariin were analysed by micro‐CT, TRAP staining and calcein double labelling.
Results
We found that icariin promoted osteoblast differentiation of mBMSCs. Furthermore, STAT3 was critical for icariin‐promoted osteoblast differentiation, as indicated by increased phosphorylation levels in icariin‐treated mBMSCs, while preventing STAT3 activation blocked icariin‐induced osteoblast differentiation. Mechanistically, icariin‐promoted transcription of the downstream osteogenic gene osteocalcin (Ocn) through STAT3 and STAT3 bound to the promoter of Ocn. Notably, icariin prevented the alveolar bone osteoporosis induced by oestrogen deficiency through promoting bone formation.
Conclusions
For the first time, our work provides evidence supporting the potential application of icariin in promoting osteogenesis and treating alveolar bone osteoporosis.</description><identifier>ISSN: 0960-7722</identifier><identifier>EISSN: 1365-2184</identifier><identifier>DOI: 10.1111/cpr.12743</identifier><identifier>PMID: 31943455</identifier><language>eng</language><publisher>England: John Wiley & Sons, Inc</publisher><subject>Alizarin ; Alveolar bone ; Alveolar Bone Loss - drug therapy ; Alveolar Bone Loss - metabolism ; alveolar bone osteoporosis ; Animals ; Apoptosis ; Binding sites ; Biomedical materials ; Biotechnology industry ; Bone growth ; Bone loss ; Bones ; Calcein ; Cell Differentiation - drug effects ; Cell growth ; Cells, Cultured ; Chromatin ; Differentiation ; Estrogens ; Estrogens - metabolism ; Flavonoids - pharmacology ; Fractures ; Icariin ; Immunofluorescence ; Immunoprecipitation ; Labeling ; Mandible ; mandibular bone marrow stromal cell ; Medical research ; Mesenchymal Stem Cells - drug effects ; Mesenchymal Stem Cells - metabolism ; Metabolism ; Original ; Osteoblastogenesis ; Osteoblasts - drug effects ; Osteoblasts - metabolism ; Osteocalcin ; Osteocalcin - drug effects ; Osteocalcin - metabolism ; Osteogenesis ; Osteogenesis - drug effects ; Osteoporosis ; Osteoporosis - drug therapy ; Osteoporosis - metabolism ; Ovariectomy ; Phosphatase ; Phosphorylation ; Phosphorylation - drug effects ; Polymerase chain reaction ; Proteins ; Rats ; Reverse transcription ; Side effects ; Signal transduction ; Signal Transduction - drug effects ; Staining ; STAT3 ; Stat3 protein ; STAT3 Transcription Factor - metabolism ; Transcription, Genetic - drug effects ; Western blotting</subject><ispartof>Cell proliferation, 2020-02, Vol.53 (2), p.e12743-n/a</ispartof><rights>2020 The Authors. Published by John Wiley & Sons Ltd.</rights><rights>2020 The Authors. Cell Proliferation Published by John Wiley & Sons Ltd.</rights><rights>2020. This work is published under http://creativecommons.org/licenses/by/4.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4433-363f82fc002042937b445e8dff7132102da00828288d04fc7e87baa5264fcc3e3</citedby><cites>FETCH-LOGICAL-c4433-363f82fc002042937b445e8dff7132102da00828288d04fc7e87baa5264fcc3e3</cites><orcidid>0000-0001-8941-2770 ; 0000-0002-5558-1629</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7048209/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7048209/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,1411,11541,27901,27902,45550,45551,46027,46451,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31943455$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Xu, Hongyuan</creatorcontrib><creatorcontrib>Zhou, Siru</creatorcontrib><creatorcontrib>Qu, Ranyi</creatorcontrib><creatorcontrib>Yang, Yiling</creatorcontrib><creatorcontrib>Gong, Xinyi</creatorcontrib><creatorcontrib>Hong, Yueyang</creatorcontrib><creatorcontrib>Jin, Anting</creatorcontrib><creatorcontrib>Huang, Xiangru</creatorcontrib><creatorcontrib>Dai, Qinggang</creatorcontrib><creatorcontrib>Jiang, Lingyong</creatorcontrib><title>Icariin prevents oestrogen deficiency–induced alveolar bone loss through promoting osteogenesis via STAT3</title><title>Cell proliferation</title><addtitle>Cell Prolif</addtitle><description>Objectives
Alveolar bone osteoporosis has attracted more and more attention because of its profound impact on stomatognathic function and treatment, but current treatments have not been targeted to alveolar bone and might even cause severe side effects. Thus, identifying the effects of anti‐osteoporosis agents on alveolar bone is essential. Icariin ameliorates metabolic dysfunction of long bones, but its effects on alveolar bone remain unclarified.
Materials and methods
BMSCs were isolated from rat mandibles (mBMSCs). The osteogenic potential of mBMSCs and the signalling pathway involved under icariin treatment were measured by ALP and alizarin red staining, reverse transcription‐polymerase chain reaction (RT‐PCR), Western blotting and immunofluorescence. Dual‐luciferase assay, chromatin immunoprecipitation (ChIP) and co‐immunoprecipitation were used to investigate the molecular mechanism. Ovariectomized and sham‐operated rats treated with or without icariin were analysed by micro‐CT, TRAP staining and calcein double labelling.
Results
We found that icariin promoted osteoblast differentiation of mBMSCs. Furthermore, STAT3 was critical for icariin‐promoted osteoblast differentiation, as indicated by increased phosphorylation levels in icariin‐treated mBMSCs, while preventing STAT3 activation blocked icariin‐induced osteoblast differentiation. Mechanistically, icariin‐promoted transcription of the downstream osteogenic gene osteocalcin (Ocn) through STAT3 and STAT3 bound to the promoter of Ocn. Notably, icariin prevented the alveolar bone osteoporosis induced by oestrogen deficiency through promoting bone formation.
Conclusions
For the first time, our work provides evidence supporting the potential application of icariin in promoting osteogenesis and treating alveolar bone osteoporosis.</description><subject>Alizarin</subject><subject>Alveolar bone</subject><subject>Alveolar Bone Loss - drug therapy</subject><subject>Alveolar Bone Loss - metabolism</subject><subject>alveolar bone osteoporosis</subject><subject>Animals</subject><subject>Apoptosis</subject><subject>Binding sites</subject><subject>Biomedical materials</subject><subject>Biotechnology industry</subject><subject>Bone growth</subject><subject>Bone loss</subject><subject>Bones</subject><subject>Calcein</subject><subject>Cell Differentiation - drug effects</subject><subject>Cell growth</subject><subject>Cells, Cultured</subject><subject>Chromatin</subject><subject>Differentiation</subject><subject>Estrogens</subject><subject>Estrogens - metabolism</subject><subject>Flavonoids - pharmacology</subject><subject>Fractures</subject><subject>Icariin</subject><subject>Immunofluorescence</subject><subject>Immunoprecipitation</subject><subject>Labeling</subject><subject>Mandible</subject><subject>mandibular bone marrow stromal cell</subject><subject>Medical research</subject><subject>Mesenchymal Stem Cells - drug effects</subject><subject>Mesenchymal Stem Cells - metabolism</subject><subject>Metabolism</subject><subject>Original</subject><subject>Osteoblastogenesis</subject><subject>Osteoblasts - drug effects</subject><subject>Osteoblasts - metabolism</subject><subject>Osteocalcin</subject><subject>Osteocalcin - drug effects</subject><subject>Osteocalcin - metabolism</subject><subject>Osteogenesis</subject><subject>Osteogenesis - drug effects</subject><subject>Osteoporosis</subject><subject>Osteoporosis - drug therapy</subject><subject>Osteoporosis - metabolism</subject><subject>Ovariectomy</subject><subject>Phosphatase</subject><subject>Phosphorylation</subject><subject>Phosphorylation - drug effects</subject><subject>Polymerase chain reaction</subject><subject>Proteins</subject><subject>Rats</subject><subject>Reverse transcription</subject><subject>Side effects</subject><subject>Signal transduction</subject><subject>Signal Transduction - drug effects</subject><subject>Staining</subject><subject>STAT3</subject><subject>Stat3 protein</subject><subject>STAT3 Transcription Factor - metabolism</subject><subject>Transcription, Genetic - drug effects</subject><subject>Western blotting</subject><issn>0960-7722</issn><issn>1365-2184</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><recordid>eNp1kctOAyEYRonRaL0sfAFD4srFKLcZphsT03hLTDRa14Qy_7ToFCrM1HTnO_iGPolo1ehCWBDCyQG-D6FdSg5pGkdmFg4pk4KvoB7lRZ4xWopV1CP9gmRSMraBNmN8IIRyKot1tMFpX3CR5z30eGl0sNbhWYA5uDZiD7ENfgwOV1BbY8GZxdvLq3VVZ6DCupmDb3TAI-8ANz5G3E6C78aTpPBT31o3xj628KGAaCOeW43vhidDvo3Wat1E2Plat9D92elwcJFdXZ9fDk6uMiME5xkveF2y2hDCiGB9LkdC5FBWdS0pZ5SwShNSsjTLiojaSCjlSOucFWljOPAtdLz0zrrRFCqTvhV0o2bBTnVYKK-t-nvi7ESN_VxJIkpG-kmw_yUI_qlLeagH3wWX3qxYijclR0uZqIMlZUJKIUD9cwMl6qMXlXpRn70kdu_3k37I7yIScLQEnm0Di_9NanBzu1S-A9Ehmmk</recordid><startdate>202002</startdate><enddate>202002</enddate><creator>Xu, Hongyuan</creator><creator>Zhou, Siru</creator><creator>Qu, Ranyi</creator><creator>Yang, Yiling</creator><creator>Gong, Xinyi</creator><creator>Hong, Yueyang</creator><creator>Jin, Anting</creator><creator>Huang, Xiangru</creator><creator>Dai, Qinggang</creator><creator>Jiang, Lingyong</creator><general>John Wiley & Sons, Inc</general><general>John Wiley and Sons Inc</general><scope>24P</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>LK8</scope><scope>M7P</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-8941-2770</orcidid><orcidid>https://orcid.org/0000-0002-5558-1629</orcidid></search><sort><creationdate>202002</creationdate><title>Icariin prevents oestrogen deficiency–induced alveolar bone loss through promoting osteogenesis via STAT3</title><author>Xu, Hongyuan ; Zhou, Siru ; Qu, Ranyi ; Yang, Yiling ; Gong, Xinyi ; Hong, Yueyang ; Jin, Anting ; Huang, Xiangru ; Dai, Qinggang ; Jiang, Lingyong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4433-363f82fc002042937b445e8dff7132102da00828288d04fc7e87baa5264fcc3e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Alizarin</topic><topic>Alveolar bone</topic><topic>Alveolar Bone Loss - drug therapy</topic><topic>Alveolar Bone Loss - metabolism</topic><topic>alveolar bone osteoporosis</topic><topic>Animals</topic><topic>Apoptosis</topic><topic>Binding sites</topic><topic>Biomedical materials</topic><topic>Biotechnology industry</topic><topic>Bone growth</topic><topic>Bone loss</topic><topic>Bones</topic><topic>Calcein</topic><topic>Cell Differentiation - drug effects</topic><topic>Cell growth</topic><topic>Cells, Cultured</topic><topic>Chromatin</topic><topic>Differentiation</topic><topic>Estrogens</topic><topic>Estrogens - metabolism</topic><topic>Flavonoids - pharmacology</topic><topic>Fractures</topic><topic>Icariin</topic><topic>Immunofluorescence</topic><topic>Immunoprecipitation</topic><topic>Labeling</topic><topic>Mandible</topic><topic>mandibular bone marrow stromal cell</topic><topic>Medical research</topic><topic>Mesenchymal Stem Cells - drug effects</topic><topic>Mesenchymal Stem Cells - metabolism</topic><topic>Metabolism</topic><topic>Original</topic><topic>Osteoblastogenesis</topic><topic>Osteoblasts - drug effects</topic><topic>Osteoblasts - metabolism</topic><topic>Osteocalcin</topic><topic>Osteocalcin - drug effects</topic><topic>Osteocalcin - metabolism</topic><topic>Osteogenesis</topic><topic>Osteogenesis - drug effects</topic><topic>Osteoporosis</topic><topic>Osteoporosis - drug therapy</topic><topic>Osteoporosis - metabolism</topic><topic>Ovariectomy</topic><topic>Phosphatase</topic><topic>Phosphorylation</topic><topic>Phosphorylation - drug effects</topic><topic>Polymerase chain reaction</topic><topic>Proteins</topic><topic>Rats</topic><topic>Reverse transcription</topic><topic>Side effects</topic><topic>Signal transduction</topic><topic>Signal Transduction - drug effects</topic><topic>Staining</topic><topic>STAT3</topic><topic>Stat3 protein</topic><topic>STAT3 Transcription Factor - metabolism</topic><topic>Transcription, Genetic - drug effects</topic><topic>Western blotting</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xu, Hongyuan</creatorcontrib><creatorcontrib>Zhou, Siru</creatorcontrib><creatorcontrib>Qu, Ranyi</creatorcontrib><creatorcontrib>Yang, Yiling</creatorcontrib><creatorcontrib>Gong, Xinyi</creatorcontrib><creatorcontrib>Hong, Yueyang</creatorcontrib><creatorcontrib>Jin, Anting</creatorcontrib><creatorcontrib>Huang, Xiangru</creatorcontrib><creatorcontrib>Dai, Qinggang</creatorcontrib><creatorcontrib>Jiang, Lingyong</creatorcontrib><collection>Wiley Online Library Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>ProQuest Biological Science Journals</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Cell proliferation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xu, Hongyuan</au><au>Zhou, Siru</au><au>Qu, Ranyi</au><au>Yang, Yiling</au><au>Gong, Xinyi</au><au>Hong, Yueyang</au><au>Jin, Anting</au><au>Huang, Xiangru</au><au>Dai, Qinggang</au><au>Jiang, Lingyong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Icariin prevents oestrogen deficiency–induced alveolar bone loss through promoting osteogenesis via STAT3</atitle><jtitle>Cell proliferation</jtitle><addtitle>Cell Prolif</addtitle><date>2020-02</date><risdate>2020</risdate><volume>53</volume><issue>2</issue><spage>e12743</spage><epage>n/a</epage><pages>e12743-n/a</pages><issn>0960-7722</issn><eissn>1365-2184</eissn><abstract>Objectives
Alveolar bone osteoporosis has attracted more and more attention because of its profound impact on stomatognathic function and treatment, but current treatments have not been targeted to alveolar bone and might even cause severe side effects. Thus, identifying the effects of anti‐osteoporosis agents on alveolar bone is essential. Icariin ameliorates metabolic dysfunction of long bones, but its effects on alveolar bone remain unclarified.
Materials and methods
BMSCs were isolated from rat mandibles (mBMSCs). The osteogenic potential of mBMSCs and the signalling pathway involved under icariin treatment were measured by ALP and alizarin red staining, reverse transcription‐polymerase chain reaction (RT‐PCR), Western blotting and immunofluorescence. Dual‐luciferase assay, chromatin immunoprecipitation (ChIP) and co‐immunoprecipitation were used to investigate the molecular mechanism. Ovariectomized and sham‐operated rats treated with or without icariin were analysed by micro‐CT, TRAP staining and calcein double labelling.
Results
We found that icariin promoted osteoblast differentiation of mBMSCs. Furthermore, STAT3 was critical for icariin‐promoted osteoblast differentiation, as indicated by increased phosphorylation levels in icariin‐treated mBMSCs, while preventing STAT3 activation blocked icariin‐induced osteoblast differentiation. Mechanistically, icariin‐promoted transcription of the downstream osteogenic gene osteocalcin (Ocn) through STAT3 and STAT3 bound to the promoter of Ocn. Notably, icariin prevented the alveolar bone osteoporosis induced by oestrogen deficiency through promoting bone formation.
Conclusions
For the first time, our work provides evidence supporting the potential application of icariin in promoting osteogenesis and treating alveolar bone osteoporosis.</abstract><cop>England</cop><pub>John Wiley & Sons, Inc</pub><pmid>31943455</pmid><doi>10.1111/cpr.12743</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0001-8941-2770</orcidid><orcidid>https://orcid.org/0000-0002-5558-1629</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0960-7722 |
ispartof | Cell proliferation, 2020-02, Vol.53 (2), p.e12743-n/a |
issn | 0960-7722 1365-2184 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7048209 |
source | MEDLINE; Wiley Online Library Open Access; DOAJ Directory of Open Access Journals; Wiley Online Library Journals Frontfile Complete; PubMed Central |
subjects | Alizarin Alveolar bone Alveolar Bone Loss - drug therapy Alveolar Bone Loss - metabolism alveolar bone osteoporosis Animals Apoptosis Binding sites Biomedical materials Biotechnology industry Bone growth Bone loss Bones Calcein Cell Differentiation - drug effects Cell growth Cells, Cultured Chromatin Differentiation Estrogens Estrogens - metabolism Flavonoids - pharmacology Fractures Icariin Immunofluorescence Immunoprecipitation Labeling Mandible mandibular bone marrow stromal cell Medical research Mesenchymal Stem Cells - drug effects Mesenchymal Stem Cells - metabolism Metabolism Original Osteoblastogenesis Osteoblasts - drug effects Osteoblasts - metabolism Osteocalcin Osteocalcin - drug effects Osteocalcin - metabolism Osteogenesis Osteogenesis - drug effects Osteoporosis Osteoporosis - drug therapy Osteoporosis - metabolism Ovariectomy Phosphatase Phosphorylation Phosphorylation - drug effects Polymerase chain reaction Proteins Rats Reverse transcription Side effects Signal transduction Signal Transduction - drug effects Staining STAT3 Stat3 protein STAT3 Transcription Factor - metabolism Transcription, Genetic - drug effects Western blotting |
title | Icariin prevents oestrogen deficiency–induced alveolar bone loss through promoting osteogenesis via STAT3 |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T00%3A53%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Icariin%20prevents%20oestrogen%20deficiency%E2%80%93induced%20alveolar%20bone%20loss%20through%20promoting%20osteogenesis%20via%20STAT3&rft.jtitle=Cell%20proliferation&rft.au=Xu,%20Hongyuan&rft.date=2020-02&rft.volume=53&rft.issue=2&rft.spage=e12743&rft.epage=n/a&rft.pages=e12743-n/a&rft.issn=0960-7722&rft.eissn=1365-2184&rft_id=info:doi/10.1111/cpr.12743&rft_dat=%3Cproquest_pubme%3E2365345187%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2365345187&rft_id=info:pmid/31943455&rfr_iscdi=true |