Icariin prevents oestrogen deficiency–induced alveolar bone loss through promoting osteogenesis via STAT3

Objectives Alveolar bone osteoporosis has attracted more and more attention because of its profound impact on stomatognathic function and treatment, but current treatments have not been targeted to alveolar bone and might even cause severe side effects. Thus, identifying the effects of anti‐osteopor...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Cell proliferation 2020-02, Vol.53 (2), p.e12743-n/a
Hauptverfasser: Xu, Hongyuan, Zhou, Siru, Qu, Ranyi, Yang, Yiling, Gong, Xinyi, Hong, Yueyang, Jin, Anting, Huang, Xiangru, Dai, Qinggang, Jiang, Lingyong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 2
container_start_page e12743
container_title Cell proliferation
container_volume 53
creator Xu, Hongyuan
Zhou, Siru
Qu, Ranyi
Yang, Yiling
Gong, Xinyi
Hong, Yueyang
Jin, Anting
Huang, Xiangru
Dai, Qinggang
Jiang, Lingyong
description Objectives Alveolar bone osteoporosis has attracted more and more attention because of its profound impact on stomatognathic function and treatment, but current treatments have not been targeted to alveolar bone and might even cause severe side effects. Thus, identifying the effects of anti‐osteoporosis agents on alveolar bone is essential. Icariin ameliorates metabolic dysfunction of long bones, but its effects on alveolar bone remain unclarified. Materials and methods BMSCs were isolated from rat mandibles (mBMSCs). The osteogenic potential of mBMSCs and the signalling pathway involved under icariin treatment were measured by ALP and alizarin red staining, reverse transcription‐polymerase chain reaction (RT‐PCR), Western blotting and immunofluorescence. Dual‐luciferase assay, chromatin immunoprecipitation (ChIP) and co‐immunoprecipitation were used to investigate the molecular mechanism. Ovariectomized and sham‐operated rats treated with or without icariin were analysed by micro‐CT, TRAP staining and calcein double labelling. Results We found that icariin promoted osteoblast differentiation of mBMSCs. Furthermore, STAT3 was critical for icariin‐promoted osteoblast differentiation, as indicated by increased phosphorylation levels in icariin‐treated mBMSCs, while preventing STAT3 activation blocked icariin‐induced osteoblast differentiation. Mechanistically, icariin‐promoted transcription of the downstream osteogenic gene osteocalcin (Ocn) through STAT3 and STAT3 bound to the promoter of Ocn. Notably, icariin prevented the alveolar bone osteoporosis induced by oestrogen deficiency through promoting bone formation. Conclusions For the first time, our work provides evidence supporting the potential application of icariin in promoting osteogenesis and treating alveolar bone osteoporosis.
doi_str_mv 10.1111/cpr.12743
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7048209</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2365345187</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4433-363f82fc002042937b445e8dff7132102da00828288d04fc7e87baa5264fcc3e3</originalsourceid><addsrcrecordid>eNp1kctOAyEYRonRaL0sfAFD4srFKLcZphsT03hLTDRa14Qy_7ToFCrM1HTnO_iGPolo1ehCWBDCyQG-D6FdSg5pGkdmFg4pk4KvoB7lRZ4xWopV1CP9gmRSMraBNmN8IIRyKot1tMFpX3CR5z30eGl0sNbhWYA5uDZiD7ENfgwOV1BbY8GZxdvLq3VVZ6DCupmDb3TAI-8ANz5G3E6C78aTpPBT31o3xj628KGAaCOeW43vhidDvo3Wat1E2Plat9D92elwcJFdXZ9fDk6uMiME5xkveF2y2hDCiGB9LkdC5FBWdS0pZ5SwShNSsjTLiojaSCjlSOucFWljOPAtdLz0zrrRFCqTvhV0o2bBTnVYKK-t-nvi7ESN_VxJIkpG-kmw_yUI_qlLeagH3wWX3qxYijclR0uZqIMlZUJKIUD9cwMl6qMXlXpRn70kdu_3k37I7yIScLQEnm0Di_9NanBzu1S-A9Ehmmk</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2365345187</pqid></control><display><type>article</type><title>Icariin prevents oestrogen deficiency–induced alveolar bone loss through promoting osteogenesis via STAT3</title><source>MEDLINE</source><source>Wiley Online Library Open Access</source><source>DOAJ Directory of Open Access Journals</source><source>Wiley Online Library Journals Frontfile Complete</source><source>PubMed Central</source><creator>Xu, Hongyuan ; Zhou, Siru ; Qu, Ranyi ; Yang, Yiling ; Gong, Xinyi ; Hong, Yueyang ; Jin, Anting ; Huang, Xiangru ; Dai, Qinggang ; Jiang, Lingyong</creator><creatorcontrib>Xu, Hongyuan ; Zhou, Siru ; Qu, Ranyi ; Yang, Yiling ; Gong, Xinyi ; Hong, Yueyang ; Jin, Anting ; Huang, Xiangru ; Dai, Qinggang ; Jiang, Lingyong</creatorcontrib><description>Objectives Alveolar bone osteoporosis has attracted more and more attention because of its profound impact on stomatognathic function and treatment, but current treatments have not been targeted to alveolar bone and might even cause severe side effects. Thus, identifying the effects of anti‐osteoporosis agents on alveolar bone is essential. Icariin ameliorates metabolic dysfunction of long bones, but its effects on alveolar bone remain unclarified. Materials and methods BMSCs were isolated from rat mandibles (mBMSCs). The osteogenic potential of mBMSCs and the signalling pathway involved under icariin treatment were measured by ALP and alizarin red staining, reverse transcription‐polymerase chain reaction (RT‐PCR), Western blotting and immunofluorescence. Dual‐luciferase assay, chromatin immunoprecipitation (ChIP) and co‐immunoprecipitation were used to investigate the molecular mechanism. Ovariectomized and sham‐operated rats treated with or without icariin were analysed by micro‐CT, TRAP staining and calcein double labelling. Results We found that icariin promoted osteoblast differentiation of mBMSCs. Furthermore, STAT3 was critical for icariin‐promoted osteoblast differentiation, as indicated by increased phosphorylation levels in icariin‐treated mBMSCs, while preventing STAT3 activation blocked icariin‐induced osteoblast differentiation. Mechanistically, icariin‐promoted transcription of the downstream osteogenic gene osteocalcin (Ocn) through STAT3 and STAT3 bound to the promoter of Ocn. Notably, icariin prevented the alveolar bone osteoporosis induced by oestrogen deficiency through promoting bone formation. Conclusions For the first time, our work provides evidence supporting the potential application of icariin in promoting osteogenesis and treating alveolar bone osteoporosis.</description><identifier>ISSN: 0960-7722</identifier><identifier>EISSN: 1365-2184</identifier><identifier>DOI: 10.1111/cpr.12743</identifier><identifier>PMID: 31943455</identifier><language>eng</language><publisher>England: John Wiley &amp; Sons, Inc</publisher><subject>Alizarin ; Alveolar bone ; Alveolar Bone Loss - drug therapy ; Alveolar Bone Loss - metabolism ; alveolar bone osteoporosis ; Animals ; Apoptosis ; Binding sites ; Biomedical materials ; Biotechnology industry ; Bone growth ; Bone loss ; Bones ; Calcein ; Cell Differentiation - drug effects ; Cell growth ; Cells, Cultured ; Chromatin ; Differentiation ; Estrogens ; Estrogens - metabolism ; Flavonoids - pharmacology ; Fractures ; Icariin ; Immunofluorescence ; Immunoprecipitation ; Labeling ; Mandible ; mandibular bone marrow stromal cell ; Medical research ; Mesenchymal Stem Cells - drug effects ; Mesenchymal Stem Cells - metabolism ; Metabolism ; Original ; Osteoblastogenesis ; Osteoblasts - drug effects ; Osteoblasts - metabolism ; Osteocalcin ; Osteocalcin - drug effects ; Osteocalcin - metabolism ; Osteogenesis ; Osteogenesis - drug effects ; Osteoporosis ; Osteoporosis - drug therapy ; Osteoporosis - metabolism ; Ovariectomy ; Phosphatase ; Phosphorylation ; Phosphorylation - drug effects ; Polymerase chain reaction ; Proteins ; Rats ; Reverse transcription ; Side effects ; Signal transduction ; Signal Transduction - drug effects ; Staining ; STAT3 ; Stat3 protein ; STAT3 Transcription Factor - metabolism ; Transcription, Genetic - drug effects ; Western blotting</subject><ispartof>Cell proliferation, 2020-02, Vol.53 (2), p.e12743-n/a</ispartof><rights>2020 The Authors. Published by John Wiley &amp; Sons Ltd.</rights><rights>2020 The Authors. Cell Proliferation Published by John Wiley &amp; Sons Ltd.</rights><rights>2020. This work is published under http://creativecommons.org/licenses/by/4.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4433-363f82fc002042937b445e8dff7132102da00828288d04fc7e87baa5264fcc3e3</citedby><cites>FETCH-LOGICAL-c4433-363f82fc002042937b445e8dff7132102da00828288d04fc7e87baa5264fcc3e3</cites><orcidid>0000-0001-8941-2770 ; 0000-0002-5558-1629</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7048209/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7048209/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,1411,11541,27901,27902,45550,45551,46027,46451,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31943455$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Xu, Hongyuan</creatorcontrib><creatorcontrib>Zhou, Siru</creatorcontrib><creatorcontrib>Qu, Ranyi</creatorcontrib><creatorcontrib>Yang, Yiling</creatorcontrib><creatorcontrib>Gong, Xinyi</creatorcontrib><creatorcontrib>Hong, Yueyang</creatorcontrib><creatorcontrib>Jin, Anting</creatorcontrib><creatorcontrib>Huang, Xiangru</creatorcontrib><creatorcontrib>Dai, Qinggang</creatorcontrib><creatorcontrib>Jiang, Lingyong</creatorcontrib><title>Icariin prevents oestrogen deficiency–induced alveolar bone loss through promoting osteogenesis via STAT3</title><title>Cell proliferation</title><addtitle>Cell Prolif</addtitle><description>Objectives Alveolar bone osteoporosis has attracted more and more attention because of its profound impact on stomatognathic function and treatment, but current treatments have not been targeted to alveolar bone and might even cause severe side effects. Thus, identifying the effects of anti‐osteoporosis agents on alveolar bone is essential. Icariin ameliorates metabolic dysfunction of long bones, but its effects on alveolar bone remain unclarified. Materials and methods BMSCs were isolated from rat mandibles (mBMSCs). The osteogenic potential of mBMSCs and the signalling pathway involved under icariin treatment were measured by ALP and alizarin red staining, reverse transcription‐polymerase chain reaction (RT‐PCR), Western blotting and immunofluorescence. Dual‐luciferase assay, chromatin immunoprecipitation (ChIP) and co‐immunoprecipitation were used to investigate the molecular mechanism. Ovariectomized and sham‐operated rats treated with or without icariin were analysed by micro‐CT, TRAP staining and calcein double labelling. Results We found that icariin promoted osteoblast differentiation of mBMSCs. Furthermore, STAT3 was critical for icariin‐promoted osteoblast differentiation, as indicated by increased phosphorylation levels in icariin‐treated mBMSCs, while preventing STAT3 activation blocked icariin‐induced osteoblast differentiation. Mechanistically, icariin‐promoted transcription of the downstream osteogenic gene osteocalcin (Ocn) through STAT3 and STAT3 bound to the promoter of Ocn. Notably, icariin prevented the alveolar bone osteoporosis induced by oestrogen deficiency through promoting bone formation. Conclusions For the first time, our work provides evidence supporting the potential application of icariin in promoting osteogenesis and treating alveolar bone osteoporosis.</description><subject>Alizarin</subject><subject>Alveolar bone</subject><subject>Alveolar Bone Loss - drug therapy</subject><subject>Alveolar Bone Loss - metabolism</subject><subject>alveolar bone osteoporosis</subject><subject>Animals</subject><subject>Apoptosis</subject><subject>Binding sites</subject><subject>Biomedical materials</subject><subject>Biotechnology industry</subject><subject>Bone growth</subject><subject>Bone loss</subject><subject>Bones</subject><subject>Calcein</subject><subject>Cell Differentiation - drug effects</subject><subject>Cell growth</subject><subject>Cells, Cultured</subject><subject>Chromatin</subject><subject>Differentiation</subject><subject>Estrogens</subject><subject>Estrogens - metabolism</subject><subject>Flavonoids - pharmacology</subject><subject>Fractures</subject><subject>Icariin</subject><subject>Immunofluorescence</subject><subject>Immunoprecipitation</subject><subject>Labeling</subject><subject>Mandible</subject><subject>mandibular bone marrow stromal cell</subject><subject>Medical research</subject><subject>Mesenchymal Stem Cells - drug effects</subject><subject>Mesenchymal Stem Cells - metabolism</subject><subject>Metabolism</subject><subject>Original</subject><subject>Osteoblastogenesis</subject><subject>Osteoblasts - drug effects</subject><subject>Osteoblasts - metabolism</subject><subject>Osteocalcin</subject><subject>Osteocalcin - drug effects</subject><subject>Osteocalcin - metabolism</subject><subject>Osteogenesis</subject><subject>Osteogenesis - drug effects</subject><subject>Osteoporosis</subject><subject>Osteoporosis - drug therapy</subject><subject>Osteoporosis - metabolism</subject><subject>Ovariectomy</subject><subject>Phosphatase</subject><subject>Phosphorylation</subject><subject>Phosphorylation - drug effects</subject><subject>Polymerase chain reaction</subject><subject>Proteins</subject><subject>Rats</subject><subject>Reverse transcription</subject><subject>Side effects</subject><subject>Signal transduction</subject><subject>Signal Transduction - drug effects</subject><subject>Staining</subject><subject>STAT3</subject><subject>Stat3 protein</subject><subject>STAT3 Transcription Factor - metabolism</subject><subject>Transcription, Genetic - drug effects</subject><subject>Western blotting</subject><issn>0960-7722</issn><issn>1365-2184</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><recordid>eNp1kctOAyEYRonRaL0sfAFD4srFKLcZphsT03hLTDRa14Qy_7ToFCrM1HTnO_iGPolo1ehCWBDCyQG-D6FdSg5pGkdmFg4pk4KvoB7lRZ4xWopV1CP9gmRSMraBNmN8IIRyKot1tMFpX3CR5z30eGl0sNbhWYA5uDZiD7ENfgwOV1BbY8GZxdvLq3VVZ6DCupmDb3TAI-8ANz5G3E6C78aTpPBT31o3xj628KGAaCOeW43vhidDvo3Wat1E2Plat9D92elwcJFdXZ9fDk6uMiME5xkveF2y2hDCiGB9LkdC5FBWdS0pZ5SwShNSsjTLiojaSCjlSOucFWljOPAtdLz0zrrRFCqTvhV0o2bBTnVYKK-t-nvi7ESN_VxJIkpG-kmw_yUI_qlLeagH3wWX3qxYijclR0uZqIMlZUJKIUD9cwMl6qMXlXpRn70kdu_3k37I7yIScLQEnm0Di_9NanBzu1S-A9Ehmmk</recordid><startdate>202002</startdate><enddate>202002</enddate><creator>Xu, Hongyuan</creator><creator>Zhou, Siru</creator><creator>Qu, Ranyi</creator><creator>Yang, Yiling</creator><creator>Gong, Xinyi</creator><creator>Hong, Yueyang</creator><creator>Jin, Anting</creator><creator>Huang, Xiangru</creator><creator>Dai, Qinggang</creator><creator>Jiang, Lingyong</creator><general>John Wiley &amp; Sons, Inc</general><general>John Wiley and Sons Inc</general><scope>24P</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>LK8</scope><scope>M7P</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-8941-2770</orcidid><orcidid>https://orcid.org/0000-0002-5558-1629</orcidid></search><sort><creationdate>202002</creationdate><title>Icariin prevents oestrogen deficiency–induced alveolar bone loss through promoting osteogenesis via STAT3</title><author>Xu, Hongyuan ; Zhou, Siru ; Qu, Ranyi ; Yang, Yiling ; Gong, Xinyi ; Hong, Yueyang ; Jin, Anting ; Huang, Xiangru ; Dai, Qinggang ; Jiang, Lingyong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4433-363f82fc002042937b445e8dff7132102da00828288d04fc7e87baa5264fcc3e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Alizarin</topic><topic>Alveolar bone</topic><topic>Alveolar Bone Loss - drug therapy</topic><topic>Alveolar Bone Loss - metabolism</topic><topic>alveolar bone osteoporosis</topic><topic>Animals</topic><topic>Apoptosis</topic><topic>Binding sites</topic><topic>Biomedical materials</topic><topic>Biotechnology industry</topic><topic>Bone growth</topic><topic>Bone loss</topic><topic>Bones</topic><topic>Calcein</topic><topic>Cell Differentiation - drug effects</topic><topic>Cell growth</topic><topic>Cells, Cultured</topic><topic>Chromatin</topic><topic>Differentiation</topic><topic>Estrogens</topic><topic>Estrogens - metabolism</topic><topic>Flavonoids - pharmacology</topic><topic>Fractures</topic><topic>Icariin</topic><topic>Immunofluorescence</topic><topic>Immunoprecipitation</topic><topic>Labeling</topic><topic>Mandible</topic><topic>mandibular bone marrow stromal cell</topic><topic>Medical research</topic><topic>Mesenchymal Stem Cells - drug effects</topic><topic>Mesenchymal Stem Cells - metabolism</topic><topic>Metabolism</topic><topic>Original</topic><topic>Osteoblastogenesis</topic><topic>Osteoblasts - drug effects</topic><topic>Osteoblasts - metabolism</topic><topic>Osteocalcin</topic><topic>Osteocalcin - drug effects</topic><topic>Osteocalcin - metabolism</topic><topic>Osteogenesis</topic><topic>Osteogenesis - drug effects</topic><topic>Osteoporosis</topic><topic>Osteoporosis - drug therapy</topic><topic>Osteoporosis - metabolism</topic><topic>Ovariectomy</topic><topic>Phosphatase</topic><topic>Phosphorylation</topic><topic>Phosphorylation - drug effects</topic><topic>Polymerase chain reaction</topic><topic>Proteins</topic><topic>Rats</topic><topic>Reverse transcription</topic><topic>Side effects</topic><topic>Signal transduction</topic><topic>Signal Transduction - drug effects</topic><topic>Staining</topic><topic>STAT3</topic><topic>Stat3 protein</topic><topic>STAT3 Transcription Factor - metabolism</topic><topic>Transcription, Genetic - drug effects</topic><topic>Western blotting</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xu, Hongyuan</creatorcontrib><creatorcontrib>Zhou, Siru</creatorcontrib><creatorcontrib>Qu, Ranyi</creatorcontrib><creatorcontrib>Yang, Yiling</creatorcontrib><creatorcontrib>Gong, Xinyi</creatorcontrib><creatorcontrib>Hong, Yueyang</creatorcontrib><creatorcontrib>Jin, Anting</creatorcontrib><creatorcontrib>Huang, Xiangru</creatorcontrib><creatorcontrib>Dai, Qinggang</creatorcontrib><creatorcontrib>Jiang, Lingyong</creatorcontrib><collection>Wiley Online Library Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>ProQuest Biological Science Journals</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Cell proliferation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xu, Hongyuan</au><au>Zhou, Siru</au><au>Qu, Ranyi</au><au>Yang, Yiling</au><au>Gong, Xinyi</au><au>Hong, Yueyang</au><au>Jin, Anting</au><au>Huang, Xiangru</au><au>Dai, Qinggang</au><au>Jiang, Lingyong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Icariin prevents oestrogen deficiency–induced alveolar bone loss through promoting osteogenesis via STAT3</atitle><jtitle>Cell proliferation</jtitle><addtitle>Cell Prolif</addtitle><date>2020-02</date><risdate>2020</risdate><volume>53</volume><issue>2</issue><spage>e12743</spage><epage>n/a</epage><pages>e12743-n/a</pages><issn>0960-7722</issn><eissn>1365-2184</eissn><abstract>Objectives Alveolar bone osteoporosis has attracted more and more attention because of its profound impact on stomatognathic function and treatment, but current treatments have not been targeted to alveolar bone and might even cause severe side effects. Thus, identifying the effects of anti‐osteoporosis agents on alveolar bone is essential. Icariin ameliorates metabolic dysfunction of long bones, but its effects on alveolar bone remain unclarified. Materials and methods BMSCs were isolated from rat mandibles (mBMSCs). The osteogenic potential of mBMSCs and the signalling pathway involved under icariin treatment were measured by ALP and alizarin red staining, reverse transcription‐polymerase chain reaction (RT‐PCR), Western blotting and immunofluorescence. Dual‐luciferase assay, chromatin immunoprecipitation (ChIP) and co‐immunoprecipitation were used to investigate the molecular mechanism. Ovariectomized and sham‐operated rats treated with or without icariin were analysed by micro‐CT, TRAP staining and calcein double labelling. Results We found that icariin promoted osteoblast differentiation of mBMSCs. Furthermore, STAT3 was critical for icariin‐promoted osteoblast differentiation, as indicated by increased phosphorylation levels in icariin‐treated mBMSCs, while preventing STAT3 activation blocked icariin‐induced osteoblast differentiation. Mechanistically, icariin‐promoted transcription of the downstream osteogenic gene osteocalcin (Ocn) through STAT3 and STAT3 bound to the promoter of Ocn. Notably, icariin prevented the alveolar bone osteoporosis induced by oestrogen deficiency through promoting bone formation. Conclusions For the first time, our work provides evidence supporting the potential application of icariin in promoting osteogenesis and treating alveolar bone osteoporosis.</abstract><cop>England</cop><pub>John Wiley &amp; Sons, Inc</pub><pmid>31943455</pmid><doi>10.1111/cpr.12743</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0001-8941-2770</orcidid><orcidid>https://orcid.org/0000-0002-5558-1629</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0960-7722
ispartof Cell proliferation, 2020-02, Vol.53 (2), p.e12743-n/a
issn 0960-7722
1365-2184
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7048209
source MEDLINE; Wiley Online Library Open Access; DOAJ Directory of Open Access Journals; Wiley Online Library Journals Frontfile Complete; PubMed Central
subjects Alizarin
Alveolar bone
Alveolar Bone Loss - drug therapy
Alveolar Bone Loss - metabolism
alveolar bone osteoporosis
Animals
Apoptosis
Binding sites
Biomedical materials
Biotechnology industry
Bone growth
Bone loss
Bones
Calcein
Cell Differentiation - drug effects
Cell growth
Cells, Cultured
Chromatin
Differentiation
Estrogens
Estrogens - metabolism
Flavonoids - pharmacology
Fractures
Icariin
Immunofluorescence
Immunoprecipitation
Labeling
Mandible
mandibular bone marrow stromal cell
Medical research
Mesenchymal Stem Cells - drug effects
Mesenchymal Stem Cells - metabolism
Metabolism
Original
Osteoblastogenesis
Osteoblasts - drug effects
Osteoblasts - metabolism
Osteocalcin
Osteocalcin - drug effects
Osteocalcin - metabolism
Osteogenesis
Osteogenesis - drug effects
Osteoporosis
Osteoporosis - drug therapy
Osteoporosis - metabolism
Ovariectomy
Phosphatase
Phosphorylation
Phosphorylation - drug effects
Polymerase chain reaction
Proteins
Rats
Reverse transcription
Side effects
Signal transduction
Signal Transduction - drug effects
Staining
STAT3
Stat3 protein
STAT3 Transcription Factor - metabolism
Transcription, Genetic - drug effects
Western blotting
title Icariin prevents oestrogen deficiency–induced alveolar bone loss through promoting osteogenesis via STAT3
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T00%3A53%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Icariin%20prevents%20oestrogen%20deficiency%E2%80%93induced%20alveolar%20bone%20loss%20through%20promoting%20osteogenesis%20via%20STAT3&rft.jtitle=Cell%20proliferation&rft.au=Xu,%20Hongyuan&rft.date=2020-02&rft.volume=53&rft.issue=2&rft.spage=e12743&rft.epage=n/a&rft.pages=e12743-n/a&rft.issn=0960-7722&rft.eissn=1365-2184&rft_id=info:doi/10.1111/cpr.12743&rft_dat=%3Cproquest_pubme%3E2365345187%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2365345187&rft_id=info:pmid/31943455&rfr_iscdi=true