Insights into the passive mechanical behavior of left ventricular myocardium using a robust constitutive model based on full 3D kinematics
Myocardium possesses a hierarchical structure that results in complex three-dimensional (3D) mechanical behavior, forming a critical component of ventricular function in health and disease. A wide range of constitutive model forms have been proposed for myocardium since the first planar biaxial stud...
Gespeichert in:
Veröffentlicht in: | Journal of the mechanical behavior of biomedical materials 2020-03, Vol.103, p.103508-103508, Article 103508 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 103508 |
---|---|
container_issue | |
container_start_page | 103508 |
container_title | Journal of the mechanical behavior of biomedical materials |
container_volume | 103 |
creator | Li, David S. Avazmohammadi, Reza Merchant, Samer S. Kawamura, Tomonori Hsu, Edward W. Gorman, Joseph H. Gorman, Robert C. Sacks, Michael S. |
description | Myocardium possesses a hierarchical structure that results in complex three-dimensional (3D) mechanical behavior, forming a critical component of ventricular function in health and disease. A wide range of constitutive model forms have been proposed for myocardium since the first planar biaxial studies were performed by Demer and Yin (J. Physiol. 339 (1), 1983). While there have been extensive studies since, none have been based on full 3D kinematic data, nor have they utilized optimal experimental design to estimate constitutive parameters, which may limit their predictive capability. Herein we have applied our novel 3D numerical-experimental methodology (Avazmohammadi et al., Biomechanics Model. Mechanobiol. 2018) to explore the applicability of an orthotropic constitutive model for passive ventricular myocardium (Holzapfel and Ogden, Philos. Trans. R. Soc. Lond.: Math. Phys. Eng. Sci. 367, 2009) by integrating 3D optimal loading paths, spatially varying material structure, and inverse modeling techniques. Our findings indicated that the initial model form was not successful in reproducing all optimal loading paths, due to previously unreported coupling behaviors via shearing of myofibers and extracellular collagen fibers in the myocardium. This observation necessitated extension of the constitutive model by adding two additional terms based on the I8(C) pseudo-invariant in the fiber-normal and sheet-normal directions. The modified model accurately reproduced all optimal loading paths and exhibited improved predictive capabilities. These unique results suggest that more complete constitutive models are required to fully capture the full 3D biomechanical response of left ventricular myocardium. The present approach is thus crucial for improved understanding and performance in cardiac modeling in healthy, diseased, and treatment scenarios. |
doi_str_mv | 10.1016/j.jmbbm.2019.103508 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7045908</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1751616119305247</els_id><sourcerecordid>2363086791</sourcerecordid><originalsourceid>FETCH-LOGICAL-c459t-b12e90d38854e66b9235839a563a2cc9437eaa6025f4a857007e054154b7e17b3</originalsourceid><addsrcrecordid>eNp9kc9u1DAQhyMEon_gCZCQj1yyjOPYcQ4goQKlUiUucLYmzmTXS2IvthOpr8BTk-2WCi6cbNm_-Wbsryhecdhw4OrtfrOfum7aVMDb9URI0E-Kc64bXQLX8HTdN5KXiit-VlyktAdQAFo_L85EBS20NT8vft345La7nJjzObC8I3bAlNxCbCK7Q-8sjqyjHS4uRBYGNtKQ2UI-R2fnESOb7oLF2Lt5YnNyfsuQxdDNKTMbfMouz_keF3paSZioZ8GzYR5HJj6yH87ThNnZ9KJ4NuCY6OXDell8__zp29WX8vbr9c3Vh9vS1rLNZccraqEXWsualOraSkgtWpRKYGVtW4uGEBVUcqhRywagIZA1l3XXEG86cVm8P3EPczdRb49PwdEcopsw3pmAzvx7493ObMNiGlgHAL0C3jwAYvg5U8pmcsnSOKKnMCdTCSVAq6bla1ScojaGlCINj204mKNFszf3Fs3RojlZXKte_z3hY80fbWvg3SlA6z8tjqJJ1pG31LtINps-uP82-A2hzLHv</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2363086791</pqid></control><display><type>article</type><title>Insights into the passive mechanical behavior of left ventricular myocardium using a robust constitutive model based on full 3D kinematics</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals</source><creator>Li, David S. ; Avazmohammadi, Reza ; Merchant, Samer S. ; Kawamura, Tomonori ; Hsu, Edward W. ; Gorman, Joseph H. ; Gorman, Robert C. ; Sacks, Michael S.</creator><creatorcontrib>Li, David S. ; Avazmohammadi, Reza ; Merchant, Samer S. ; Kawamura, Tomonori ; Hsu, Edward W. ; Gorman, Joseph H. ; Gorman, Robert C. ; Sacks, Michael S.</creatorcontrib><description>Myocardium possesses a hierarchical structure that results in complex three-dimensional (3D) mechanical behavior, forming a critical component of ventricular function in health and disease. A wide range of constitutive model forms have been proposed for myocardium since the first planar biaxial studies were performed by Demer and Yin (J. Physiol. 339 (1), 1983). While there have been extensive studies since, none have been based on full 3D kinematic data, nor have they utilized optimal experimental design to estimate constitutive parameters, which may limit their predictive capability. Herein we have applied our novel 3D numerical-experimental methodology (Avazmohammadi et al., Biomechanics Model. Mechanobiol. 2018) to explore the applicability of an orthotropic constitutive model for passive ventricular myocardium (Holzapfel and Ogden, Philos. Trans. R. Soc. Lond.: Math. Phys. Eng. Sci. 367, 2009) by integrating 3D optimal loading paths, spatially varying material structure, and inverse modeling techniques. Our findings indicated that the initial model form was not successful in reproducing all optimal loading paths, due to previously unreported coupling behaviors via shearing of myofibers and extracellular collagen fibers in the myocardium. This observation necessitated extension of the constitutive model by adding two additional terms based on the I8(C) pseudo-invariant in the fiber-normal and sheet-normal directions. The modified model accurately reproduced all optimal loading paths and exhibited improved predictive capabilities. These unique results suggest that more complete constitutive models are required to fully capture the full 3D biomechanical response of left ventricular myocardium. The present approach is thus crucial for improved understanding and performance in cardiac modeling in healthy, diseased, and treatment scenarios.</description><identifier>ISSN: 1751-6161</identifier><identifier>EISSN: 1878-0180</identifier><identifier>DOI: 10.1016/j.jmbbm.2019.103508</identifier><identifier>PMID: 32090941</identifier><language>eng</language><publisher>Netherlands: Elsevier Ltd</publisher><subject>Biomechanical Phenomena ; Constitutive modeling ; Heart ; Heart Ventricles ; Inverse modeling ; Myocardium ; Optimal experimental design ; Stress, Mechanical</subject><ispartof>Journal of the mechanical behavior of biomedical materials, 2020-03, Vol.103, p.103508-103508, Article 103508</ispartof><rights>2019 Elsevier Ltd</rights><rights>Copyright © 2019 Elsevier Ltd. All rights reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c459t-b12e90d38854e66b9235839a563a2cc9437eaa6025f4a857007e054154b7e17b3</citedby><cites>FETCH-LOGICAL-c459t-b12e90d38854e66b9235839a563a2cc9437eaa6025f4a857007e054154b7e17b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S1751616119305247$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,776,780,881,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32090941$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Li, David S.</creatorcontrib><creatorcontrib>Avazmohammadi, Reza</creatorcontrib><creatorcontrib>Merchant, Samer S.</creatorcontrib><creatorcontrib>Kawamura, Tomonori</creatorcontrib><creatorcontrib>Hsu, Edward W.</creatorcontrib><creatorcontrib>Gorman, Joseph H.</creatorcontrib><creatorcontrib>Gorman, Robert C.</creatorcontrib><creatorcontrib>Sacks, Michael S.</creatorcontrib><title>Insights into the passive mechanical behavior of left ventricular myocardium using a robust constitutive model based on full 3D kinematics</title><title>Journal of the mechanical behavior of biomedical materials</title><addtitle>J Mech Behav Biomed Mater</addtitle><description>Myocardium possesses a hierarchical structure that results in complex three-dimensional (3D) mechanical behavior, forming a critical component of ventricular function in health and disease. A wide range of constitutive model forms have been proposed for myocardium since the first planar biaxial studies were performed by Demer and Yin (J. Physiol. 339 (1), 1983). While there have been extensive studies since, none have been based on full 3D kinematic data, nor have they utilized optimal experimental design to estimate constitutive parameters, which may limit their predictive capability. Herein we have applied our novel 3D numerical-experimental methodology (Avazmohammadi et al., Biomechanics Model. Mechanobiol. 2018) to explore the applicability of an orthotropic constitutive model for passive ventricular myocardium (Holzapfel and Ogden, Philos. Trans. R. Soc. Lond.: Math. Phys. Eng. Sci. 367, 2009) by integrating 3D optimal loading paths, spatially varying material structure, and inverse modeling techniques. Our findings indicated that the initial model form was not successful in reproducing all optimal loading paths, due to previously unreported coupling behaviors via shearing of myofibers and extracellular collagen fibers in the myocardium. This observation necessitated extension of the constitutive model by adding two additional terms based on the I8(C) pseudo-invariant in the fiber-normal and sheet-normal directions. The modified model accurately reproduced all optimal loading paths and exhibited improved predictive capabilities. These unique results suggest that more complete constitutive models are required to fully capture the full 3D biomechanical response of left ventricular myocardium. The present approach is thus crucial for improved understanding and performance in cardiac modeling in healthy, diseased, and treatment scenarios.</description><subject>Biomechanical Phenomena</subject><subject>Constitutive modeling</subject><subject>Heart</subject><subject>Heart Ventricles</subject><subject>Inverse modeling</subject><subject>Myocardium</subject><subject>Optimal experimental design</subject><subject>Stress, Mechanical</subject><issn>1751-6161</issn><issn>1878-0180</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kc9u1DAQhyMEon_gCZCQj1yyjOPYcQ4goQKlUiUucLYmzmTXS2IvthOpr8BTk-2WCi6cbNm_-Wbsryhecdhw4OrtfrOfum7aVMDb9URI0E-Kc64bXQLX8HTdN5KXiit-VlyktAdQAFo_L85EBS20NT8vft345La7nJjzObC8I3bAlNxCbCK7Q-8sjqyjHS4uRBYGNtKQ2UI-R2fnESOb7oLF2Lt5YnNyfsuQxdDNKTMbfMouz_keF3paSZioZ8GzYR5HJj6yH87ThNnZ9KJ4NuCY6OXDell8__zp29WX8vbr9c3Vh9vS1rLNZccraqEXWsualOraSkgtWpRKYGVtW4uGEBVUcqhRywagIZA1l3XXEG86cVm8P3EPczdRb49PwdEcopsw3pmAzvx7493ObMNiGlgHAL0C3jwAYvg5U8pmcsnSOKKnMCdTCSVAq6bla1ScojaGlCINj204mKNFszf3Fs3RojlZXKte_z3hY80fbWvg3SlA6z8tjqJJ1pG31LtINps-uP82-A2hzLHv</recordid><startdate>20200301</startdate><enddate>20200301</enddate><creator>Li, David S.</creator><creator>Avazmohammadi, Reza</creator><creator>Merchant, Samer S.</creator><creator>Kawamura, Tomonori</creator><creator>Hsu, Edward W.</creator><creator>Gorman, Joseph H.</creator><creator>Gorman, Robert C.</creator><creator>Sacks, Michael S.</creator><general>Elsevier Ltd</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20200301</creationdate><title>Insights into the passive mechanical behavior of left ventricular myocardium using a robust constitutive model based on full 3D kinematics</title><author>Li, David S. ; Avazmohammadi, Reza ; Merchant, Samer S. ; Kawamura, Tomonori ; Hsu, Edward W. ; Gorman, Joseph H. ; Gorman, Robert C. ; Sacks, Michael S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c459t-b12e90d38854e66b9235839a563a2cc9437eaa6025f4a857007e054154b7e17b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Biomechanical Phenomena</topic><topic>Constitutive modeling</topic><topic>Heart</topic><topic>Heart Ventricles</topic><topic>Inverse modeling</topic><topic>Myocardium</topic><topic>Optimal experimental design</topic><topic>Stress, Mechanical</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, David S.</creatorcontrib><creatorcontrib>Avazmohammadi, Reza</creatorcontrib><creatorcontrib>Merchant, Samer S.</creatorcontrib><creatorcontrib>Kawamura, Tomonori</creatorcontrib><creatorcontrib>Hsu, Edward W.</creatorcontrib><creatorcontrib>Gorman, Joseph H.</creatorcontrib><creatorcontrib>Gorman, Robert C.</creatorcontrib><creatorcontrib>Sacks, Michael S.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Journal of the mechanical behavior of biomedical materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, David S.</au><au>Avazmohammadi, Reza</au><au>Merchant, Samer S.</au><au>Kawamura, Tomonori</au><au>Hsu, Edward W.</au><au>Gorman, Joseph H.</au><au>Gorman, Robert C.</au><au>Sacks, Michael S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Insights into the passive mechanical behavior of left ventricular myocardium using a robust constitutive model based on full 3D kinematics</atitle><jtitle>Journal of the mechanical behavior of biomedical materials</jtitle><addtitle>J Mech Behav Biomed Mater</addtitle><date>2020-03-01</date><risdate>2020</risdate><volume>103</volume><spage>103508</spage><epage>103508</epage><pages>103508-103508</pages><artnum>103508</artnum><issn>1751-6161</issn><eissn>1878-0180</eissn><abstract>Myocardium possesses a hierarchical structure that results in complex three-dimensional (3D) mechanical behavior, forming a critical component of ventricular function in health and disease. A wide range of constitutive model forms have been proposed for myocardium since the first planar biaxial studies were performed by Demer and Yin (J. Physiol. 339 (1), 1983). While there have been extensive studies since, none have been based on full 3D kinematic data, nor have they utilized optimal experimental design to estimate constitutive parameters, which may limit their predictive capability. Herein we have applied our novel 3D numerical-experimental methodology (Avazmohammadi et al., Biomechanics Model. Mechanobiol. 2018) to explore the applicability of an orthotropic constitutive model for passive ventricular myocardium (Holzapfel and Ogden, Philos. Trans. R. Soc. Lond.: Math. Phys. Eng. Sci. 367, 2009) by integrating 3D optimal loading paths, spatially varying material structure, and inverse modeling techniques. Our findings indicated that the initial model form was not successful in reproducing all optimal loading paths, due to previously unreported coupling behaviors via shearing of myofibers and extracellular collagen fibers in the myocardium. This observation necessitated extension of the constitutive model by adding two additional terms based on the I8(C) pseudo-invariant in the fiber-normal and sheet-normal directions. The modified model accurately reproduced all optimal loading paths and exhibited improved predictive capabilities. These unique results suggest that more complete constitutive models are required to fully capture the full 3D biomechanical response of left ventricular myocardium. The present approach is thus crucial for improved understanding and performance in cardiac modeling in healthy, diseased, and treatment scenarios.</abstract><cop>Netherlands</cop><pub>Elsevier Ltd</pub><pmid>32090941</pmid><doi>10.1016/j.jmbbm.2019.103508</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1751-6161 |
ispartof | Journal of the mechanical behavior of biomedical materials, 2020-03, Vol.103, p.103508-103508, Article 103508 |
issn | 1751-6161 1878-0180 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7045908 |
source | MEDLINE; Elsevier ScienceDirect Journals |
subjects | Biomechanical Phenomena Constitutive modeling Heart Heart Ventricles Inverse modeling Myocardium Optimal experimental design Stress, Mechanical |
title | Insights into the passive mechanical behavior of left ventricular myocardium using a robust constitutive model based on full 3D kinematics |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T23%3A00%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Insights%20into%20the%20passive%20mechanical%20behavior%20of%20left%20ventricular%20myocardium%20using%20a%20robust%20constitutive%20model%20based%20on%20full%203D%20kinematics&rft.jtitle=Journal%20of%20the%20mechanical%20behavior%20of%20biomedical%20materials&rft.au=Li,%20David%20S.&rft.date=2020-03-01&rft.volume=103&rft.spage=103508&rft.epage=103508&rft.pages=103508-103508&rft.artnum=103508&rft.issn=1751-6161&rft.eissn=1878-0180&rft_id=info:doi/10.1016/j.jmbbm.2019.103508&rft_dat=%3Cproquest_pubme%3E2363086791%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2363086791&rft_id=info:pmid/32090941&rft_els_id=S1751616119305247&rfr_iscdi=true |