Adenosine 5’-Monophosphate Protects from Hypoxia by Lowering Mitochondrial Metabolism and Oxygen Demand

ABSTRACTIschemia and reperfusion injury following severe trauma or cardiac arrest are major causes of organ damage in intensive care patients. The brain is particularly vulnerable because hypoxia rapidly damages neurons due to their heavy reliance on oxidative phosphorylation. Therapeutic hypothermi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Shock (Augusta, Ga.) Ga.), 2020-08, Vol.54 (2), p.237-244
Hauptverfasser: Kondo, Yutaka, Sueyoshi, Koichiro, Zhang, Jingping, Bao, Yi, Li, Xiaoou, Fakhari, Mahtab, Slubowski, Christian J., Bahrami, Soheyl, Ledderose, Carola, Junger, Wolfgang G.
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 244
container_issue 2
container_start_page 237
container_title Shock (Augusta, Ga.)
container_volume 54
creator Kondo, Yutaka
Sueyoshi, Koichiro
Zhang, Jingping
Bao, Yi
Li, Xiaoou
Fakhari, Mahtab
Slubowski, Christian J.
Bahrami, Soheyl
Ledderose, Carola
Junger, Wolfgang G.
description ABSTRACTIschemia and reperfusion injury following severe trauma or cardiac arrest are major causes of organ damage in intensive care patients. The brain is particularly vulnerable because hypoxia rapidly damages neurons due to their heavy reliance on oxidative phosphorylation. Therapeutic hypothermia can reduce ischemia-induced brain damage, but cooling procedures are slow and technically difficult to perform in critical care settings. It has been previously reported that injection of naturally occurring adenosine 5’-monophosphate (AMP) can rapidly induce hypothermia in mice. We studied the underlying mechanisms and found that AMP transiently reduces the heart rate, respiratory rate, body temperature, and the consciousness of adult male and female C57BL/6J mice. Adding AMP to mouse or human neuronal cell cultures dose-dependently reduced the membrane potential (ΔΨm) and Ca signaling of mitochondria in these cells. AMP treatment increased intracellular AMP levels and activated AMP-activated protein kinase, which resulted in the inhibition of mammalian target of rapamycin complex 1 (mTORC1) and of mitochondrial and cytosolic Ca signaling in resting and stimulated neurons. Pretreatment with an intraperitoneal injection of AMP almost doubled the survival time of mice under hypoxic (6% O2) or anoxic (
doi_str_mv 10.1097/SHK.0000000000001440
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7044067</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2281842851</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5680-9150e73a5546a9283f641544f8d8e79d1c7fad611c90ace4c839089d7035dc713</originalsourceid><addsrcrecordid>eNqFUstu1DAUjRCIlsIfIOQlm5TrR2Jng1S1wCBmVCRgbXmcm4khsYOdoZ0dv8Hv8SW4nVIVFuCNfXXPOfdxXBRPKRxTaOSLD4t3x3DnUCHgXnFIKwElVFTcz2-QvGScsYPiUUqfAZjgjXxYHHAqalCSHhbupEUfkvNIqp_ff5Sr4MPUhzT1ZkbyPoYZ7ZxIF8NIFrspXDpD1juyDBcYnd-QlZuD7YNvozMDWeFs1mFwaSTGt-T8crdBT85wzNHj4kFnhoRPbu6j4tPrVx9PF-Xy_M3b05NlaataQdnQClByU1WiNg1TvKtFnkl0qlUom5Za2Zm2ptQ2YCwKq3gDqmkl8Kq1kvKj4uVed9quR2wt-jmaQU_RjSbudDBO_5nxrteb8E1LyBusZRZ4fiMQw9ctplmPLlkcBuMxbJNmTFElmKquaok91MaQUsTutgwFfeWSzi7pv13KtGd3W7wl_bYlA9QecBGGGWP6MmzzvnWPZpj7_2mLf1Dh-g8oVjJgACqH5TWR_wIr2rAh</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2281842851</pqid></control><display><type>article</type><title>Adenosine 5’-Monophosphate Protects from Hypoxia by Lowering Mitochondrial Metabolism and Oxygen Demand</title><source>Journals@Ovid LWW Legacy Archive</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Kondo, Yutaka ; Sueyoshi, Koichiro ; Zhang, Jingping ; Bao, Yi ; Li, Xiaoou ; Fakhari, Mahtab ; Slubowski, Christian J. ; Bahrami, Soheyl ; Ledderose, Carola ; Junger, Wolfgang G.</creator><creatorcontrib>Kondo, Yutaka ; Sueyoshi, Koichiro ; Zhang, Jingping ; Bao, Yi ; Li, Xiaoou ; Fakhari, Mahtab ; Slubowski, Christian J. ; Bahrami, Soheyl ; Ledderose, Carola ; Junger, Wolfgang G.</creatorcontrib><description>ABSTRACTIschemia and reperfusion injury following severe trauma or cardiac arrest are major causes of organ damage in intensive care patients. The brain is particularly vulnerable because hypoxia rapidly damages neurons due to their heavy reliance on oxidative phosphorylation. Therapeutic hypothermia can reduce ischemia-induced brain damage, but cooling procedures are slow and technically difficult to perform in critical care settings. It has been previously reported that injection of naturally occurring adenosine 5’-monophosphate (AMP) can rapidly induce hypothermia in mice. We studied the underlying mechanisms and found that AMP transiently reduces the heart rate, respiratory rate, body temperature, and the consciousness of adult male and female C57BL/6J mice. Adding AMP to mouse or human neuronal cell cultures dose-dependently reduced the membrane potential (ΔΨm) and Ca signaling of mitochondria in these cells. AMP treatment increased intracellular AMP levels and activated AMP-activated protein kinase, which resulted in the inhibition of mammalian target of rapamycin complex 1 (mTORC1) and of mitochondrial and cytosolic Ca signaling in resting and stimulated neurons. Pretreatment with an intraperitoneal injection of AMP almost doubled the survival time of mice under hypoxic (6% O2) or anoxic (&lt;1% O2) conditions when compared to untreated mice. These findings suggest that AMP induces a hypometabolic state that slows mitochondrial respiration, reduces oxygen demand, and delays the processes that damage mitochondria in the brain and other organs following hypoxia and reperfusion. Further examination of these mechanisms may lead to new treatments that preserve organ function in critical care patients.</description><identifier>ISSN: 1073-2322</identifier><identifier>EISSN: 1540-0514</identifier><identifier>DOI: 10.1097/SHK.0000000000001440</identifier><identifier>PMID: 31460871</identifier><language>eng</language><publisher>United States: by the Shock Society</publisher><ispartof>Shock (Augusta, Ga.), 2020-08, Vol.54 (2), p.237-244</ispartof><rights>by the Shock Society</rights><rights>2020 by the Shock Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5680-9150e73a5546a9283f641544f8d8e79d1c7fad611c90ace4c839089d7035dc713</citedby><cites>FETCH-LOGICAL-c5680-9150e73a5546a9283f641544f8d8e79d1c7fad611c90ace4c839089d7035dc713</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttp://ovidsp.ovid.com/ovidweb.cgi?T=JS&amp;NEWS=n&amp;CSC=Y&amp;PAGE=fulltext&amp;D=ovft&amp;AN=00024382-202008000-00014$$EHTML$$P50$$Gwolterskluwer$$H</linktohtml><link.rule.ids>230,314,776,780,881,4595,27901,27902,65206</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31460871$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kondo, Yutaka</creatorcontrib><creatorcontrib>Sueyoshi, Koichiro</creatorcontrib><creatorcontrib>Zhang, Jingping</creatorcontrib><creatorcontrib>Bao, Yi</creatorcontrib><creatorcontrib>Li, Xiaoou</creatorcontrib><creatorcontrib>Fakhari, Mahtab</creatorcontrib><creatorcontrib>Slubowski, Christian J.</creatorcontrib><creatorcontrib>Bahrami, Soheyl</creatorcontrib><creatorcontrib>Ledderose, Carola</creatorcontrib><creatorcontrib>Junger, Wolfgang G.</creatorcontrib><title>Adenosine 5’-Monophosphate Protects from Hypoxia by Lowering Mitochondrial Metabolism and Oxygen Demand</title><title>Shock (Augusta, Ga.)</title><addtitle>Shock</addtitle><description>ABSTRACTIschemia and reperfusion injury following severe trauma or cardiac arrest are major causes of organ damage in intensive care patients. The brain is particularly vulnerable because hypoxia rapidly damages neurons due to their heavy reliance on oxidative phosphorylation. Therapeutic hypothermia can reduce ischemia-induced brain damage, but cooling procedures are slow and technically difficult to perform in critical care settings. It has been previously reported that injection of naturally occurring adenosine 5’-monophosphate (AMP) can rapidly induce hypothermia in mice. We studied the underlying mechanisms and found that AMP transiently reduces the heart rate, respiratory rate, body temperature, and the consciousness of adult male and female C57BL/6J mice. Adding AMP to mouse or human neuronal cell cultures dose-dependently reduced the membrane potential (ΔΨm) and Ca signaling of mitochondria in these cells. AMP treatment increased intracellular AMP levels and activated AMP-activated protein kinase, which resulted in the inhibition of mammalian target of rapamycin complex 1 (mTORC1) and of mitochondrial and cytosolic Ca signaling in resting and stimulated neurons. Pretreatment with an intraperitoneal injection of AMP almost doubled the survival time of mice under hypoxic (6% O2) or anoxic (&lt;1% O2) conditions when compared to untreated mice. These findings suggest that AMP induces a hypometabolic state that slows mitochondrial respiration, reduces oxygen demand, and delays the processes that damage mitochondria in the brain and other organs following hypoxia and reperfusion. Further examination of these mechanisms may lead to new treatments that preserve organ function in critical care patients.</description><issn>1073-2322</issn><issn>1540-0514</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNqFUstu1DAUjRCIlsIfIOQlm5TrR2Jng1S1wCBmVCRgbXmcm4khsYOdoZ0dv8Hv8SW4nVIVFuCNfXXPOfdxXBRPKRxTaOSLD4t3x3DnUCHgXnFIKwElVFTcz2-QvGScsYPiUUqfAZjgjXxYHHAqalCSHhbupEUfkvNIqp_ff5Sr4MPUhzT1ZkbyPoYZ7ZxIF8NIFrspXDpD1juyDBcYnd-QlZuD7YNvozMDWeFs1mFwaSTGt-T8crdBT85wzNHj4kFnhoRPbu6j4tPrVx9PF-Xy_M3b05NlaataQdnQClByU1WiNg1TvKtFnkl0qlUom5Za2Zm2ptQ2YCwKq3gDqmkl8Kq1kvKj4uVed9quR2wt-jmaQU_RjSbudDBO_5nxrteb8E1LyBusZRZ4fiMQw9ctplmPLlkcBuMxbJNmTFElmKquaok91MaQUsTutgwFfeWSzi7pv13KtGd3W7wl_bYlA9QecBGGGWP6MmzzvnWPZpj7_2mLf1Dh-g8oVjJgACqH5TWR_wIr2rAh</recordid><startdate>202008</startdate><enddate>202008</enddate><creator>Kondo, Yutaka</creator><creator>Sueyoshi, Koichiro</creator><creator>Zhang, Jingping</creator><creator>Bao, Yi</creator><creator>Li, Xiaoou</creator><creator>Fakhari, Mahtab</creator><creator>Slubowski, Christian J.</creator><creator>Bahrami, Soheyl</creator><creator>Ledderose, Carola</creator><creator>Junger, Wolfgang G.</creator><general>by the Shock Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>202008</creationdate><title>Adenosine 5’-Monophosphate Protects from Hypoxia by Lowering Mitochondrial Metabolism and Oxygen Demand</title><author>Kondo, Yutaka ; Sueyoshi, Koichiro ; Zhang, Jingping ; Bao, Yi ; Li, Xiaoou ; Fakhari, Mahtab ; Slubowski, Christian J. ; Bahrami, Soheyl ; Ledderose, Carola ; Junger, Wolfgang G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5680-9150e73a5546a9283f641544f8d8e79d1c7fad611c90ace4c839089d7035dc713</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kondo, Yutaka</creatorcontrib><creatorcontrib>Sueyoshi, Koichiro</creatorcontrib><creatorcontrib>Zhang, Jingping</creatorcontrib><creatorcontrib>Bao, Yi</creatorcontrib><creatorcontrib>Li, Xiaoou</creatorcontrib><creatorcontrib>Fakhari, Mahtab</creatorcontrib><creatorcontrib>Slubowski, Christian J.</creatorcontrib><creatorcontrib>Bahrami, Soheyl</creatorcontrib><creatorcontrib>Ledderose, Carola</creatorcontrib><creatorcontrib>Junger, Wolfgang G.</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Shock (Augusta, Ga.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kondo, Yutaka</au><au>Sueyoshi, Koichiro</au><au>Zhang, Jingping</au><au>Bao, Yi</au><au>Li, Xiaoou</au><au>Fakhari, Mahtab</au><au>Slubowski, Christian J.</au><au>Bahrami, Soheyl</au><au>Ledderose, Carola</au><au>Junger, Wolfgang G.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Adenosine 5’-Monophosphate Protects from Hypoxia by Lowering Mitochondrial Metabolism and Oxygen Demand</atitle><jtitle>Shock (Augusta, Ga.)</jtitle><addtitle>Shock</addtitle><date>2020-08</date><risdate>2020</risdate><volume>54</volume><issue>2</issue><spage>237</spage><epage>244</epage><pages>237-244</pages><issn>1073-2322</issn><eissn>1540-0514</eissn><abstract>ABSTRACTIschemia and reperfusion injury following severe trauma or cardiac arrest are major causes of organ damage in intensive care patients. The brain is particularly vulnerable because hypoxia rapidly damages neurons due to their heavy reliance on oxidative phosphorylation. Therapeutic hypothermia can reduce ischemia-induced brain damage, but cooling procedures are slow and technically difficult to perform in critical care settings. It has been previously reported that injection of naturally occurring adenosine 5’-monophosphate (AMP) can rapidly induce hypothermia in mice. We studied the underlying mechanisms and found that AMP transiently reduces the heart rate, respiratory rate, body temperature, and the consciousness of adult male and female C57BL/6J mice. Adding AMP to mouse or human neuronal cell cultures dose-dependently reduced the membrane potential (ΔΨm) and Ca signaling of mitochondria in these cells. AMP treatment increased intracellular AMP levels and activated AMP-activated protein kinase, which resulted in the inhibition of mammalian target of rapamycin complex 1 (mTORC1) and of mitochondrial and cytosolic Ca signaling in resting and stimulated neurons. Pretreatment with an intraperitoneal injection of AMP almost doubled the survival time of mice under hypoxic (6% O2) or anoxic (&lt;1% O2) conditions when compared to untreated mice. These findings suggest that AMP induces a hypometabolic state that slows mitochondrial respiration, reduces oxygen demand, and delays the processes that damage mitochondria in the brain and other organs following hypoxia and reperfusion. Further examination of these mechanisms may lead to new treatments that preserve organ function in critical care patients.</abstract><cop>United States</cop><pub>by the Shock Society</pub><pmid>31460871</pmid><doi>10.1097/SHK.0000000000001440</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1073-2322
ispartof Shock (Augusta, Ga.), 2020-08, Vol.54 (2), p.237-244
issn 1073-2322
1540-0514
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7044067
source Journals@Ovid LWW Legacy Archive; EZB-FREE-00999 freely available EZB journals
title Adenosine 5’-Monophosphate Protects from Hypoxia by Lowering Mitochondrial Metabolism and Oxygen Demand
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T21%3A32%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Adenosine%205%E2%80%99-Monophosphate%20Protects%20from%20Hypoxia%20by%20Lowering%20Mitochondrial%20Metabolism%20and%20Oxygen%20Demand&rft.jtitle=Shock%20(Augusta,%20Ga.)&rft.au=Kondo,%20Yutaka&rft.date=2020-08&rft.volume=54&rft.issue=2&rft.spage=237&rft.epage=244&rft.pages=237-244&rft.issn=1073-2322&rft.eissn=1540-0514&rft_id=info:doi/10.1097/SHK.0000000000001440&rft_dat=%3Cproquest_pubme%3E2281842851%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2281842851&rft_id=info:pmid/31460871&rfr_iscdi=true